To see the other types of publications on this topic, follow the link: Building Integrated Photovoltaic Installation.

Dissertations / Theses on the topic 'Building Integrated Photovoltaic Installation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Building Integrated Photovoltaic Installation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Gyoh, Louis Ember. "Design-management and planning for photovoltaic cladding systems within the UK construction industry : an optimal and systematic approach to procurement and installation of building integrated photovoltaics : an agenda for the 21st century." Thesis, University of Sheffield, 1999. http://etheses.whiterose.ac.uk/6035/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Norton, Matthew Savvas Harry. "Investigation of a novel, building-integrated photovoltaic concentrator." Thesis, University of Reading, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.555862.

Full text
Abstract:
This thesis examines the performance of a building-integrated 10X photovoltaic concentrator proposed within the EU Framework-5 CONMAN project. The concentrator behaves as a window or skylight, allowing diffuse light to enter the building, whilst using mirrored slats to capture direct sunlight for conversion to electricity. The underlying logic is that by building integration, the proposed design can be economically and environmentally preferential to standard building-mounted PV panels in situations where the EU Energy Performance of Buildings Directive applies. A survey of building-integrated concentrator systems was conducted and indicated this to be a novel system. A technique of pressing to form the parabolic mirrors amenable to mass production was developed, in addition to a novel tracking system. Tests on BP LSBG cells indicated an approximate cell efficiency of 19% at the concentration levels expected. These design features in combination indicated that the cost of the system could be kept reasonably low, and a detailed design, called the 'Venetian Blind' was developed, constructed and tested. A biaxial model of the collector was developed, and a Visual Basic programme developed to simulate its output. Good correlation was found between the system model and the test data. When used to simulate annual output for the system in climates typical of the south of Spain, the model indicated that the system produced electricity at an approximate module cost of $8/equivalent Wp when not building integrated, and $5/equivalent Wp when building integrated. The system incurred longer energy payback periods than flat plate PV, but not substantially so when building integrated. Overall, 1 the optimised system is projected to produce electricity for 0.3$/kWh at good sites. Note that the system's potential contributions to-the passive solar gain of a building are likely to be very substantial, in addition to its electrical output.
APA, Harvard, Vancouver, ISO, and other styles
3

Baig, Hasan. "Enhancing performance of building integrated concentrating photovoltaic systems." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/17301.

Full text
Abstract:
Buildings both commercial and residential are the largest consumers of electricity. Integrating Photovoltaic technology in building architecture or Building Integrated Photovoltaics (BIPV) provides an effective means for meeting this huge energy demands and provides an energy hub at the place of its immediate requirement. However, this technology is challenged with problems like low efficiency and high cost. An effective way of improving the solar cell efficiency and reducing the cost of photovoltaic systems is either by reducing solar cell manufacturing cost or illuminating the solar cells with a higher light intensity than is naturally available by the use of optical concentrators which is also known as Concentrating Photovoltaic (CPV) technology. Integrating this technology in the architecture is referred as Building integrated Concentrating Photovoltaics (BICPV). This thesis presents a detailed performance analysis of different designs used as BICPV systems and proposes further advancements necessary for improving the system design and minimizing losses. The systems under study include a Dielectric Asymmetric Compound Parabolic Concentrator (DiACPC) designed for 2.8×, a three-dimensional Cross compound parabolic concentrator (3DCCPC) designed for 3.6× and a Square Elliptical Hyperbolic (SEH) concentrator designed for 6×. A detailed analysis procedure is presented showcasing the optical, electrical, thermal and overall analysis of these systems. A particular issue for CPV technology is the non-uniformity of the incident flux which tends to cause hot spots, current mismatch and reduce the overall efficiency of the system. Emphasis is placed on modelling the effects of non-uniformity while evaluating the performance of these systems. The optical analysis of the concentrators is carried out using ray tracing and finite element methods are employed to determine electrical and thermal performance of the system. Based on the optical analysis, the outgoing flux from the concentrators is predicted for different incident angles for each of the concentrators. A finite element model for the solar cell was developed to evaluate its electrical performance using the outputs obtained from the optical analysis. The model can also be applied for the optimization of the front grid pattern of Si Solar cells. The model is further coupled within the thermal analysis of the system, where the temperature of the solar cell is predicted under operating conditions and used to evaluate the overall performance under steady state conditions. During the analysis of the DiACPC it was found that the maximum cell temperature reached was 349.5 K under an incident solar radiation of 1000 W/m2. Results from the study carried on the 3DCCPC showed that a maximum cell temperature of 332 K is reached under normal incidence, this tends to bring down the overall power production by 14.6%. In the case of the SEH based system a maximum temperature of 319 K was observed on the solar cell surface under normal incidence. An average drop of 11.7% was found making the effective power ratio of the system 3.4. The non-uniformity introduced due to the concentrator profile causes hotspots in the BICPV system. The non-uniformity was found to reduce the efficiency of the solar cell in the range of 0.5-1 % in all the three studies. The overall performance can be improved by addressing losses occurring within different components of the system. It was found that optical losses occurred at the interface region formed due to the encapsulant spillage along the edges of the concentrator. Using a reflective film along the edge of the concentrating element was found to improve the optical efficiency of the system. Case studies highlighting the improvement are presented. A reflective film was attached along the interface region of the concentrator and the encapsulant. In the case of a DiACPC, an increase of 6% could be seen in the overall power production. Similar case study was performed for a 3DCCPC and a maximum of 6.7% was seen in the power output. To further improve the system performance a new design incorporating conjugate reflective-refractive device was evaluated. The device benefits from high optical efficiency due to the reflection and greater acceptance angle due to refraction. Finally, recommendations are made for development of a new generation of designs to be used in BiCPV applications. Efforts are made towards improving the overall performance and reducing the non-uniformity of the concentrated illumination.
APA, Harvard, Vancouver, ISO, and other styles
4

Braid, Robert Michael. "Characterisation and mismatch losses of building integrated photovoltaic generation." Thesis, University of Southampton, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tan, Chee Wei. "Analysis and control of building integrated photovoltaic systems incorporating storage." Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/11445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bakar, Siti Hawa Abu. "Novel rotationally asymmetrical solar concentrator for the building integrated photovoltaic system." Thesis, Glasgow Caledonian University, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.700990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

CORONA, FABIO. "Building Integrated Photovoltaic Systems: specific non-idealities from solar cell to grid." Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2538891.

Full text
Abstract:
After an initial phase of great diffusion of large Photovoltaic (PV) systems installed on the ground, the recent evolution of the feed-in tariffs makes the Building Integrated PV (BIPV) systems for residential, commercial and industrial users, the more befitting application of the PV technology. Unfortunately, the building integration implies some critical issues on the operation of principal components, such as the PV panels or the grid-connected inverter, typical of this kind of installation and not so important in the case of ground mounted PV plants. These non-idealities can be due to: presence of obstacles near the PV panels, like trees, poles, antennas, architectural elements (chimneys, barriers, buildings in the neighbourhood); non-optimal orientation of the PV field (not Southward) or with different orientations among the sub-fields, with consequent production asymmetry between morning and evening or mismatch; sub-optimal tilt angle of the PV modules, as it is fixed by the building roof; not-efficient cooling of the PV panels, which can cause temperature gradients both horizontally, between PV modules in the central area of the field and the peripheral ones, and vertically, between panels installed in the bottom and in the top of a structure, due to the direction of the cooler flow. The consequences of these non-idealities is the subject of this PhD dissertation, from both theoretical, through convenient simulation tools, and experimental viewpoints. The most evident of these effects is the mismatch of the currentvoltage characteristics of the PV field panels. With the aim of illustrating the analysis methodologies used to study the mismatch effect on all the PV system components, a specific case study is considered, constituted by a large BIPV system (almost 1MWp) installed on the roof of a wholesale warehouse.
APA, Harvard, Vancouver, ISO, and other styles
8

Pang, Huey, and 彭栩怡. "Computer modeling of building-integrated photovoltaic systems using genetic algorithms for optimization." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31227764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharma, Shivangi. "Performance enhancement of building-integrated concentrator photovoltaic system using phase change materials." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/33859.

Full text
Abstract:
Building-integrated Concentrator Photovoltaic (BICPV) technology produces noiseless and pollution free electricity at the point of use. With a potential to contribute immensely to the increasing global need for a sustainable and low carbon energy, the primary challenges such as thermal management of the panels are overwhelming. Although significant progress has been made in the solar cell efficiency increase, the concentrator photovoltaic industry has still to go a long way before it becomes competitive and economically viable. Experiencing great losses in their electrical efficiencies at high temperatures that may eventually lead to permanent degradation over time, affects the market potential severely. With a global PV installed capacity of 303 GW, a nominal 10 °C decrease in their average temperatures could theoretically lead to a 5 % electricity efficiency improvement resulting in 15 GW increase in electricity production worldwide. However, due to a gap in the research knowledge concerning the effectiveness of the available passive thermal regulation techniques both individually and working in tandem, this lucrative potential is yet to be realised. The work presented in this thesis has been focussed on incremental performance improvement of BICPV by developing innovative solutions for passive cooling of the low concentrator based BICPV. Passive cooling approaches are selected as they are generally simpler, more cost-effective and considered more reliable than active cooling. Phase Change Materials (PCM) have been considered as the primary means to achieve this. The design, fabrication and the characterisation of four different types of BIPCV-PCM assemblies are described. The experimental investigations were conducted indoors under the standard test conditions. In general, for all the fabricated and assembled BICPV-PCM systems, the electrical power output showed an increase of 2 %-17 % with the use of PCM depending on the PCM type and irradiance. The occurrence of hot spots due to thermal disequilibrium in the PV has been a cause of high degradation rates for the modules. With the use of PCM, a more uniform temperature within the module could be realised, which has the potential to extend the lifetime of the BICPV in the long-term. Consequentially, this may minimise the intensive energy required for the production of the PV cells and mitigate the associated environmental impacts. Following a parallel secondary approach to the challenge, the design of a micro-finned back plate integrated with a PCM containment has been proposed. This containment was 3D printed to save manufacturing costs and time and for reducing the PCM leakage. An organic PCM dispersed with high thermal conductivity nanomaterial was successfully tested. The cost-benefit analysis indicated that the cost per degree temperature reduction (£/°C) with the sole use of micro-fins was the highest at 1.54, followed by micro-fins + PCM at 0.23 and micro-fins + n-PCM at 0.19. The proposed use of PCM and application of micro-finned surfaces for BICPV heat dissipation in combination with PCM and n-PCM is one the novelties reported in this thesis. In addition, an analytical model for the design of BICPV-PCM system has been presented which is the only existing model to date. The results from the assessment of thermal regulation benefits achieved by introducing micro-finning, PCM and n-PCM into BICPV will provide vital information about their applicability in the future. It may also influence the prospects for how low concentration BICPV systems will be manufactured in the future.
APA, Harvard, Vancouver, ISO, and other styles
10

Moreno, Jorge (Jorge Alejandro Moreno de la Carrera). "Sociotechnical complexities associated with the development of Building Integrated Photovoltaic fac̦ade systems." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/79527.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division, February 2013.
"December 2012." Page 112 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (p. 101-111).
Significant opportunities to improve the energy use in buildings open remarkable possibilities for innovation over the next two decades. Particularly in the United States, 41% of primary energy consumption in 2010 went into buildings. This work has applied a broad perspective that combines management, technology, and social sciences to analyze the development and integration challenges of emerging Building Integrated Photovoltaic (BIPV) systems that would likely be integrated into building fac̦ades as part of a portfolio of alternatives that might contribute to the development of zero-energy buildings. The analysis contributes to identify some sociotechnical complexities associated with the development of BIPV systems. In addition, it characterizes different products' architectures based on their technical performance, technical complexity, perceived complexity, and exposure to subjective judgment. It shows that the resolution of the friction between the aesthetic and the electricity generation function is one of the early-stage design decisions that may have significant influence on the adoption of the system.
by Jorge Moreno.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
11

Saadon, Syamimi. "Modeling and simulation of a ventilated building integrated photovoltaic/thermal (BIPV/T) envelope." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0049.

Full text
Abstract:
La demande d'énergie consommée par les habitants a connu une croissance significative au cours des 30 dernières années. Par conséquent, des actions sont menées en vue de développement des énergies renouvelables et en particulier de l'énergie solaire. De nombreuses solutions technologiques ont ensuite été proposées, telles que les capteurs solaires PV/T dont l'objectif est d'améliorer la performance des panneaux PV en récupérant l’énergie thermique qu’ils dissipent à l’aide d’un fluide caloporteur. Les recherches en vue de l'amélioration des productivités thermiques et électriques de ces composants ont conduit à l'intégration progressive à l’enveloppe des bâtiments afin d'améliorer leur surface de captation d’énergie solaire. Face à la problématique énergétique, les solutions envisagées dans le domaine du bâtiment s’orientent sur un mix énergétique favorisant la production locale ainsi que l’autoconsommation. Concernant l’électricité, les systèmes photovoltaïques intégrés au bâtiment (BIPV) représentent l’une des rares technologies capables de produire de l’électricité localement et sans émettre de gaz à effet de serre. Cependant, le niveau de température auquel fonctionnent ces composants et en particulier les composants cristallins, influence sensiblement leur efficacité ainsi que leur durée de vie. Ceci est donc d’autant plus vrai en configuration d’intégration. Ces deux constats mettent en lumière l’importance du refroidissement passif par convection naturelle de ces modules. Ce travail porte sur la simulation numérique d'une façade PV partiellement transparente et ventilée, conçu pour le rafraichissement en été (par convection naturelle) et pour la récupération de chaleur en hiver (par ventilation mécanique). Pour les deux configurations, l'air dans la cavité est chauffé par la transmission du rayonnement solaire à travers des surfaces vitrées, et par les échanges convectif et radiatif. Le système est simulé à l'aide d'un modèle multi-physique réduit adapté à une grande échelle dans des conditions réelles d'exploitation et développé pour l'environnement logiciel TRNSYS. La validation du modèle est ensuite présentée en utilisant des données expérimentales du projet RESSOURCES (ANR-PREBAT 2007). Cette étape a conduit, dans le troisième chapitre du calcul des besoins de chauffage et de refroidissement d'un bâtiment et l'évaluation de l'impact des variations climatiques sur les performances du système. Les résultats ont permis enfin d'effectuer une analyse énergétique et exergo-économique
The demand of energy consumed by human kind has been growing significantly over the past 30 years. Therefore, various actions are taken for the development of renewable energy and in particular solar energy. Many technological solutions have then been proposed, such as solar PV/T collectors whose objective is to improve the PV panels performance by recovering the heat lost with a heat removal fluid. The research for the improvement of the thermal and electrical productivities of these components has led to the gradual integration of the solar components into building in order to improve their absorbing area. Among technologies capable to produce electricity locally without con-tributing to greenhouse gas (GHG) releases is building integrated PV systems (BIPV). However, when exposed to intense solar radiation, the temperature of PV modules increases significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decreases the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. A numerical model of heat transfer and fluid flow characteristics of natural convection of air is therefore undertaken so as to provide reliable information for the design of BIPV. A simplified numerical model is used to model the PVT collector so as to gain an understanding of the complex processes involved in cooling of integrated photovoltaic arrays in double-skin building surfaces. This work addresses the numerical simulation of a semi-transparent, ventilated PV façade designed for cooling in summer (by natural convection) and for heat recovery in winter (by mechanical ventilation). For both configurations, air in the cavity between the two building skins (photovoltaic façade and the primary building wall) is heated by transmission through transparent glazed sections, and by convective and radiative exchange. The system is simulated with the aid of a reduced-order multi-physics model adapted to a full scale arrangement operating under real conditions and developed for the TRNSYS software environment. Validation of the model and the subsequent simulation of a building-coupled system are then presented, which were undertaken using experimental data from the RESSOURCES project (ANR-PREBAT 2007). This step led, in the third chapter to the calculation of the heating and cooling needs of a simulated building and the investigation of impact of climatic variations on the system performance. The results have permitted finally to perform the exergy and exergoeconomic analysis
APA, Harvard, Vancouver, ISO, and other styles
12

Lam, King-hang. "Techniques for dynamic modelling of BIPV in supporting system design and BEMS." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39558460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Quintana, Samer. "Building integrated photovoltaic (BIPV) modelling for a demo site in Ludvika based on building information modelling (BIM) platform." Thesis, Högskolan Dalarna, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:du-29078.

Full text
Abstract:
This thesis aims to design and simulate a building integrated photovoltaic (BIPV) system for three demo buildings in Ludvika, Sweden, which is part of the Energy- Matching’s project under the European H2020 research scheme. A literature review was firstly conducted in the area of energy scenarios, engineering tools, methodologies and the workflows in design and building energy modelling. Then, this thesis developed the three-dimensional (3D) building models of the demo site, based on the Revit – a building information modelling (BIM) tool. Next, the PVSITES tool was considered as the main approach to simulate and optimize the BIPV system. Results on the energy output of the dedicated BIPV system, as well as financial costs, were finally obtained. It was found that the optimal location for the BIPV system was on the three buildings south and east faced roofs, with a total area of approximately 800 meters squared (m2) and a yearly irradiance potential between 1020 kilowatts hours per meter squared (kWh/m2) and 925 kWh/m2 respectively. The simulation showed that this BIPV system of 615 m2 with a power of 36 kilowatts-peak (kWp) could yield a maximum of 29,000 kilowatts hours per year (kWh), a 5% of the total yearly energy demand of the building and over the summer, this percentage increases considerably. With the estimated standards costs, the BIPV system have a 12 years payback period and 61% investment ratio over a 20 years period, concluding that a BIPV system on the Ludvika demo building is a feasible project, in terms of energy potential and as well as economically. This thesis also concludes that performing the BIPV simulation on the BIM platform is both reliable and flexible, and also has the potential to be reused, refined and scaled up.
APA, Harvard, Vancouver, ISO, and other styles
14

Misara, Siwanand [Verfasser]. "Thermal Impacts on Building Integrated Photovoltaic (BIPV) (Electrical, Thermal and Mechanical Characteristics) / Siwanand Misara." Kassel : Universitätsbibliothek Kassel, 2015. http://d-nb.info/1073852482/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mallick, Tapas K. "Optics and heat transfer for asymmetric compound parabolic photovoltaic concentrators for building integrated photovoltaics." Thesis, University of Ulster, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Munyati, Edmund. "The potential of building-integrated photovoltaic systems in Zimbabwe and their application to thermal environmental control." Thesis, Northumbria University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Menoufi, Karim Ali Ibrahim. "Life Cycle Assessment of novel Building Integrated Concentrating Photovoltaic systems through environmental and energy evaluations." Doctoral thesis, Universitat de Lleida, 2014. http://hdl.handle.net/10803/131056.

Full text
Abstract:
La realització d'estudis de LCA per a sistemes fotovoltaics és una eina essencial per mesurar el seu nivell de sostenibilitat En aquest sentit, i després de la realització d' una anàlisi teòrica dels estudis publicats de LCA dels sistemes fotovoltaics, s'han trobat algunes llacunes. Aquestes llacunes es refereixen a la manca de varietat d'indicadors de LCA, on la majoria dels estudis depenen del temps de retorn energètic, sent aquest gairebé l'únic indicador (no es té en compte l'ús dels mètodes de perfil ambiental). A més, s'observen dues bretxes relatives a la manca d'estudis de LCA destacant la integració en edificis d'energia solar d'una banda, i l'ús de la tecnologia fotovoltaica de concentració per un altre. Per tant, en aquesta tesi, es presenta una nova aportació al camp dels estudis LCA dels sistemes fotovoltaics integrats en edificis. Això s'aconsegueix a través de l'avaluació ambiental i energètica dels sistemes de concentració fotovoltaica integrats en edificis (BICPV). Els resultats es presenten en termes de metodologies d'avaluació de l' impacte del cicle de vida (perfil mediambiental), així com el temps d'amortització de l'Energia i el Factor de Retorn (perfil energètic). Els resultats, amb el suport de les anàlisis de sensibilitat i la comparació amb un sistema convencional fotovoltaic per a integració en edificis (BIPV), mostren beneficis ambientals significatius que poden ser obtinguts a través de sistemes BICPV. A Finalment, es discuteixen les recomanacions per a treballs i millores futures.
Conducting LCA studies for PV systems is an essential tool for measuring the sustainability level of a corresponding system. In this sense, and after conducting a theoretical analysis of the LCA studies of PV systems in literature within the context of energy generation, some gaps have been found. These gaps are briefly represented in the lack of variety of LCA indicators, where most of the studies are dependent on the Energy Payback Time as almost the sole environmental indicator, disregarding the use of environmental profile methods. In addition, another two gaps are observed concerning the lack of LCA studies highlighting the building integration from one side, and the use of the concentrating PV technology from another side. Hence, in this thesis, a novel contribution to the field of LCA studies of PV systems is presented. This is achieved through environmentally and energetically evaluating novel Building Integrated Concentrating Photovoltaic (BICPV) systems. The results are presented in terms of Life Cycle Impact Assessment methodologies (environmental profile), as well as the Energy Payback Time and the Energy Return Factor (Energy profile). The results, supported by sensitivity analyses and comparison to a conventional Building Integrated Photovoltaic (BIPV) system, show the significant environmental benefits that can be acquired through BICPV systems. Finally, recommendations for future work and improvements are discussed as well.
La realización de estudios de LCA para sistemas fotovoltaicos es una herramienta esencial para medir su nivel de sostenibilidad. En este sentido, y después de la realización de un análisis teórico de los estudios de LCA de los sistemas fotovoltaicos en la literatura en el contexto de la generación de energía, se han encontrado algunas lagunas. Algunas de estas lagunas se refieren: la falta de variedad de indicadores de LCA, donde la mayoría de los estudios dependen del tiempo de retorno energético, siendo este casi el único indicador medioambiental (no se tiene en cuenta el uso de los métodos de perfil medioambiental). Además, se observan otras dos brechas relativas a la falta de estudios de LCA destacando la integración en edificios de energía solar por un lado, y el uso de la tecnología fotovoltaica de concentración por otro. Por lo tanto, en esta tesis, se presenta una nueva aportación al campo de los estudios LCA de los sistemas fotovoltaicos integrados en edificios. Esto se logra a través de la evaluación medioambiental y energética de los sistemas de concentración fotovoltaica integrados en edificios (BICPV). Los resultados se presentan en términos de metodologías de evaluación del impacto del ciclo de vida (perfil medioambiental), así como el tiempo de amortización de la Energía y su Factor de Retorno (perfil de la Energía). Los resultados, con el apoyo de los análisis de sensibilidad y la comparación con un sistema convencional fotovoltaico para integración en edificios (BIPV), muestran beneficios ambientales significativos que pueden ser obtenidos a través de sistemas BICPV. Finalmente, se discuten las recomendaciones para trabajos y mejoras futuros.
APA, Harvard, Vancouver, ISO, and other styles
18

Mondol, Jayanta Deb. "Long-term performance analysis, simulation, optimisation and economic analysis of a building-integrated photovoltaic system." Thesis, University of Ulster, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Adeleke, Adedayo Kelvin. "Web-based GIS modelling of building-integrated solar photovoltaic system for the City of Cape Town." Doctoral thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29181.

Full text
Abstract:
Population increase in African cities have made it hard to reduce their ecological footprint and attain self-sustainability. This made the United Nations to put forward the seventeen sustainable development goals. Three of these goals centre on provision of clean energy and reduction of reliance on fossil fuels. It is therefore important for cities in Africa to chart a path of attaining sustainability. Consequently, the city of Cape Town is leading the drive for a greener city and self-sustainability in energy. Solar energy, which is regarded as a clean and renewable source of energy, makes it possible to generate electricity by using photovoltaics technology. However, the problem of creating awareness as to the potentials of building-integrated solar photovoltaic system persists. The study is aimed at using remote sensing and Geographic Information Systems (GIS) techniques in creating awareness about the potentials of building rooftops for solar photovoltaics installations in an urban setting. In achieving this, Light Detection and Ranging (LiDAR) data and aerial imagery are sourced from City of Cape Town municipality to serve as the primary data input. Four phases of analysis are involved: (1) extraction of whole building roof outline and its roof planes, using the integration of LiDAR-derived products and aerial imagery, in order to determine the surface area of the roof planes. This is achieved by developing a unique two-in-one, object-based classification rulesets; (2) estimating and validating the global solar radiation incidence on each roof plane, using a LiDAR-derived elevation model in a python script utilizing the GRASS script library; (3) evaluating the solar photovoltaic potential of each roof plane, using inputs from two previous phases to create a solar photovoltaic potential database; and (4) deploying the solution online to create awareness, by utilizing JavaScript and Hypertext Mark-up Language (HTML) to implement a map mashup, which incorporates tile map and table services. This results in a web-based solution, which can be queried to retrieve information about the solar photovoltaic potential of a building roof. From the results generated and the system developed, it becomes possible to remotely and sufficiently evaluate buildings in the city for solar photovoltaic potentials, designs and installations. Thereby reducing reliance on the fossil fuel generated electricity and improving the self-sustainability of the city.
APA, Harvard, Vancouver, ISO, and other styles
20

Reininghaus, Nies [Verfasser], Carsten [Akademischer Betreuer] Agert, Sascha [Akademischer Betreuer] Schäfer, and Jürgen [Akademischer Betreuer] Parisi. "Silicon thin film concepts for building integrated photovoltaic applications / Nies Reininghaus ; Carsten Agert, Sascha Schäfer, Jürgen Parisi." Oldenburg : BIS der Universität Oldenburg, 2018. http://d-nb.info/1178680479/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Reininghaus, Nies Verfasser], Carsten [Akademischer Betreuer] [Agert, Sascha [Akademischer Betreuer] Schäfer, and Jürgen [Akademischer Betreuer] Parisi. "Silicon thin film concepts for building integrated photovoltaic applications / Nies Reininghaus ; Carsten Agert, Sascha Schäfer, Jürgen Parisi." Oldenburg : BIS der Universität Oldenburg, 2018. http://d-nb.info/1178680479/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cholakkal, Leena. "Cost-benefit analysis of a Building Integrated Photovolatic roofing system for a school located in Blacksburg, Virginia." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/32994.

Full text
Abstract:
In the past few years, there has been a growing concern for the impact of non-renewable resource depletion and environmental degradation as a result of energy consumption in buildings. Buildings account for approximately one-half of the total energy consumption in developed countries. As architects and engineers involved with the fast growing building industry, we have the responsibility of exploring and integrating various renewable energy sources into our buildings to help us move towards what we might call â Positive Energy Architectureâ , where the role of the building shifts from net energy consumer to net energy producer. The object of this study is to analyze how different parameters namely solar radiation, temperature, solar altitude and solar azimuth affect the power produced by a new thin film photovoltaic panel. Through the application of multiple linear regression, the model developed is then used to evaluate the cost-effectiveness of the building integrated photovoltaic roofing system when connected to the utility grid when compared to a conventional roofing system. The analysis is applied to a school building located in Blacksburg, Virginia. Using the current utility rates and the energy consumption data, the payback period of the system is evaluated for full roof, half roof and quarter roof coverage.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
23

Deo, Vishwadeep. "Real-Time Adaptive Systems for Building Envelopes." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19769.

Full text
Abstract:
The thesis attempts to investigate the issues pertaining to design, fabrication and application of real-time adaptive systems for building envelopes, and to answer questions raised by the idea of motion in architecture. The thesis uses the Solar Decathlon Competition as a platform to base all the research and consequently to verify their applications. Photo-voltaic (PV) panels and shading devices are two different components of Georgia Institute of Technology s the Solar Decathlon House, located above the roof, that are based on the concept of Homeostasis or self-regulated optimization. For the PV panels, the objective is to optimize energy production, by controlling their movement to track the changing position of Sun, whereas, the objective for the shading devices is to reduce heating or cooling loads by controlling the position of shading devices, thus controlling direct and diffused heat gains through the roof. To achieve this adaptive feature, it required three layers of operations. First was the design of the mechanics of movement, which tried to achieve the required motion for the PV panels and shading devices by using minimum components and parameters. Second was the design of the individual parts that are consistent with the overall concept of the House. And finally, the third layer is the design of controls that automates the motion of the PV panels and Shading Devices, using a set of sensors that actuate the attached motors. As a final product, there is an attempt to integrate the precision and material efficiency of digital fabrication with the self-regulated optimization of the roof components.
APA, Harvard, Vancouver, ISO, and other styles
24

Trigueiro, dos Santos Leonardo. "Contribution on the day-ahead and operational optimization for DC microgrid building-integrated." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2352/document.

Full text
Abstract:
Cette recherche se concentre sur l'optimisation d'un micro-réseau en interaction avec le réseau électrique intelligent. Il s'agit de la recherche de solutions optimales pour la conception d'un micro-réseau afin de minimiser les coûts, d'une part, et la possibilité augmenter 1'utilisation des sources renouvelables, d'autre part. La supervision, doit traiter la prise en compte des incertitudes dans la gestion prédictive optimisée des flux de puissance
This thesis study focuses on a DC microgrid building-integrated satisfying the power balance at the local level and supplying DC loads during both, grid-connected and isolated operation modes. Considering that energy management can be defined as a group of different control strategies and operational practices that together with the new physical equipment and software solutions aims to accomplish the objectives of energy management, the main objective of this thesis is to define the energy management strategies for the building-integrated DC microgrid, aiming to keep the bus voltage stable as well as to reduce the energy cost to the end users and the negative impact to the main grid. Therefore, this research work focuses to optimize and develop the implementation of the designed controller of building-integrated DC microgrid. The proposed DC microgrid consists of PV building-integrated sources, a storage system, a main grid connection for the grid-connected mode and a micro turbine for the off-grid or isolated mode, and a DC load (electric appliances of a tertiary building). The bidirectional connections with the main grid and the storage aim to supply the building’s DC appliances, and sell or store the energy surplus. The results validate the operation of the whole system, ensuring the capability of the proposed supervisory control to manage the energy power flow while ensuring voltage stability. Other goals concern the analyze of the proposed separation between optimization and real time power balance and the usage of the proposed load shedding/restoration algorithm in the microgrid environment are also validate. Regarding the technical contributions, the work of this thesis allowed the creation and the practical development of a test bench for microgrid based on PV sources emulator, which allows the repeatability conditions (closeness of the agreement between the results of successive measurements of the same solar irradiance and air temperature carried out under the same conditions of measurement) and reproducibility (closeness of the agreement between the results of measurements of the same solar irradiation and air temperature carried out under changed conditions of measurement). Numerous experimental tests were carried out and allowed the validation of the proposed concepts
APA, Harvard, Vancouver, ISO, and other styles
25

Lam, King-hang, and 林勁恆. "Techniques for dynamic modelling of BIPV in supporting system design and BEMS." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39558460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sanvicente, Estibaliz. "Experimental investigation of thermal and fluid dynamical behavior of flows in open-ended channels : Application to Building Integrated Photovoltaic (BiPV) Systems." Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00961231.

Full text
Abstract:
Among technologies capable to produce electricity locally without contributing to GHG releases, building integrated PV systems (BIPV) could be major contributor. However, when exposed to intense solar radiation, the temperature of PV modules increase significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decrease the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. An experimental investigation of heat transfer and fluid flow characteristics of natural convection of air in vertical and inclined open-ended heated channels is therefore undertaken so as provide reliable information for the design of BIPV. Two experimental set ups were developed and used during the present investigations; one located at the CETHIL laboratory in Lyon, the F-device and the other located at the University of New South Wales in Sydney, the R-device. Both channels consisted of two wide parallel plates each of which could be subjected to controlled uniform or non-uniform heat fluxes. The investigation has been conducted by analyzing the mean wall temperatures, measured by thermocouples and mean velocity profiles and turbulent quantity distributions of the flow, measured with a PIV system. Flow patterns close to the heated faces were also investigated. The study is particularly focused on the transition region from laminar to turbulent flow. Three different heating geometric arrangements are examined in the modified Rayleigh number range from 3.86 x 105 to 6.22 x 106. The first is a vertical channel with one wall uniformly heated while the other was unheated, the second was a vertical channel in which both walls were non-uniformly heated and the third is an inclined channel uniformly heated from above. In the vertical configurations the width-to-height channel aspect ratio was fixed at 1:15 and in the inclined ones at 1:16. It is shown that the flow is very sensitivity to disturbances emanating from the ambient conditions. Moreover, the propagation of vortical structures and unsteadiness in the flow channel which are necessary to enhance heat transfer, occurred downstream of the mid-channel section at Ra* = 3.5 x 106 for uniformly and asymmetrically heated channels inclined between 60° and 90° to the horizontal. Indeed, these unsteady flow phenomena appears upstream the location of the inflexion point observed in the temperature excess distribution of the heated wall. In the case of non-uniform heating on both sides of the channel, a stronger 'disruption mechanism' exists, which leads to enhanced mixing and increased Reynolds stresses over most of the width of the channel. Empirical correlations of average Nusselt number as a function of modified Rayleigh number were obtained for each configuration.
APA, Harvard, Vancouver, ISO, and other styles
27

MUTERI, Vincenzo. "Energy evaluation and life cycle assessment of an innovative building integrated technology: the smart window-luminescent solar concentrator." Doctoral thesis, Università degli Studi di Palermo, 2022. https://hdl.handle.net/10447/535303.

Full text
Abstract:
Luminescent Solar Concentrators (LSC) represent one of the innovative and potentially most versatile technologies related to Building Integrated Photovoltaics (BIPV). The peculiarity of these devices lies in the fact that they can be integrated into the surface of the building to replace openings such as skylights or windows, thanks to their characteristic of being semi-transparent and of functioning both with direct and diffused radiation. Eni developed the own technology Eni Ray Plus® based on LSC and integrated it in a multifunctional smart window-LSC (SW-LSC) prototype. The device uses the energy produced by LSC modules to power an autonomous and passive shading system, exploiting irradiation sensors, motors and batteries. It independently regulates the movement of the shading system and allows energy surplus, through the electricity generated by modules. The final aim of this thesis is to explore the energy performances of the SW-LSC prototype into the building and to determinate the life cycle environmental impacts of the device through the application of the Life Cycle Assessment methodology. In addition, the focus is to highlight the impacts of the LSC modules only, assuming that they can be applied into glazed buildings, and to compare them with those of other PV technologies on the market. The first part of the work is focused on SW-LSC optical, thermal and electrical performances, comparing them with those of a traditional window. The analysis followed an experimental approach that involved lighting and electrical monitoring studies in a real test room, in order to create validated models for conducting simulations in larger buildings. The results were expressed through the study of illuminance maps, electricity generation obtainable from the integrated photovoltaic technology and in terms of energy savings. In conclusion, the models created allowed to evaluate the performances of the new technology, providing useful information for energy saving strategies in buildings. The second part of the work regarded the evaluation of the life cycle impacts. The functional unit (FU) chosen was the whole SW-LSC (5,27 m2) considering its thermal and optical characteristics (Uw = 1,6 -1,8 W/m2K, tvis = 77% and g = 85% of LSC modules) and the possibility to produce about 1.5 kWh/year. The system boundary was from cradle to gate considering the assembly and maintenance phase, while the end of life (EOL) was considered separately through a recycling/landfill scenario. Results showed that global warming potential (100 years) for SW-LSC was 5.91E+03 kg CO2eq and the production phase had the greatest impact (about 96%). The EOL recycling/landfill scenario results showed the possibility to reduce impacts by an average of 45%. The dominance analysis of SW-LSC components showed that the aluminum frame was the main hotspot (about 60% contribution) in all categories (except in abiotic depletion potential, 16% contribution), followed by the light-shelf (about 19% contribution). The batteries and motors for the shading system were the biggest contributors in the abiotic depletion potential category (36% and 30%, respectively). Since the materials of the SW-LSC prototype are not yet optimized in an eco-design context, it is important to underline that other alternative materials will be taken into consideration during the marketing phase (such as the use of wood or a wood-aluminum combination for the frame). The alternative scenario, which involved the use of 75% recycled aluminum for the window frame, showed that it is possible to reduce environmental impacts from 3% to 46% (with a mean value of 33.6%). Finally, the results for the SW-LSC were compared with those of the EPDs of some traditional windows (the functional unit for the comparison was the m2). A further comparative study was carried out between the LSC modules and some building integrated photovoltaic technologies, using 1 kWh of electricity generation as a functional unit. LSC modules impacts were on average 870% lower than that of various PV technologies when compared on the basis of m2; the only exception concerned the comparison with CIS and a-Si technologies, where LSC modules impacts were about 150% higher in some categories (global warming potential, ozone layer depletion potential and photochemical oxidation potential). LSC modules had highest impacts in all categories (from 200% to 1900%) if compared with other PV technologies on the basis 1 kWh of energy generated. The results based on energy generation are easily interpretable considering the lower performance of LSC modules compared to other technologies; however, LSC modules show greater versatility and different possible applications due to the their transparency. The SW-LSC could represent an option for the future efficiency of the built environment: in this sense, even if the power output from LSC modules integrated into the window is limited, it is sufficient to cover the energy demand of an efficient system of Venetian blinds that allow regulating the internal loads autonomously and independently, with a consequent energy saving. Furthermore, thanks to the thermal characteristics of the frame and the regulation of the light inside the environment, the SW-LSC represents an element designed to improve thermal and lighting comfort inside buildings.
APA, Harvard, Vancouver, ISO, and other styles
28

Albaz, Abdulkarim. "Investigation into using Stand-Alone Building Integrated Photovoltaic System (SABIPV) as a fundamental solution for Saudi rural areas and studying the expected impacts." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/15844.

Full text
Abstract:
A number of natural resources can be exploited for providing energy, such as the sun, wind, water flow, tides, waves and deep heat generated within the earth. Recently, renewable resources especially that extracted from solar have been significantly encouraged mainly for environmental worries, such as climate change mitigation and global warming, coupled with high oil cost and security and economic matters. The crucial need of energy in human development has also been another important drive pushing the rapid progresses in renewable technologies, which results in both large-scale strategic projects for covering wide urban and rural areas and simple systems suitable for individual buildings. Solar energy has become a widely desired option, especially in high solar radiation areas. The Middle East, especially Gulf region is an ideal geographical area for solar power where it has one of the highest solar irradiation rates across the world. The population in Gulf Cooperation Council (GCC) countries is significantly small compared to the geographical areas and populations are distributed mostly throughout huge areas forming small villages and rural communities on substantial distances from the main power networks. In Saudi Arabia, there is a crisis in supplying enough electricity to the large cities and domestic remote area in various parts in the country and a wide range of remote areas still suffer from a severe shortage of power supply. In this project, the opportunity of using small-scale solar energy technologies, such as Stand-Alone Building-Integrated PV (SABIPV) systems has been investigated as an optimal solution for providing solar energy to a great deal of off-grid areas in Kingdom of Saudi Arabia and the expected short and long-term impacts of such solution have been studied. The study showed that the main reasons behind the crisis in supplying electricity to domestic remote and rural off-grid areas in Saudi Arabia are the weakness of the financial returns compared to the cost of providing the service, the difficulty of the natural topography of areas, high cost of maintenance works, and the regulations of providing electric services in Saudi Arabia. This is in addition to the expected environmental impacts, such as raising the pollution rates in the area and the safety influences of extending the high voltage lines over huge areas. On the other hand, the lack of the necessary infrastructure services, particularly electricity and the looking forward for better level of prosperity lead people who live in countryside and remote areas usually to immigrate to in-grid areas which has several short and long-term negative impacts on economic, social and security sides. This study shows that SABIPV system is a cost-Impactive, powerful, and fundamental solution for all off-grid areas in Saudi Arabia including remote villages and rural communities and providing the same level of electricity services that can be achieved in urban on-grid areas. The system is expected to have positive impacts including reducing pollution and greenhouse gas emissions, the expansion of agricultural land and reduce desertification, reducing the influence of high-voltage electrical lines on living organisms, providing adequate electricity service at lower cost, offering more job opportunities for people in remote areas, increasing agricultural and handicraft products, developing the tourism sector in rural areas, reducing the rate of migration from rural areas to the cities, and reducing the slum areas in cities which helps to reduce the rate of crimes, ignorance, the low level of morality, and health and environmental problem.
APA, Harvard, Vancouver, ISO, and other styles
29

Caballero, Sandra Catalina. "Architectural variations in residences and their effects on energy generation by photovoltaics." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41204.

Full text
Abstract:
In the current global market, there are plenty solutions for the savings of energy in the different areas of consumption in buildings: Green roofs and walls, cool roofs, daylighting, motion sensors, and others but there are very few sources of renewable energy at the reach of a common person in residential (smaller) scale. Photovoltaic systems are the most well-know and reliable process of harvesting energy at this small scale. The relationship between energy demand and energy production when installing a photovoltaics system in a residence is one of the main drivers while making a decision at the time of purchasing a system. However, architectural decisions in early stages may influence, enhance or even decrease the possible energy generation and interior performance, thus influencing the possible return of investment. This study evaluates the possible architectural variations that may be beneficial or disadvantegous at a particular city and other circumstances. From, roof, angle, location, roof articulation, layout articulation , shading devices and others, this paper shows a spectrum of convenient and inconvenient projects due to current conditions like climate, solar radiation, typical construction, electricity rates and government incentives. As a conclusion a hierarchy of architectural elements when being used with photovoltaics is developed to demonstrate that a common user can strategically play with architectural features of his/her house to take the most out of the system.
APA, Harvard, Vancouver, ISO, and other styles
30

Lovati, Marco. "Methodologies and tools for BiPV implementation in the early stages of architectural design." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/263544.

Full text
Abstract:
Photovoltaic technology is among the best tools our civilization has to reduce the emissions of greenhouse gas that are currently altering the atmosphere composition of our planet. The idea of using photovoltaic surfaces on the envelope of buildings is called with the acronym of BIPV (building integrated photovoltaics), it offers the advantage of producing energy in the same location of the demand for electricity. Furthermore, BIPV allows to save monetary and environmental costs by substituting building materials with photovoltaic collectors. As every technology,BIPV follows an adoption pattern that is bringing it from a very limited niche product to a pervasive one. Nevertheless, the adoption rate of BIPV appears to be slow, and the industry has offered little opportunities of business for its stakeholders over the last 20 years. There are multiple reasons for this sluggish growth, and a considerable body of scientific literature has offered potential solutions to the problem. The building industry is notoriously slow in picking up innovation, furthermore the BIPV material needs to compete with much more mature, versatile and often cheaper cladding technologies and materials. Numerous research endeavors are focusing on the development of new BIPV claddings to have diversified colors, dimensions, shapes and other properties. The argument is that the technology is not mature and thus cannot be adopted by the bulk of architects and designers. Unfortunately, the premium characteristics of these new materials often come with a higher price and a reduced efficiency, thus reducing their market potential. Other research endeavors, among which this thesis, are focusing on the design of buildings: trying to include the use of photovoltaics into the architectural practice through education and software development. Numerous software has been developed over the last 20 years with the aim of calculating the productivity or the economic outlook of a BIPV system. The main difference between the existing software and the method presented here lies in the following fact: previously, the capacity and positions of a BIPV system are required as input for the calculation of performance, in this method the capacity and positions of the BIPV system are given as the output of an optimization process. A designer whois skeptical or disengaged about the use of BIPV could be induced to avoid its use entirely by the discouraging simulation results given by the lack of a techno-economic optimal configuration. Conversely, a designer who opt for a premium architectural PV material would, thank to the methodology shown, be able to assess the impact its unitary cost has on the optimal BIPV capacity of the building. Ultimately, the method presented provides new knowledge to the designer regarding the use of BIPV on his building, hopefully this can facilitate the spread of BIPV technology. The method described was translated into a software tool to find the best positions and number of PV surfaces over the envelope of the building and the best associated battery capacity. The tool is based on the combined use of ray-tracing (for irradiation calculation) and optimization algorithms, its use led to the following conclusions: • BIPV is profitable under a wide range of assumptions if installedin the correct capacities • 20% of the residential electric demand can easily be covered by PV without the need for electric storage and in a profitable way • Despite an interesting rate of return of the investment, the payback time was generally found to be long (over 10 years) • More research is needed to assess the risk on the investment on BIPV: if found to be low, future financial mechanisms could increase its spread despite the long payback time • The optimal capacity in energy terms (i.e. the energy consumed on-site minus the energy used to produce a BIPV system) tends to be far higher than any techno-economic optimum • The specific equivalent CO2 emissions for an NPV optimal system have been found to be between 70 and 123 [kg CO2 eq/MWh] under the range of assumptions applied • The installation of optimal BIPV capacity could change the overall residential CO2 emission of -12%, +13%, -29% in England, France and Greece respectively • despite the non optimal placement of a BIPV system compared to a ground mounted, south oriented one, and despite the noncontemporaneity of production and consumption, the BIPV still easily outperforms the energy mix of most countries when optimized for maximum NPV. • The part of the building envelope that have the most annual irradiation (i.e. the roof) should not necessarily host the entirety of the system as other facades might have an advantage in terms of matching production and consumption times. • when different scenarios are made in terms of techno-economic input parameters (e.g. degradation of the system, future costs of maintenance, future variation of electricity price etc..) larger capacities are optimal for optimistic outlooks and vice-versa • the optimal capacity for the expected scenario (i.e. the 50 % ile) can be considered robust as it performs close to the optimum in optimistic and pessimistic scenarios alike. • a reduction in price for the electric storage appears to have a positive effect on the optimal capacity of PV installed for the case study considered. • when a group of households is optimized separately V.S. aggregated together, the aggregation have a huge positive effect on all KPIs of the resulting system: in the NPV optimal system of a case study examined the installed capacity ( +118%), the NPV ( +262.2%) and the self-sufficiency( +51%) improved thanks to aggregation.
APA, Harvard, Vancouver, ISO, and other styles
31

Lovati, Marco. "Methodologies and tools for BiPV implementation in the early stages of architectural design." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/263544.

Full text
Abstract:
Photovoltaic technology is among the best tools our civilization has to reduce the emissions of greenhouse gas that are currently altering the atmosphere composition of our planet. The idea of using photovoltaic surfaces on the envelope of buildings is called with the acronym of BIPV (building integrated photovoltaics), it offers the advantage of producing energy in the same location of the demand for electricity. Furthermore, BIPV allows to save monetary and environmental costs by substituting building materials with photovoltaic collectors. As every technology,BIPV follows an adoption pattern that is bringing it from a very limited niche product to a pervasive one. Nevertheless, the adoption rate of BIPV appears to be slow, and the industry has offered little opportunities of business for its stakeholders over the last 20 years. There are multiple reasons for this sluggish growth, and a considerable body of scientific literature has offered potential solutions to the problem. The building industry is notoriously slow in picking up innovation, furthermore the BIPV material needs to compete with much more mature, versatile and often cheaper cladding technologies and materials. Numerous research endeavors are focusing on the development of new BIPV claddings to have diversified colors, dimensions, shapes and other properties. The argument is that the technology is not mature and thus cannot be adopted by the bulk of architects and designers. Unfortunately, the premium characteristics of these new materials often come with a higher price and a reduced efficiency, thus reducing their market potential. Other research endeavors, among which this thesis, are focusing on the design of buildings: trying to include the use of photovoltaics into the architectural practice through education and software development. Numerous software has been developed over the last 20 years with the aim of calculating the productivity or the economic outlook of a BIPV system. The main difference between the existing software and the method presented here lies in the following fact: previously, the capacity and positions of a BIPV system are required as input for the calculation of performance, in this method the capacity and positions of the BIPV system are given as the output of an optimization process. A designer whois skeptical or disengaged about the use of BIPV could be induced to avoid its use entirely by the discouraging simulation results given by the lack of a techno-economic optimal configuration. Conversely, a designer who opt for a premium architectural PV material would, thank to the methodology shown, be able to assess the impact its unitary cost has on the optimal BIPV capacity of the building. Ultimately, the method presented provides new knowledge to the designer regarding the use of BIPV on his building, hopefully this can facilitate the spread of BIPV technology. The method described was translated into a software tool to find the best positions and number of PV surfaces over the envelope of the building and the best associated battery capacity. The tool is based on the combined use of ray-tracing (for irradiation calculation) and optimization algorithms, its use led to the following conclusions: • BIPV is profitable under a wide range of assumptions if installedin the correct capacities • 20% of the residential electric demand can easily be covered by PV without the need for electric storage and in a profitable way • Despite an interesting rate of return of the investment, the payback time was generally found to be long (over 10 years) • More research is needed to assess the risk on the investment on BIPV: if found to be low, future financial mechanisms could increase its spread despite the long payback time • The optimal capacity in energy terms (i.e. the energy consumed on-site minus the energy used to produce a BIPV system) tends to be far higher than any techno-economic optimum • The specific equivalent CO2 emissions for an NPV optimal system have been found to be between 70 and 123 [kg CO2 eq/MWh] under the range of assumptions applied • The installation of optimal BIPV capacity could change the overall residential CO2 emission of -12%, +13%, -29% in England, France and Greece respectively • despite the non optimal placement of a BIPV system compared to a ground mounted, south oriented one, and despite the noncontemporaneity of production and consumption, the BIPV still easily outperforms the energy mix of most countries when optimized for maximum NPV. • The part of the building envelope that have the most annual irradiation (i.e. the roof) should not necessarily host the entirety of the system as other facades might have an advantage in terms of matching production and consumption times. • when different scenarios are made in terms of techno-economic input parameters (e.g. degradation of the system, future costs of maintenance, future variation of electricity price etc..) larger capacities are optimal for optimistic outlooks and vice-versa • the optimal capacity for the expected scenario (i.e. the 50 % ile) can be considered robust as it performs close to the optimum in optimistic and pessimistic scenarios alike. • a reduction in price for the electric storage appears to have a positive effect on the optimal capacity of PV installed for the case study considered. • when a group of households is optimized separately V.S. aggregated together, the aggregation have a huge positive effect on all KPIs of the resulting system: in the NPV optimal system of a case study examined the installed capacity ( +118%), the NPV ( +262.2%) and the self-sufficiency( +51%) improved thanks to aggregation.
APA, Harvard, Vancouver, ISO, and other styles
32

Kreutzer, Nico. "Electric load in the domestic sector and its modulation by building integrated photovoltaic : findings of a detailed monitoring study of energy consumption in UK buildings." Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/55877/.

Full text
Abstract:
The future energy supply is highly likely to be a mix of central and decentralised energy sources, therefore knowledge of on-site generation, such as photovoltaic systems, and energy consumption patterns with a good degree of certainty will be necessary to ensure the current quality of supply that we enjoy at present from non-renewable resources. This thesis describes the outcome of a detailed electric energy monitoring campaign on 5 different sites in a total number of 81 households predominantly undertaken in the social housing sector in the United Kingdom. The 5 minute data (and 1 minute short term) have been derived during the Department of Trade and Industry Photovoltaic Domestic Field Trial Program, where over a period of two years electric energy consumption by the households and electric energy generation by their photovoltaic systems were monitored by the author as part of this study. The consumption data obtained underwent a detailed analysis in order to give an understanding of the characteristics of the electric load in terms of base load, peak load, the load fluctuation and the energy consumption. The measured electric load profiles were separated into weekday and weekend profiles, and summer and winter profiles were also derived. The results are presented as overall load profiles for the entire set of dwellings as site specific load profiles and, for a smaller number of dwellings, as dwelling specific load profiles. Another outcome of this research is the development of several publicly available measured annual data sets suitable for use in modelling (5 minute interval data). The findings of this energy consumption analysis and the long term real data sets can be used for computer modelling purposes in general, but particular in the field of on-site generation, where the need for available realistic data sets is immense. In order to create a link between the energy consumption characteristics and socio-economic factors an occupant survey was undertaken among the people living in the monitored dwellings. The survey included questions regarding the following aspects: the number of tenants living in the household, tenant's age, ownership of electrical appliances and the general times of use of appliances and occupancy in the household. The results of this survey, carried out in 46 dwellings, can be applied to improve electric load models in general and especially the parts of the models that present the social housing sector. The findings will also help to investigate the options of load shifting, based on the time of use analysis of the 17 appliances. This study has investigated the options of reducing the electric load in the domestic sector by building integrated PV-systems. Therefore the influence of simulated PV-generation profiles on the recorded electric load profiles was analysed. The outcome can help to size PV-systems when the direct use of the PV-energy in order to reduce losses in the public grid is desired. The findings of this study are also of use when knowledge is required on the electric demand of small networks when connected to a large PV-generator as opposed to the connection of one dwelling to one small PV-system. The results can be used to size storage systems (e.g. batteries) if a self sustaining schedule of dwellings is needed. The findings of this study were used in the International Energy Agency Energy Conservation in Buildings and Community Systems Annex 42 to provide the profiles needed for modeling the performance of Fuel Cells and Cogeneration systems in residential properties.
APA, Harvard, Vancouver, ISO, and other styles
33

Pereira, Ricardo Jorge da Silva. "Design and optimization of building integration PV/T systems (BIPV/T)." Master's thesis, Universidade de Évora, 2015. http://hdl.handle.net/10174/13382.

Full text
Abstract:
Neste trabalho é analisado, por via numérica e experimental, o comportamento térmico e eléctrico de um sistema fotovoltaico/térmico integrado em edifício, recorrendo a material de mudança de fase para regularização da diferença de temperatura entre interior e exterior e para a estabilização da temperatura do módulo fotovoltaico. Foi realizado uma revisão da literatura sobre o tema. Um modelo de cálculo dos fenómenos de transferência de calor e massa foi desenvolvido, assim como da produção de energia eléctrica, e implementado em software de cálculo Matlab/Simulink®. Paralelamente foram conduzidos ensaios experimentais a fim de analisar o comportamento térmico do sistema e respectiva validação do modelo numérico. De modo a melhorar a eficiência total do sistema, foi aplicado um processo de optimização com o método dos algoritmos genéticos. Do estudo, conclui-se que o sistema pode alcançar uma eficiência máxima total de 64% na configuração de inverno e de 32% na configuração de verão; ABSTRACT: This work presents a numerical and experimental analysis of the thermal and electrical performance of a building integrated photovoltaic/thermal system (BIPV/T), with the use of phase change material for stabilize the temperature difference between indoors and outdoors and a rapid stabilization of the PV modules’ temperature. A literature review was conducted on the topic. A calculation model was developed of the heat and mass transfer phenomena, as well as a model of a photovoltaic module, which were implemented in Matlab/Simulink®. Experimental tests were performed to analyze the thermal performance of the system and the validation of the numerical model. To improve overall system efficiency, an optimization process with the method of genetic algorithms was applied. From the study, it is concluded that the system can achieve a maximum total efficiency of 64% with winter configuration and 32% with summer configuration.
APA, Harvard, Vancouver, ISO, and other styles
34

Lodi, Chiara. "Modelling the energy dynamics of ventilated photovoltaic facades using stochastic differential equations in a monitored Test Reference Environment." Doctoral thesis, Universitat de Lleida, 2012. http://hdl.handle.net/10803/84167.

Full text
Abstract:
L'objectiu general d'aquest treball és contribuir a l'avaluació de la transferència de l'energia en règim dinàmic de sistemes Fotovoltaics de doble pell Integrats en Edificis (EIFV) amb ventilació forçada sota condicions climàtiques exteriors reals. Per tant, un dels objectius d'aquest treball de recerca va consistir a recol.lectar dades experimentals sota condicions externes reals amb el “Test Reference Environment” (TRE) al Parc Científic i Tecnològic Agroalimentari de Lleida (PCiTAL). Es va dur a terme una llarga campanya de mesures on es van realitzar diversos experiments, amb diferents inclinacions i règims de ventilació. Un altre objectiu va ser estimar paràmetres físics desconeguts mitjançant l'ús de models d'identificació. Per aconseguir aquest objectiu, diversos models de caixa grisa estocàstics es van desenvolupar. Finalment, a partir de l'experiència adquirida durant el treball experimental, d'anàlisi i de modelatge, s'ha proposat la definició d'un entorn de prova “Test Reference Environment” estandarditzat per a les aplicacions de EIFV de doble pell.
El objetivo general de este trabajo es contribuir a la evaluación de la transferencia de la energía en régimen dinámico de sistemas de doble piel FotoVoltaicos Integrados en Edificios (EIFV) con ventilación forzada bajo condiciones climáticas exteriores reales. Por lo tanto, uno de los objetivos de este trabajo de investigación consistió en recolectar datos experimentales bajo condiciones externas reales con el “Test Reference Environment” (TRE) en el Parque Científico y Tecnológico Agroalimentario de Lleida (PCiTAL). Se llevó a cabo una larga campaña de medidas donde se realizaron varios experimentos, con diferentes inclinaciones y regímenes de ventilación. Otro objetivo fue estimar parámetros físicos desconocidos mediante el uso de modelos de identificación. Para lograr este objetivo, varios modelos de caja gris estocásticos se desarrollaron. Por último, a partir de la experiencia adquirida durante el trabajo experimental, de análisis y de modelación, se ha propuesto la definición de un entorno de prueba “Test Reference Environment” estandarizado para las aplicaciones de EIFV de doble piel.
The general aim of this work is to contribute to the energy dynamics assessment of mechanically ventilated double skin Building Integrated PhotoVoltaic (BIPV) systems under real outdoor weather conditions. Therefore, one of the objectives of this research work has consisted in collecting experimental data under real outdoor conditions in the Test Reference Environment (TRE) at the Lleida Agri-food Science and Technology Park (PCiTal). An extensive monitoring campaign has been carried out and several experiments, at different inclinations and ventilation regimes, have been performed. Another goal was to estimate unknown physical parameters by using identification models. To achieve this goal, several stochastic grey-box models have been developed. Finally, from the experience gained during the experimental, analysis and modelling work, the definition of a standardized set-up for a Test Reference Environment for double skin applications of BIPV has been proposed.
APA, Harvard, Vancouver, ISO, and other styles
35

Brogren, Maria. "Optical Efficiency of Low-Concentrating Solar Energy Systems with Parabolic Reflectors." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Juhlin, Henrik. "Planering, förutsättningar ocheffekter av implementering avsolceller i stadsutvecklingsprojekt." Thesis, Uppsala universitet, Fasta tillståndets elektronik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-148976.

Full text
Abstract:
Today, buildings utilize 40 % of the total energy consumption. New energyrestrictions and directives have entered the construction industry. Photovoltaic is asustainable, clean and quiet solution that integrates well in the urban environment buthave not yet reached a breakthrough on the Swedish market. The conditions for solarenergy production are often set in the early planning stages where they rarely arebeing prioritized.This master of engineering project focuses on identifying problems regardingimplementation of photovoltaic in city development projects and giving suggestions topossible improvements in the planning- and construction process. It also givesrecommendations on how the conditions for energy production can be optimized inthe early zoning stage.By conducting simulations with PVsystV5.21, on three ongoing city developmentprojects in Umeå, Malmö and Stockholm and by carry out and analyzing interviewswith city planners, constructors and architects, some conclusions have been made.Several improvements, both politically, with changes in the subsidization systemand/or instatement of a new law with feed-in tariffs, and within the solar- andconstruction industry itself, with better communication between different parts of theprocess as well as better use of experience, can be made. By including photovoltaic inthe local plan it is possible to give a region large areas with orientation toward south,increasing the solar energy potential with up to 50 % which also increase themotivation for implementing photovoltaic in the project. These are essential for asignificant increase of photovoltaic in city development.
APA, Harvard, Vancouver, ISO, and other styles
37

Weiland, Daniel Albert. "Rooftop pv impacts on fossil fuel electricity generation and co2 emissions in the pacific northwest." Thesis, Portland State University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=1547603.

Full text
Abstract:

This thesis estimates the impacts of rooftop photovoltaic (PV) capacity on electricity generation and CO2 emissions in America's Pacific Northwest. The region's demand for electricity is increasing at the same time that it is attempting to reduce its greenhouse gas emissions. The electricity generated by rooftop PV capacity is expected to displace electricity from fossil fueled electricity generators and reduce CO2 emissions, but when and how much? And how can this region maximize and focus the impacts of additional rooftop PV capacity on CO2 emissions? To answer these questions, an hourly urban rooftop PV generation profile for 2009 was created from estimates of regional rooftop PV capacity and solar resource data. That profile was compared with the region's hourly fossil fuel generation profile for 2009 to determine how much urban rooftop PV generation reduced annual fossil fuel electricity generation and CO2 emissions. Those reductions were then projected for a range of additional multiples of rooftop PV capacity. The conclusions indicate that additional rooftop PV capacity in the region primarily displaces electricity from natural gas generators, and shows that the timing of rooftop PV generation corresponds with the use of fossil fuel generators. Each additional Wp/ capita of rooftop PV capacity reduces CO2 emissions by 9,600 to 7,300 tons/ year. The final discussion proposes some methods to maximize and focus rooftop PV impacts on CO2 emissions, and also suggests some questions for further research.

APA, Harvard, Vancouver, ISO, and other styles
38

Horn, Sebastian. "Bauwerkintegrierte Photovoltaik (BIPV)." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-229719.

Full text
Abstract:
Die vorliegende Arbeit untersucht die Leistungsfähigkeit von PV-Modulen in verschiedenen Fassadensystemen und beschreibt die Entwicklung eines Fassadenpaneels für Pfosten-Riegel-Fassaden, bei welchem die Modultemperatur durch die Integration von Phasenwechselmaterialien (PCM) reguliert wird, um einen höheren Wirkungsgrad zu erzielen.
APA, Harvard, Vancouver, ISO, and other styles
39

Eranki, Gayathri Aaditya. "Integrability Evaluation Methodology for Building Integrated Photovoltaic's (BIPV) : A Study in Indian Climatic Conditions." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/2949.

Full text
Abstract:
India’s geographical location renders it with ample solar-energy potential ranging from 4-7 kWh/m2 daily and 2,300–3,200 sunshine hours annually. The diverse nature of human settlements (scattered low-rise to dense high-rise) in India is one of the unexplored avenues of harnessing solar energy through electricity generation using photovoltaic (PV) technology. Solar energy is a promising alternative that carries adequate potential to support the growing energy demands of India’s burgeoning population. A previous study estimates, by the year 2070, with 425 million households (of which utilizing only 20 %), about 90 TWh of electrical energy can be generated utilizing solar energy. PV is viable for onsite distributed (decentralized) power generation offering advantages of size and scale variability, modularity, relatively low maintenance and integration into buildings (no additional demand land). The application of solar PV technology as the building envelope viz., walls, façade, fenestration, roof and skylights is termed Building Integrated Photovoltaic (BIPV). Apart from generating electricity, PV has to also function as a building envelope, which makes BIPV systems unique. Even with a gradual rise in the number of BIPV installations across the world over the years, a common consensus on their evaluation has not yet been developed. Unlike PV in a ground mounted system, its application in buildings as an envelope has huge implications on both PV and building performance. The functions of PV as a building material translates well beyond electricity generation alone and would also have to look into various aspects like the thermal comfort, weather proofing, structural rigidity, natural lighting, thermal insulation, shading, noise protection safety and aesthetics. To integrate PV into a residential building successfully serving the purpose (given the low energy densities of PV and initial cost), would also mean considering factors like the buildings electricity requirement and economic viability. As many studies have revealed, 40% of electricity consumed in a building is utilized for maintaining indoor thermal comfort. Tropical regions, such as India, are generally characterized by high temperatures and humidity attributed to good sunlight, therefore, the externality considered for this study has been the impact of BIPV on the thermal comfort. Passive designs need to regulate the buildings solar exposure by integrating a combination of appropriate thermal massing, material selection, space orientation and natural ventilation. On the other hand, PV design primarily aims to maximize solar to generate maximum energy. The design requirements for climate-responsive building design may thus infringe upon those required for optimal PV performance. Regulating indoor thermal comfort in tropical regions poses a particular challenge under such conditions, as the indoor temperature is likely to be sensitive to external temperature variations. In addition, given current performance efficiencies for various PVs, high initial cost and space requirement, it is also crucial to ascertain PV’s ability to efficiently support buildings energy requirement. Thus, BIPV would require addressing, concurrently, design requirements for energy-efficient building performance, effective PV integration, and societal feasibility. A real time roof integrated BIPV system (5.25 kW) installed at the Center for Sustainable Technologies at the Indian Institute of Science, Bangalore has been studied for its PV and building thermal performance. The study aims at understanding a BIPV system (based on crystalline silicon) from the technical (climate-responsiveness and PV performance), social (energy requirement and energy efficiency) and economical (costs and benefits) grounds and identifies relevant factors to quantify performance of any BIPV system. A methodology for BIPV evaluation has been proposed (Integrability Methodology), especially for urban localities, which can also be adopted for various PV configurations, building typologies and climatic zones. In the process, a novel parameter (thermal comfort energy) to evaluate the thermal performance of naturally ventilated buildings combining climate-responsiveness and thermal comfort aspects has also been developed. An Integrability Index has also been devised, integrating various building performance factors, to evaluate and compare the performance of BIPV structures. The methodology has been applied to the 5.25 kW BIPV system and the index has been computed to be 0.17 (on a scale of 0 – 1). An insulated BIPV system (building applied photovoltaic system) has been found to be favorable for the climate of Bangalore than BIPV. BIPV systems have also been compared across three different climates (Bangalore, Shillong and Delhi) and given the consideration of the same system for comparison, the system in Delhi is predicted to have a higher Integrability than the other two systems. The current research work is a maiden effort, that aims at developing and testing a framework to evaluate BIPV systems comprising technical, social and economic factors.
APA, Harvard, Vancouver, ISO, and other styles
40

Eranki, Gayathri Aaditya. "Integrability Evaluation Methodology for Building Integrated Photovoltaic's (BIPV) : A Study in Indian Climatic Conditions." Thesis, 2016. http://etd.iisc.ernet.in/handle/2005/2949.

Full text
Abstract:
India’s geographical location renders it with ample solar-energy potential ranging from 4-7 kWh/m2 daily and 2,300–3,200 sunshine hours annually. The diverse nature of human settlements (scattered low-rise to dense high-rise) in India is one of the unexplored avenues of harnessing solar energy through electricity generation using photovoltaic (PV) technology. Solar energy is a promising alternative that carries adequate potential to support the growing energy demands of India’s burgeoning population. A previous study estimates, by the year 2070, with 425 million households (of which utilizing only 20 %), about 90 TWh of electrical energy can be generated utilizing solar energy. PV is viable for onsite distributed (decentralized) power generation offering advantages of size and scale variability, modularity, relatively low maintenance and integration into buildings (no additional demand land). The application of solar PV technology as the building envelope viz., walls, façade, fenestration, roof and skylights is termed Building Integrated Photovoltaic (BIPV). Apart from generating electricity, PV has to also function as a building envelope, which makes BIPV systems unique. Even with a gradual rise in the number of BIPV installations across the world over the years, a common consensus on their evaluation has not yet been developed. Unlike PV in a ground mounted system, its application in buildings as an envelope has huge implications on both PV and building performance. The functions of PV as a building material translates well beyond electricity generation alone and would also have to look into various aspects like the thermal comfort, weather proofing, structural rigidity, natural lighting, thermal insulation, shading, noise protection safety and aesthetics. To integrate PV into a residential building successfully serving the purpose (given the low energy densities of PV and initial cost), would also mean considering factors like the buildings electricity requirement and economic viability. As many studies have revealed, 40% of electricity consumed in a building is utilized for maintaining indoor thermal comfort. Tropical regions, such as India, are generally characterized by high temperatures and humidity attributed to good sunlight, therefore, the externality considered for this study has been the impact of BIPV on the thermal comfort. Passive designs need to regulate the buildings solar exposure by integrating a combination of appropriate thermal massing, material selection, space orientation and natural ventilation. On the other hand, PV design primarily aims to maximize solar to generate maximum energy. The design requirements for climate-responsive building design may thus infringe upon those required for optimal PV performance. Regulating indoor thermal comfort in tropical regions poses a particular challenge under such conditions, as the indoor temperature is likely to be sensitive to external temperature variations. In addition, given current performance efficiencies for various PVs, high initial cost and space requirement, it is also crucial to ascertain PV’s ability to efficiently support buildings energy requirement. Thus, BIPV would require addressing, concurrently, design requirements for energy-efficient building performance, effective PV integration, and societal feasibility. A real time roof integrated BIPV system (5.25 kW) installed at the Center for Sustainable Technologies at the Indian Institute of Science, Bangalore has been studied for its PV and building thermal performance. The study aims at understanding a BIPV system (based on crystalline silicon) from the technical (climate-responsiveness and PV performance), social (energy requirement and energy efficiency) and economical (costs and benefits) grounds and identifies relevant factors to quantify performance of any BIPV system. A methodology for BIPV evaluation has been proposed (Integrability Methodology), especially for urban localities, which can also be adopted for various PV configurations, building typologies and climatic zones. In the process, a novel parameter (thermal comfort energy) to evaluate the thermal performance of naturally ventilated buildings combining climate-responsiveness and thermal comfort aspects has also been developed. An Integrability Index has also been devised, integrating various building performance factors, to evaluate and compare the performance of BIPV structures. The methodology has been applied to the 5.25 kW BIPV system and the index has been computed to be 0.17 (on a scale of 0 – 1). An insulated BIPV system (building applied photovoltaic system) has been found to be favorable for the climate of Bangalore than BIPV. BIPV systems have also been compared across three different climates (Bangalore, Shillong and Delhi) and given the consideration of the same system for comparison, the system in Delhi is predicted to have a higher Integrability than the other two systems. The current research work is a maiden effort, that aims at developing and testing a framework to evaluate BIPV systems comprising technical, social and economic factors.
APA, Harvard, Vancouver, ISO, and other styles
41

CHEN, SHIU YI, and 陳秀宜. "Building Integrated Photovoltaic System Trend Analysis." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/02854095917218011006.

Full text
Abstract:
碩士
亞洲大學
國際企業學系碩士班
98
Nowadays solar energy is one of the highlight areas of generating electric power, as the global environment has been changed by pollution dramatically, people have noticed the lifestyle changes. This study is explored the building integrated photovoltaic (BIPV) systems trends. BIPV systems what kind of advantages and disadvantages? Why it is the future trend of the economic benefits it brings people to what? In the current implementation of several countries in the first trend, what kind of obstacles encountered? These are discussed in the study. This research includes statistical data of the past ten years for BIPV systems to generate electricity production efficiency, yield, cost, and conversion rate trends; also, we use SPSS 12.0 to 2D and 3D modeling of BIPV capacity benefits, costs, yield, and conversion rate (Current technology) interaction. And the study of the connection between variables, using the natural logarithm function, exponential function and polynomial function of the development of mathematical models. Then, accordingly by regression analysis of BIPV conversion rate and yield on the impact of consumer cost, BIPV conversion rate on the yield and production of BIPV, consumers and conversion rate on the efficiency of production. These results mainly include three parts. First, upgrade the current stage of BIPV conversion rate (Current technology) and product to reduce consumer costs. Secondly, to enhance the current stage of BIPV conversion rate (Current technology) increased productivity. Finally, to improve the current stage of BIPV conversion rate (Current technology) and the yield can increase productivity and reduce consumer cost-effectiveness.
APA, Harvard, Vancouver, ISO, and other styles
42

Der, Hsieh-Dar, and 謝大德. "Benefit Analysis of Building-integrated Photovoltaic System." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/36759198671795966341.

Full text
Abstract:
碩士
國立成功大學
電機工程學系碩博士班
93
The research improves the Building-integrated Photovoltaic (BIPV) system of ABRI (Architecture and Building Research Institute, Ministry of the Interior) and analyzes the efficiency of different materials and varied climate. The PV system contains two subsystems in order to know the benefits of power generation and utility grid-connected in PV energy conversion system. The PV cell can be a part of building material to observe the insulation of heat, shelter of sunlight, variation of temperature, and the power consumption of air-conditions in door. The vertical PV cells and the sunlight detectors are set up in the aspect of the east, south and west to record the magnitudes of sunlight and power output. The PIC16F877 microprocessor is designed to trace maximum power point of vertical PV cells.  The analysis results as follows, reducing power consumption 9.19% to 18.28% of air-conditions. The monocrystalline PV cell has the highest power generated rate in PV system, the second is multicrystalline PV cell, and the lowest is thin film PV cell. Cleaning PV module with water can increase the power generate in 13.63%. The power generation of vertical PV cell is 11.62% of setup with sunlight direct. Then the accumulation of power generation is the highest of vertical PV cell setting up of the west. This thesis as the reference with PV system construction and the standard basis assessed in the future.
APA, Harvard, Vancouver, ISO, and other styles
43

CHANG, WEN-TA, and 張文達. "Design and Application of Building Integrated Photovoltaic." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/69426285502610686625.

Full text
Abstract:
碩士
亞洲大學
光電與通訊學系碩士在職專班
100
ABSTRACT More and more attentions are paid to energy issue. The development and utilization of new energy began. Solar energy, as a new type of green renewable energy, with large reserves, long life, the advantages of non-polluting, would become the most promising new energy. Popular attention is focused on Solar power generation. Firstly, the paper described the principles and advantages of PV technology. Photoelectric conversion is an important technical foundation of large-scale use of solar PV systems and building integrated photovoltaic system is very important one of solar PV systems. The development status and trends of building integrated photovoltaic (BIPV) system is described by cases world spread. Secondly, the BIPV are researched based on the PV and building. Designing principles and procedures are given on BIPV photovoltaic design level. Factors need to be considered in BIPV architectural design level are given, too. Which aimed at better combination between solar photovoltaic system and building . This paper sorts out the implementation of the existing BIPV forms and make a detailed induction. Finally, in order to optimized the efficiency of the photovoltaic, the five locations solar radiation and insolation hours were summarized and analyzed. The relationship between the PV panels orientation with the sun is reserarched. The calculation of the PV modules number are put forwrod for a stand-alone BIPV system. Key words: Solar, photovoltaic technology, photovoltaic, BIPV
APA, Harvard, Vancouver, ISO, and other styles
44

Fry, Bryan. "Simulation of grid-tied building integrated photovoltaic systems." 1999. http://catalog.hathitrust.org/api/volumes/oclc/42195072.html.

Full text
Abstract:
Thesis (M.S.)--University of Wisconsin--Madison, 1999.
Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (p. 332).
APA, Harvard, Vancouver, ISO, and other styles
45

Corbin, Charles D. "Design parameter sensitivity of a building-integrated photovoltaic-thermal collector." Thesis, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1464489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Liao, Liang. "Numerical and experimental investigation of building-integrated photovoltaic-thermal systems." Thesis, 2005. http://spectrum.library.concordia.ca/8517/1/MR10222.pdf.

Full text
Abstract:
This thesis presents a numerical and experimental study of a building-integrated photovoltaic-thermal (BIPV/T) system in Concordia University, which generates both electricity and thermal energy. A 2-D computational fluid dynamics (CFD) model is developed to study the air dynamics and thermal behavior inside the BIPV thermal system and develop relationships for convective heat transfer coefficients. A 2-D k-ϵ turbulent model is used in the FLUENT program to simulate the turbulent flow and convective heat transfer in the cavity, in addition to the buoyancy effect. Longwave radiation between boundary surfaces is also modeled. Experimental measurements taken in a full scale outdoor test facility at Concordia University are in good agreement with the 2-D CFD model. Velocity and temperature profiles for various average air velocities are predicted and compared with experimental data. Particle Image Velocimetry (PIV) is employed to investigate the velocity profile. Average and local convective heat transfer coefficients are generated for the system
APA, Harvard, Vancouver, ISO, and other styles
47

Lin, Guo-Rong, and 林國榮. "Benefit Analysis of Building-Integrated Photovoltaic with High Efficient Converter." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/27586497347813963424.

Full text
Abstract:
碩士
國立成功大學
電機工程學系碩博士班
94
In this thesis, for finding the benefit of the Building-integrated Photovoltaic (BIPV), the effects of sunshade to insulate against heart, different material, high corner, azimuth and clean are studied. The 30kW solar systems of Architecture and Building Research Institute, Ministry of the Interior (ABRI) with different structure were demonstration. From the field data, the following results were obtained. The saving power of air conditioning are from 9.17% to 31.95%. The highest power conversion were obtained in single silicon material. The generate electricity of the solar cell high angle setting up 25° are higher than those of 15° and 30° in Tainan. The conversion efficiency of the solar cell are increased from 3.7% to 29.29% after water-washing and dust removal. In order to compare the generating benefit with azimuth, a high-efficiency single stage converter with Maximum Power Point Tracking (MPPT) were designed. According to the field test, the generation benefit of the west azimuth is the highest. The efficiency of converter above 90%.
APA, Harvard, Vancouver, ISO, and other styles
48

Kuo, Cheng-Lang, and 郭政良. "A Research Building-Integrated Photovoltaic With Dye-Sensitized Solar Cells." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/60749996332095448162.

Full text
Abstract:
碩士
國立高雄應用科技大學
應用工程科學研究所
99
The research uses different nature plant dyes and Fluorine doped Tin Oxide glass to assemble Dye-Sensitized Solar Cells, applying this solar cell’s light transmittance trait and different absorption spectrum of the sun, utilizing Dye-Sensitized Solar Cells use one or two make up a composite glass curtain wall regard as Building-Integrated Photovoltaic, hope to resist heat transfer enter to building inside, and increase economic benefits of electricity value, to comply with environmental protection, energy conservation and renewable energy purposes. The experiment uses two solar cells along same line to put different distances and light source tests direct irradiation at fixed position, the data of solar electric power generation and temperature distribute by data thermocouple and logger, objective to study the different types and combinations solar cells’ power generation and heat transfer value. From the study get the maximum value of electric power with the double Blueberry Dye-Sensitized Solar Cells, the each other distance length 10mm is the best. The heat transfer temperature data is very much alike, because every solar cell have similar %transmittance, it is 5mm away from the most cost-effective. Power generation and heat transfer experiments different from the optimal interval, if don't consideration of the use of space, ought to use power generation optimal distance length.
APA, Harvard, Vancouver, ISO, and other styles
49

Gupta, Neha. "Performance evaluation of semitransparent photovoltaic thermal system integrated with building." Thesis, 2017. http://localhost:8080/xmlui/handle/12345678/7449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bura, Sunil Kumar. "Investigation of production systems for a building integrated photovoltaic thermal product." 2007. http://adt.waikato.ac.nz/public/adt-uow20070726.164003/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography