To see the other types of publications on this topic, follow the link: Building life cycle energy.

Dissertations / Theses on the topic 'Building life cycle energy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Building life cycle energy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Yossef, Delav, and Dino Hot. "Comparative life cycle assessment of organic building materials." Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-37774.

Full text
Abstract:
The ever-increasing awareness of global warming has made the building industry startlooking for alternative building solutions in order to meet the changing demands. Thesechallenges have given rise to organization which aim to go further and construct moresustainable alternatives in the form of Ecovillages. This thesis is conducted in collaborationwith Bysjöstrans Ekoby and aims to investigate what type of organic alternatives exist andhow they perform in building elements.The study was carried out through a comparative LCA where a base case construction forboth roof and wall was established. Followed by comparing different organic materials toeach other and the base case materials in order to determine low-impact materials. The goalwas to replaces as many layers within the structure such as insulation, structure, roofcladding, façade, wind and vapor barrier.This was later followed by combing the materials together in order to identify whichalternative construction options would perform the best in regard to greenhouse gasemissions (CO2 eq kg) and primary energy use (MJ).The results of the study show that the performance or organic materials vary significantly.Whit a lot of materials being better but also worse than traditional materials. It showed thatfor internal wall and roof surface adding clay plater can reduce the GHG emission with 68%, timber frame with 98 %, façade with 43 %, roof cladding with 93 %, vapor barrier with76 % and insulation with 79 %. The best preforming construction option could reduce thebase case emission with 68 %.
APA, Harvard, Vancouver, ISO, and other styles
2

Kiani, Mohamad Reza. "Life cycle energy consumption associated with glass within commercial building envelopes." Thesis, University of Brighton, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.479077.

Full text
Abstract:
Better thermal performance of glass and glazed units together with advances in modern construction technologies has enabled designers to consider the use of higher proportions of glass in commercial building envelopes. A higher glazing percentage is typically lighter in envelope and building structure, and provides more daylight and solar heat to the interior during winter seasons. On the other hand, there is a potential of excessive solar heat gain during summer. The percentage of glass in the envelope influences the structural loads and consequently the embodied energy for the structure, foundation and envelope. It will also affect the operational energy and the potential for recycling. Review of the literature showed that previous research projects have evaluated the energy implication of individual stages of the life cycle, however to date none have attempted to aggregate the total life cycle energy consumption. A tool has been developed in order to evaluate the whole life cycle energy consumption associated with glass within commercial building envelopes based on the results obtained from structural analysis programme, thermal modelling software as well as gathered data. The tool enabled the analysis of the energy consumption related to manufacturing of envelope components, building structure and foundation, transp011ation, building operation (heating, cooling and lighting), and recycling associated with typical minimum and maximum envelope glazing areas representing a partially glazed (PG) and fully glazed (FG) envelopes with 35% and 90% double glazed units (DGUs). The overall results of life cycle energy analyses, with 25 years life expectancy for the envelope, showed that the life cycle energy consumption associated with glass within FG building can be up to 20% less compared with PG building. Manufacturing energy consumption associated with FG building showed to be up to 17% less compared to PG building due to less use of materials in building structure and foundation, and envelope. Operational energy analysis, within the context of current air-conditioned commercial buildings, indicated that FG building can consume up to 22% more heating and cooling, but 27% less lighting energy compared to PG. This highlighted that lighting energy can be as significant as heating and cooling energy consumption during the building operational period. Furthermore it was shown that manufacturing energy can be as high as 20% of the total heating and cooling energy consumption. Recycling energy analysis revealed there may not be energy saving by recycling glass into window glass especially for long transportation distances. In conclusion, it was shown that the current perception of fully glazed buildings consuming more operational energy than partially glazed buildings is dependent upon the properties of DGUs. In addition this research developed a methodology and a life cycle energy evaluation tool (with certain limitations) to address the key parameters affecting the associated energy consumption related to building envelopes. The tool can be used by building envelope designers to prioritise their designs and selection of materials to reduce the associated life cycle energy impacts. Furthermore suggestions are made for future development of design guidance to aid building envelope designers to easily choose a DGU at the early stages of design which results in the least building heating and cooling energy consumption.
APA, Harvard, Vancouver, ISO, and other styles
3

Petrovic, Bojana. "Life cycle assessment and life cycle cost analysis of a single-family house." Licentiate thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-36901.

Full text
Abstract:
The building industry is responsible for 35% of final energy use and 38% of CO2 emissions at a global level. The European Union aims to reduce CO2 emissions in the building industry by up to 90% by the year 2050. Therefore, it is important to consider the environmental impacts buildings have. The purpose of this thesis was to investigate the environmental impacts and costs of a single-family house in Sweden. In the study, the life cycle assessment (LCA) and the life cycle cost (LCC) methods have been used by following the “cradle to grave” life cycle perspective.  This study shows a significant reduction of global warming potential (GWP), primary energy (PE) use and costs when the lifespan of the house is shifted from 50 to 100 years. The findings illustrate a total decrease in LCA outcome, of GWP to 27% and PE to 18%. Considering the total LCC outcome, when the discount rate increases from 3% to 5% and then 7%, the total costs decrease significantly (60%, 85% to 95%). The embodied carbon, PE use and costs from the production stage/construction stage are significantly reduced, while the maintenance/replacement stage displays the opposite trend. Operational energy use, water consumption and end-of-life, however, remain largely unchanged. Furthermore, the findings emphasize the importance of using wood-based building materials due to its lower carbon-intensive manufacturing process compared to non-wood choices.   The results of the LCA and LCC were systematically studied and are presented visually. Low carbon and cost-effective materials and installations have to be identified in the early stage of a building design so that the appropriate investment choices can be made that will reduce a building’s total environmental and economic impact in the long run. Findings from this thesis provide a greater understanding of the environmental and economic impacts that are relevant for decision-makers when building single-family houses.<br>Byggbranschen svarar för 35% av den slutliga energianvändningen och 38 % av koldioxidutsläppen på global nivå. Europeiska unionen strävar efter att minska koldioxidutsläppen i byggnadsindustrin med upp till 90% fram till 2050. Därför är det viktigt att beakta byggnaders miljöpåverkan. Syftet med denna avhandling var att undersöka miljöpåverkan och kostnader för ett enfamiljshus i Sverige. I studien har livscykelbedömningen (LCA) och livscykelkostnadsmetoderna (LCC) använts genom att tillämpa livscykelperspektivet ”vagga till grav”. Studien visar en stor minskning av global uppvärmningspotential (GWP), användning av primärenergi (PE) och kostnader vid växling från 50 till 100 års husets livslängd. Resultaten visar en årlig minskning med 27% för utsläpp av växthusgaser och med 18% för användningen av primärenergi. Med tanke på det totala LCC-utfallet, när diskonteringsräntan ökar från 3%, 5% till 7%, minskar de totala kostnaderna avsevärt (60%, 85% till 95%). Det noteras att klimatavtrycket, primärenergianvändningen och kostnaderna från produktionssteget/konstruktionssteget minskar avsevärt, medan underhålls- / utbytessteget visar den motsatta trenden när man byter från 50 till 100 års livslängd. Den operativa energianvändningen, vattenförbrukningen och avfallshanteringen är fortfarande nästan samma när man ändrar livslängden. Vidare betonar resultaten vikten av att använda träbaserade byggmaterial på grund av lägre klimatpåverkan från tillverkningsprocessen jämfört med alternativen. LCA- och LCC-resultaten studerades systematiskt och redovisades visuellt. De koldioxidsnåla och kostnadseffektiva materialen och installationerna måste identifieras i ett tidigt skede av en byggnadskonstruktion genom att välja lämpliga investeringsval som kommer att minska de totala miljö och ekonomiska effekterna på lång sikt. Resultaten från denna avhandling ger ökad förståelse för miljömässiga och ekonomiska konsekvenser som är relevanta för beslutsfattare vid byggnation av ett enfamiljshus.
APA, Harvard, Vancouver, ISO, and other styles
4

MONTANA, Francesco. "MULTI-OBJECTIVE OPTIMISATION OF BUILDINGS AND BUILDING CLUSTERS PERFORMANCE: A LIFE CYCLE THINKING APPROACH." Doctoral thesis, Università degli Studi di Palermo, 2021. http://hdl.handle.net/10447/472442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fedoruk, M. "Life cycle assessment of energy saving measures in buildings." Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/64686.

Full text
Abstract:
The energy sector itself poses greаt chаllenges for most countries, especiаlly with the present finаnciаl аnd environmentаl circumstаnces аnd the need to enhаnce economic development while meeting climаte chаnge goаls.
APA, Harvard, Vancouver, ISO, and other styles
6

MONTANA, Francesco. "MULTI-OBJECTIVE OPTIMISATION OF BUILDINGS AND BUILDING CLUSTERS PERFORMANCE: A LIFE CYCLE THINKING APPROACH." Doctoral thesis, Università degli Studi di Palermo, 2021. http://hdl.handle.net/10447/496758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Östling, Ida. "Life cycle analysis as a tool for CO2 mitigation in the building sector." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-155572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Paulsen, Jacob. "Life Cycle Assessment for Building Products - The significanse of the usage phase." Doctoral thesis, KTH, Building Sciences and Engineering, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Menoufi, Karim Ali Ibrahim. "Life Cycle Assessment of novel Building Integrated Concentrating Photovoltaic systems through environmental and energy evaluations." Doctoral thesis, Universitat de Lleida, 2014. http://hdl.handle.net/10803/131056.

Full text
Abstract:
La realització d'estudis de LCA per a sistemes fotovoltaics és una eina essencial per mesurar el seu nivell de sostenibilitat En aquest sentit, i després de la realització d' una anàlisi teòrica dels estudis publicats de LCA dels sistemes fotovoltaics, s'han trobat algunes llacunes. Aquestes llacunes es refereixen a la manca de varietat d'indicadors de LCA, on la majoria dels estudis depenen del temps de retorn energètic, sent aquest gairebé l'únic indicador (no es té en compte l'ús dels mètodes de perfil ambiental). A més, s'observen dues bretxes relatives a la manca d'estudis de LCA destacant la integració en edificis d'energia solar d'una banda, i l'ús de la tecnologia fotovoltaica de concentració per un altre. Per tant, en aquesta tesi, es presenta una nova aportació al camp dels estudis LCA dels sistemes fotovoltaics integrats en edificis. Això s'aconsegueix a través de l'avaluació ambiental i energètica dels sistemes de concentració fotovoltaica integrats en edificis (BICPV). Els resultats es presenten en termes de metodologies d'avaluació de l' impacte del cicle de vida (perfil mediambiental), així com el temps d'amortització de l'Energia i el Factor de Retorn (perfil energètic). Els resultats, amb el suport de les anàlisis de sensibilitat i la comparació amb un sistema convencional fotovoltaic per a integració en edificis (BIPV), mostren beneficis ambientals significatius que poden ser obtinguts a través de sistemes BICPV. A Finalment, es discuteixen les recomanacions per a treballs i millores futures.<br>Conducting LCA studies for PV systems is an essential tool for measuring the sustainability level of a corresponding system. In this sense, and after conducting a theoretical analysis of the LCA studies of PV systems in literature within the context of energy generation, some gaps have been found. These gaps are briefly represented in the lack of variety of LCA indicators, where most of the studies are dependent on the Energy Payback Time as almost the sole environmental indicator, disregarding the use of environmental profile methods. In addition, another two gaps are observed concerning the lack of LCA studies highlighting the building integration from one side, and the use of the concentrating PV technology from another side. Hence, in this thesis, a novel contribution to the field of LCA studies of PV systems is presented. This is achieved through environmentally and energetically evaluating novel Building Integrated Concentrating Photovoltaic (BICPV) systems. The results are presented in terms of Life Cycle Impact Assessment methodologies (environmental profile), as well as the Energy Payback Time and the Energy Return Factor (Energy profile). The results, supported by sensitivity analyses and comparison to a conventional Building Integrated Photovoltaic (BIPV) system, show the significant environmental benefits that can be acquired through BICPV systems. Finally, recommendations for future work and improvements are discussed as well.<br>La realización de estudios de LCA para sistemas fotovoltaicos es una herramienta esencial para medir su nivel de sostenibilidad. En este sentido, y después de la realización de un análisis teórico de los estudios de LCA de los sistemas fotovoltaicos en la literatura en el contexto de la generación de energía, se han encontrado algunas lagunas. Algunas de estas lagunas se refieren: la falta de variedad de indicadores de LCA, donde la mayoría de los estudios dependen del tiempo de retorno energético, siendo este casi el único indicador medioambiental (no se tiene en cuenta el uso de los métodos de perfil medioambiental). Además, se observan otras dos brechas relativas a la falta de estudios de LCA destacando la integración en edificios de energía solar por un lado, y el uso de la tecnología fotovoltaica de concentración por otro. Por lo tanto, en esta tesis, se presenta una nueva aportación al campo de los estudios LCA de los sistemas fotovoltaicos integrados en edificios. Esto se logra a través de la evaluación medioambiental y energética de los sistemas de concentración fotovoltaica integrados en edificios (BICPV). Los resultados se presentan en términos de metodologías de evaluación del impacto del ciclo de vida (perfil medioambiental), así como el tiempo de amortización de la Energía y su Factor de Retorno (perfil de la Energía). Los resultados, con el apoyo de los análisis de sensibilidad y la comparación con un sistema convencional fotovoltaico para integración en edificios (BIPV), muestran beneficios ambientales significativos que pueden ser obtenidos a través de sistemas BICPV. Finalmente, se discuten las recomendaciones para trabajos y mejoras futuros.
APA, Harvard, Vancouver, ISO, and other styles
10

Wan, Omar Wan Mohd Sabki. "Analysis of Embodied Energy and Carbon in Malaysian Building Construction Using Hybrid Life Cycle Assessment." Thesis, Griffith University, 2015. http://hdl.handle.net/10072/365359.

Full text
Abstract:
Life cycle assessment (LCA) is considered as the most efficient methodology and has been widely accepted by previous researches in the area of energy analysis. Quantifying embodied energy (EE) and carbon (EC) is time-consuming and needs a lot of quantitative effort to ensure reliability of the data to be obtained and analysed. Hybrid-based LCA (hybrid LCA) is utilised - this incorporates input-output based LCA (I-O LCA) that calculate flow of building materials, products, and construction processes in the whole sector of economy and process-based LCA (process LCA) is used to quantify physical quantities of materials, products, or processes. Although hybrid LCA has been identified as improving completeness of EE and EC inventory data, this benefit was not empirically verified extensively, particularly in the Malaysian building construction industry. Therefore, the principal aim of this research was to develop LCEA methodology in order to systematically quantify EE and EC of building construction in Malaysia.<br>Thesis (PhD Doctorate)<br>Doctor of Philosophy (PhD)<br>Griffith School of Engineering<br>Science, Environment, Engineering and Technology<br>Full Text
APA, Harvard, Vancouver, ISO, and other styles
11

Jones, Craig I. "Life cycle energy consumption and environmental burdens associated with energy technologies and buildings." Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.532723.

Full text
Abstract:
This portfolio of published research contains nine papers and assesses the life cycle environmental burdens of energy technologies and buildings. Several analytical tools were used but these all fall under the umbrella of environmental life cycle assessment (LCA), and include energy analysis, carbon appraisal and the consideration of other environmental issues. The life cycle of all products starts with an assessment of embodied impacts. The current author has completed significant research on the embodied carbon of materials. This includes the creation of a leading embodied carbon database (the ICE database) for materials which has been downloaded by over 10,000 professionals and has made a significant contribution to knowledge. This portfolio of work includes analysis on methods for recycling in embodied impact assessment and LCA. This is an influential topic and therefore appears in two of the publications. The ICE database was applied by the current author to over 40 domestic building case studies and an embodied carbon model for buildings was created from these. The latter was used to provide benchmark values for six types of new houses in the UK.The portfolio of work then progresses to full LCA of energy systems. LCA is used to assess the embodied impacts versus operational impacts of 11 kV electrical cables. In this case embodied impacts were not significant and preference should be given to reducing electrical losses in the cables. The tool of LCA was then applied to a national electricity network. It revealed that Lebanon had a particularly poor centralised electricity network that was both unreliable and unsustainable with high impacts in all environmental categories. The final paper in this portfolio is on Building Integrated PV (BIPV) and brings together all aspects of the current author’s work and knowledge. It considers embodied burdens, electricity generation and BIPV can replace roofing materials.
APA, Harvard, Vancouver, ISO, and other styles
12

Ximenes, Naves Alex. "Whole Life Sustainability Assessment at the Building Industry and Constructed Assets, through the Whole Life Costing Assessment and Life Cycle Costing Assessment evaluating the economic and financial aspects." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/670202.

Full text
Abstract:
Els edificis d’energia neta poden ser entesos com a edificis, que durant un temps determinat generen tanta energia com consumeixen. Ja sigui des del punt de vista de l’oferta o el consum, la disponibilitat d’energia està relacionada amb alguns aspectes bàsics, com ara la font (s), la conversió, la distribució, l’ús, el malbaratament, l’optimització, l’eficiència i l’autonomia. Aquests temes revelen la complexitat del tema de l'energia i justifiquen l'atenció especial que li dóna la comunitat acadèmica. Per obtenir resultats tangibles en l'anàlisi d'aquests sistemes, en el nostre estudi ens centrem en la modelització i optimització de solucions energètiques aplicades a edificis o sistemes similars. D'altra banda, el període de temps dels objectes analitzats es va estendre fins al seu període de cicle de vida previst. Es van establir els objectius principals com: - Verificar i analitzar l’estat de la tecnologia de les energies renovables per a edificis i actius construïts i l’aplicabilitat de l’anàlisi de costos del cicle de vida a aquests temes; - Configurar models reproductibles d’edificis i les seves principals càrregues elèctriques, mitjançant eines d’enginyeria de processos assistits per ordinador, per procedir a simulacions i optimització, considerant-se com a font d’energia primària l’energia solar; - Quantificar, utilitzant estudis de casos reals i hipotètics, els beneficis de les solucions proposades, amb l'objectiu de realitzar tota l'avaluació de la sostenibilitat de la vida mitjançant la reducció de tot el cost del cicle de vida;<br>Los edificios de energía de red cero pueden entenderse como edificios, que durante un tiempo dado generan tanta energía como consumen. O bien, desde el punto de vista del suministro o el consumo, la disponibilidad de energía está relacionada con algunos problemas básicos, como las fuentes, la conversión, la distribución, la utilización, el desperdicio, la optimización, la eficiencia y la autonomía. Estos problemas revelan la complejidad del tema de la energía y justifican la atención especial que le presta la comunidad académica. Para obtener resultados tangibles en el análisis de estos sistemas, en nuestro estudio nos centramos en el modelado y la optimización de soluciones energéticas aplicadas a edificios o sistemas similares. Por otro lado, el período de tiempo de los objetos analizados se extendió a su período de ciclo de vida esperado. Los objetivos principales se establecieron como: - Verificar y analizar el estado de la técnica de las soluciones de energía renovable para edificios y activos construidos y la aplicabilidad del análisis de costos de ciclo de vida a estas cuestiones; - Configure modelos reproducibles de edificios y sus principales cargas eléctricas, a través de herramientas de Ingeniería de Procesos Asistidos por Computadora, para proceder a simulaciones y optimización, considerando como fuente de energía primaria la energía solar;<br>Net-zero energy buildings can be understood as buildings, that for a given time, generate as much energy as they consume. Either, from the point of view of supply or consumption, energy availability is related to some basic issues such as source (s), conversion, distribution, utilization, waste, optimization, efficiency and autonomy. These issues reveal the complexity of the subject of energy and justify the special attention given to it by the academic community. To obtain tangible results in the analysis of these systems, in our study we focus on the modelling and optimization of energy solutions applied to buildings or similar systems. On the other hand, the time frame of the analysed objects was extended to their expected life cycle period. The main objectives were stablished as: - Verify and analyse the state-of-the-art of renewable energy solutions for buildings and constructed assets and the applicability of life cycle costing analysis to these issues; - Configure reproducible models of buildings and their main electrical loads, via Computer Aided Process Engineering tools, to proceed simulations and optimization, considering as primary energy source solar energy; - Quantify, using real-life and hypothetical case studies, the benefits of the proposed solutions, aiming the whole life sustainability assessment through the reduction of the whole life cycle costing; and - Guarantee the reproducibility of the models and main general results of this study and make them public, to contribute with their applicability and further researches.
APA, Harvard, Vancouver, ISO, and other styles
13

Fay, Mark Roger. "Comparative life cycle energy studies of typical Australian suburban dwellings /." Connect to thesis, 1999. http://eprints.unimelb.edu.au/archive/00000382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Dodoo, Ambrose. "Life cycle primary energy use and carbon emission of residential buildings." Doctoral thesis, Mittuniversitetet, Institutionen för teknik och hållbar utveckling, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-14942.

Full text
Abstract:
In this thesis, the primary energy use and carbon emissions of residential buildings are studied using a system analysis methodology with a life cycle perspective. The analysis includes production, operation, retrofitting and end-of-life phases and encompasses the entire natural resource chain. The analysis  focuses, in particular, on to the choice of building frame material; the energy savings potential of building thermal mass; the choice of energy supply systems and their interactions with different energy-efficiency measures, including ventilation heat recovery systems; and the effectiveness of current energy-efficiency standards to reduce energy use in buildings. The results show that a wood-frame building has a lower primary energy balance than a concrete-frame alternative. This result is primarily due to the lower production primary energy use and greater bioenergy recovery benefits of wood-frame buildings. Hour-by-hour dynamic modeling of building mass configuration shows that the energy savings due to the benefit of thermal mass are minimal within the Nordic climate but varies with climatic location and the energy efficiency of the building. A concrete-frame building has slightly lower space heating demand than a wood-frame alternative, because of the benefit of thermal mass. However, the production and end-of-life advantages of using wood framing materials outweigh the energy saving benefits of thermal mass with concrete framing materials. A system-wide analysis of the implications of different building energy-efficiency standards indicates that improved standards greatly reduce final energy use for heating. Nevertheless, a passive house standard building with electric heating may not perform better than a conventional building with district heating, from a primary energy perspective. Wood-frame passive house buildings with energy-efficient heat supply systems reduce life cycle primary energy use. An important complementary strategy to reduce primary energy use in the building sector is energy efficiency improvement of existing buildings, as the rate of addition of new buildings to the building stock is low. Different energy efficiency retrofit measures for buildings are studied, focusing on the energy demand and supply sides, as well as their interactions. The results show that significantly greater life cycle primary energy reduction is achieved when an electric resistance heated building is retrofitted than when a district heated building is retrofitted. For district heated buildings, the primary energy savings of energy efficiency measures depend on the characteristics of the heat production system and the type of energy efficiency measures. Ventilation heat recovery (VHR) systems provide low primary energy savings where district heating is based largely on combined heat and power (CHP) production. VHR systems can produce substantial final energy reduction, but the primary energy benefit largely depends on the type of heat supply system, the amount of electricity used for VHR and the airtightness of buildings. Wood-framed buildings have substantially lower life cycle carbon emissions than concrete-framed buildings, even if the carbon benefit of post-use concrete management is included. The carbon sequestered by crushed concrete leads to a significant decrease in CO2 emission. However, CO2 emissions from fossil fuels used to crush the concrete significantly reduce the carbon benefits obtained from the increased carbonation due to crushing. Overall, the effect of carbonation of post-use concrete is small. The post-use energy recovery of wood and the recycling of reinforcing steel both provide higher carbon benefits than post-use carbonation. In summary, wood buildings with CHP-based district heating are an effective means of reducing primary energy use and carbon emission in the built environment.
APA, Harvard, Vancouver, ISO, and other styles
15

Jalaei, Farzad. "Integrate Building Information Modeling (BIM) and Sustainable Design at the Conceptual Stage of Building Projects." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32536.

Full text
Abstract:
Lately the construction industry has become more interested in designing and constructing environmentally friendly buildings (e.g. sustainable buildings) that can provide both high performance and monetary savings. Analyzing various parameters during sustainable design such as Life Cycle Assessment (LCA) and energy consumption, lighting simulation, green building rating system criteria and associated cost of building components at the conceptual design stage is very useful for designers needing to make decisions related to the selection of optimum design alternatives. Building Information Modeling (BIM) offers designers the ability to assess different design options and to select vital energy strategies and systems at the conceptual stage of proposed buildings. This thesis describes a methodology to implement sustainable design for proposed buildings at their conceptual stage. The proposed methodology is to be implemented through the design and development of a model that simplifies the process of designing sustainable buildings, evaluating their Environmental Impacts (EI), assessing their operational and embodied energy and listing their potential accumulated certification points in an integrated environment. Therefore, a Decision Support System (DSS) is developed by using Multiple Criteria Decision Making (MCDM) techniques to help design team decides and selects the best type of sustainable building components and design families for proposed projects based on three main criteria (i.e. Environmental, Economical factor «cost efficiency » and Social wellbeing) in an attempt to identify the influence of design variations on the sustainable performance of the whole building. The DSS outcomes are incorporated in an integrated model capable of guiding users when performing sustainable design for building projects. The proposed methodology contains five modules: 1) Database Management System (DBMS), 2) Energy and lighting analysis, 3) Life Cycle Assessment (LCA), 4) LEED and 5) Life Cycle Cost (LCC). To improve the workability of the proposed model, a use case of abovementioned modules are going to be created as plug-ins in BIM tool. The successful implementation of such a methodology represents a significant advancement in the ability to attain sustainable design of a building during the early stages, to evaluate its EI, and to list its potentially earned certification points and associated soft costs.
APA, Harvard, Vancouver, ISO, and other styles
16

Ma, Yunlong. "Holistic assessment of the impacts of building energy code improvements on Australian commercial buildings." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/205597/1/Yunlong_Ma_Thesis.pdf.

Full text
Abstract:
This thesis conducted a holistic investigation of the impacts of National Construction Code improvements on Australian commercial building performance from the energy, economic and environmental aspects. A customisation of the Best Code was established by comparing building energy codes in selected different countries. This study demonstrates significant financial and environmental benefits that Australia could achieve through more stringent building energy codes. The findings can inform the Australian government’s consideration of National Construction Code improvements in the current Regulation Impact Assessment process for the future, and contribute to promoting reductions in Australian building energy use and greenhouse gas emissions.
APA, Harvard, Vancouver, ISO, and other styles
17

Stephan, André. "Towards a comprehensive energy assessment of residential buildings: a multi-scale life cycle energy analysis framework." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209465.

Full text
Abstract:
Buildings are directly responsible for 40% of the final energy use in most developed economies and for much more if indirect requirements are considered. This results in huge impacts which affect the environmental balance of our planet.<p>However, most current building energy assessments focus solely on operational energy overlooking other energy uses such as embodied and transport energy. Embodied energy comprises the energy requirements for building materials production, construction and replacement. Transport energy represents the amount of energy required for the mobility of building users.<p>Decisions based on partial assessments might result in an increased energy demand during other life cycle stages or at different scales of the built environment. Recent studies have shown that embodied and transport energy demands often account for more than half of the total lifecycle energy demand of residential buildings. Current assessment tools and policies therefore overlook more than 50% of the life cycle energy use.<p>This thesis presents a comprehensive life cycle energy analysis framework for residential buildings. This framework takes into account energy requirements at the building scale, i.e. the embodied and operational energy demands, and at the city scale, i.e. the embodied energy of nearby infrastructures and the transport energy of its users. This framework is implemented through the development, verification and validation of an advanced software tool which allows the rapid analysis of the life cycle energy demand of residential buildings and districts. Two case studies, located in Brussels, Belgium and Melbourne, Australia, are used to investigate the potential of the developed framework.<p>Results show that each of the embodied, operational and transport energy requirements represent a significant share of the total energy requirements and associated greenhouse gas emissions of a residential building, over its useful life. The use of the developed tool will allow building designers, town planners and policy makers to reduce the energy demand and greenhouse gas emissions of residential buildings by selecting measures that result in overall savings. This will ultimately contribute to reducing the environmental impact of the built environment.<br>Doctorat en Sciences de l'ingénieur<br>info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
18

El-khawas, Ihab N. "The optimal design of buildings : a life-cycle approach to energy efficiency /." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487948158626783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rybkowski, Zofia Kristina. "Toward energy sustainability in Hong Kong : a life-cycle cost analysis case study on low thermal energy transfer envelopes for a mid-rise commercial building /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202004%20RYBKOW.

Full text
Abstract:
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2004.<br>Includes bibliographical references (leaves 96-102). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
20

MUTERI, Vincenzo. "Energy evaluation and life cycle assessment of an innovative building integrated technology: the smart window-luminescent solar concentrator." Doctoral thesis, Università degli Studi di Palermo, 2022. https://hdl.handle.net/10447/535303.

Full text
Abstract:
Luminescent Solar Concentrators (LSC) represent one of the innovative and potentially most versatile technologies related to Building Integrated Photovoltaics (BIPV). The peculiarity of these devices lies in the fact that they can be integrated into the surface of the building to replace openings such as skylights or windows, thanks to their characteristic of being semi-transparent and of functioning both with direct and diffused radiation. Eni developed the own technology Eni Ray Plus® based on LSC and integrated it in a multifunctional smart window-LSC (SW-LSC) prototype. The device uses the energy produced by LSC modules to power an autonomous and passive shading system, exploiting irradiation sensors, motors and batteries. It independently regulates the movement of the shading system and allows energy surplus, through the electricity generated by modules. The final aim of this thesis is to explore the energy performances of the SW-LSC prototype into the building and to determinate the life cycle environmental impacts of the device through the application of the Life Cycle Assessment methodology. In addition, the focus is to highlight the impacts of the LSC modules only, assuming that they can be applied into glazed buildings, and to compare them with those of other PV technologies on the market. The first part of the work is focused on SW-LSC optical, thermal and electrical performances, comparing them with those of a traditional window. The analysis followed an experimental approach that involved lighting and electrical monitoring studies in a real test room, in order to create validated models for conducting simulations in larger buildings. The results were expressed through the study of illuminance maps, electricity generation obtainable from the integrated photovoltaic technology and in terms of energy savings. In conclusion, the models created allowed to evaluate the performances of the new technology, providing useful information for energy saving strategies in buildings. The second part of the work regarded the evaluation of the life cycle impacts. The functional unit (FU) chosen was the whole SW-LSC (5,27 m2) considering its thermal and optical characteristics (Uw = 1,6 -1,8 W/m2K, tvis = 77% and g = 85% of LSC modules) and the possibility to produce about 1.5 kWh/year. The system boundary was from cradle to gate considering the assembly and maintenance phase, while the end of life (EOL) was considered separately through a recycling/landfill scenario. Results showed that global warming potential (100 years) for SW-LSC was 5.91E+03 kg CO2eq and the production phase had the greatest impact (about 96%). The EOL recycling/landfill scenario results showed the possibility to reduce impacts by an average of 45%. The dominance analysis of SW-LSC components showed that the aluminum frame was the main hotspot (about 60% contribution) in all categories (except in abiotic depletion potential, 16% contribution), followed by the light-shelf (about 19% contribution). The batteries and motors for the shading system were the biggest contributors in the abiotic depletion potential category (36% and 30%, respectively). Since the materials of the SW-LSC prototype are not yet optimized in an eco-design context, it is important to underline that other alternative materials will be taken into consideration during the marketing phase (such as the use of wood or a wood-aluminum combination for the frame). The alternative scenario, which involved the use of 75% recycled aluminum for the window frame, showed that it is possible to reduce environmental impacts from 3% to 46% (with a mean value of 33.6%). Finally, the results for the SW-LSC were compared with those of the EPDs of some traditional windows (the functional unit for the comparison was the m2). A further comparative study was carried out between the LSC modules and some building integrated photovoltaic technologies, using 1 kWh of electricity generation as a functional unit. LSC modules impacts were on average 870% lower than that of various PV technologies when compared on the basis of m2; the only exception concerned the comparison with CIS and a-Si technologies, where LSC modules impacts were about 150% higher in some categories (global warming potential, ozone layer depletion potential and photochemical oxidation potential). LSC modules had highest impacts in all categories (from 200% to 1900%) if compared with other PV technologies on the basis 1 kWh of energy generated. The results based on energy generation are easily interpretable considering the lower performance of LSC modules compared to other technologies; however, LSC modules show greater versatility and different possible applications due to the their transparency. The SW-LSC could represent an option for the future efficiency of the built environment: in this sense, even if the power output from LSC modules integrated into the window is limited, it is sufficient to cover the energy demand of an efficient system of Venetian blinds that allow regulating the internal loads autonomously and independently, with a consequent energy saving. Furthermore, thanks to the thermal characteristics of the frame and the regulation of the light inside the environment, the SW-LSC represents an element designed to improve thermal and lighting comfort inside buildings.
APA, Harvard, Vancouver, ISO, and other styles
21

Höglund, Philip. "Impact of future usage patterns on the insulation demand for office buildings in Stockholm." Thesis, KTH, Industriell ekologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194369.

Full text
Abstract:
The environmental impact from our energy production and use today is a central concern for every major decision maker regardless of interest area. Together with transport and industry, housing and services is a major contributor to our energy consumption. In 2013 housing and services accounted for 38% of the energy consumption in Sweden Therefore, energy consumption in buildings has become an area of great importance with many technological solutions developing to meet the demands from investors and legislation. However, present solutions primarily aim to solve current problems, while ongoing technological and social development is setting new conditions for future buildings. This study investigates the future of office buildings heading towards a more flexible work environment. Advancement of technology accompanied with new emerging economic and social practices is facilitating the flexibility, as well as remote work and more out-of-office time, with possible decrease of the thermal energy produced by humans and equipment. In addition, desktop computers will be replaced by energy efficient thin clients, tablets, and phones while other equipment is also becoming more energy efficient, resulting in reduced secondary heat production and thus lower internal gains. This scenario supposes reduced internal gains, resulting in decreased cooling requirements but also increased heating requirements. However, an alternative scenario with increased internal gains is also likely, due to activity-based workplaces. Activity-based offices dispose of personal desks, instead utilising activity-based areas where employees choose an area or desk where to work, depending on their current task. Disposing of personal desks supports higher occupancy, as employees working elsewhere don’t occupy workplaces at the office. Thus, the amount of desks can be matched to the actual amount of employees working at the office during peak loads. These scenarios are developed, quantified, and used as a basis for the building simulation models. These models are then optimised to meet these new conditions, utilising simulation and multi objective optimisation. The key finding is that office buildings are resilient to changing conditions, and that a state-of-theart office from today meet the demands of tomorrow.<br>Miljöpåverkan från vår produktion och energianvändning är idag är en central fråga för varje större beslutsfattare oavsett intresse i området. Tillsammans med transport och industri, är bostäder och service en viktig bidragande orsak till vår energiförbrukning. År 2013 bostäder och service stod för 38% av energiförbrukningen i Sverige. Därför har energiförbrukningen i byggnader kommit att få stor betydelse, vilket driver utvecklingen mot nya tekniska lösningar för att möta kraven från investerare och lagstiftning. De nuvarande lösningarna syftar dock främst till att lösa nuvarande problem, samtidigt som teknisk och social utveckling skapar nya förutsättningar för framtida byggnader. Detta projekt undersöker framtiden för kontorsbyggnader, där utvecklingen verkar vara på väg mot distansarbete, outsourcing, och mer arbetstid spenderad utanför kontoret, vilket minskar mängden interna laster som värmer upp kontoret. Samtidigt utvecklas stationära datorer och annan utrustning som ersättas med energieffektiva tunna klienter, tablets, och smarta telefoner, vilket minskar de interna lasterna ytterligare. Ett alternativt scenario är aktivitetsbaserade kontor, där de anställda inte har sin egen arbetsyta, utan istället använder aktivitetsbaserade områden beroende på arbetsuppgift. Detta scenario kan tänkas leda till ökade interna laster då ytan kan användas mer effektivt, som kan kompensera för användning av mer energieffektiv kontorsutrustning. Projektet undersöker tänkbara framtida scenarier och hur framtida kontor kan anpassas för att möta dessa nya förutsättningar med hjälp av klimat- och energisimuleringsmjukvara. Resultaten tyder på flera tydliga trender i användningen av kontorsbyggnader, men effekterna av dessa trender kan resultera i flera scenarier. Därför projektet omfattar flera scenarier för att utvärdera spannet av möjligheter. Simuleringarna tyder på att kontorsbyggnader är motståndskraftiga mot förändrade villkor, och att ett modernt kontor från idag kan möta morgondagens behov.
APA, Harvard, Vancouver, ISO, and other styles
22

Xu, Weili. "An Energy and Cost Performance Optimization Platform for Commercial Building System Design." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/956.

Full text
Abstract:
Energy and cost performance optimization for commercial building system design is growing in popularity, but it is often criticized for its time consuming process. Moreover, the current process lacks integration, which not only affects time performance, but also investors’ confidence in the predicted performance of the generated design. Such barriers keep building owners and design teams from embracing life cycle cost consideration. This thesis proposes a computationally efficient design optimization platform to improve the time performance and to streamline the workflow in an integrated multi-objective building system design optimization process. First, building system cost estimation is typically completed through a building information model based quantity take-off process, which does not provide sufficient design decision support features in the design process. To remedy this issue, an automatic cost estimation framework that integrates EnergyPlus with an external database to perform building systems’ capital and operation costs is proposed. Optimization, typically used for building system design selection, requires a large amount of computational time. The optimization process evaluates building envelope, electrical and HVAC systems in an integrated system not only to explore the cost-saving potential from a single high performance system, but also the interrelated effects among different systems. An innovative optimization strategy that integrates machine learning techniques with a conventional evolutionary algorithm is proposed. This strategy can reduce run time and improve the quality of the solutions. Lastly, developing baseline energy models typically takes days or weeks depending on the scale of the design. An automated system for generating baseline energy model according to ANSI/ASHRAE/IESNA Standard 90.1 performance rating method is thus proposed to provide a quick appraisal of optimal designs in comparison with the baseline energy requirements. The main contribution of this thesis is the development of a new design optimization platform to expedite the conventional decision making process. The platform integrates three systems: (1) cost estimation, (2) optimization and (3) benchmark comparison for minimizing the first cost and energy operation costs. This allows designers to confidently select an optimal design with high performance building systems by making a comparison with the minimum energy baseline set by standards in the building industry. Two commercial buildings are selected as case studies to demonstrate the effectiveness of this platform. One building is the Center for Sustainable Landscapes in Pittsburgh, PA. This case study is used as a new construction project. With 54 million possible design solutions, the platform is able to identify optimal designs in four hours. Some of the design solutions not only save the operation costs by up to 23% compared to the ASHRAE baseline design, but also reduce the capital cost ranging from 5% to 23%. Also, compared with the ASHRAE baseline design, one design solution demonstrates that the high investment of a product, building integrative photovoltaic (BiPV) system, can be justified through the integrative design optimization approach by the lower operation costs (20%) as well as the lower capital cost (12%). The second building is the One Montgomery Plaza, a large office building in Norristown, PA. This case study focuses on using the platform for a retrofit project. The calibrated energy model requires one hour to complete the simulation. There are 4000 possible design solutions proposed and the platform is able to find the optimal design solution in around 50 hours. Similarly, the results indicate that up to 25% capital cost can be saved with $1.7 million less operation costs in 25 years, compare to the ASHRAE baseline design.
APA, Harvard, Vancouver, ISO, and other styles
23

Brown, Nils. "Better Low-energy Buildings : The Contribution of Environmental Rating Tools and Life-Cycle Approaches." Licentiate thesis, KTH, Miljöstrategisk analys (fms), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-142004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Peñaloza, Diego. "Exploring climate impacts of timber buildings : The effects from including non-traditional aspects in life cycle impact assessment." Licentiate thesis, KTH, Byggnadsmaterial, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161193.

Full text
Abstract:
There is an urgency within the building sector to reduce its greenhouse gas emissions and mitigate climate change. An increased proportion of biobased building materials in construction is a potential measure to reduce these emissions. Life cycle assessment (LCA) has often been applied to compare the climate impact from biobased materials with that from e.g. mineral based materials, mostly favouring biobased materials. Contradicting results have however been reported due to differences in methodology, as there is not yet consensus regarding certain aspects. The aim of this thesis is to study the implications from non-traditional practices in climate impact assessment of timber buildings, and to discuss the shortcomings of current practices when assessing such products and comparing them with non-renewable alternatives. The traditional practices for climate impact assessment of biobased materials have been identified, and then applied to a case study of a building with different timber frame designs and an alternative building with a concrete frame. Then, non-traditional practices were explored by calculating climate impact results using alternative methods to handle certain methodological aspects, which have been found relevant for forest products in previous research such as the timing of emissions, biogenic emissions, carbon storage in the products, end-of-life substitution credits, soil carbon disturbances and change in albedo. These alternative practices and their implications were also studied for low-carbon buildings. The use of non-traditional practices can affect the climate impact assessment results of timber buildings, and to some extent the comparison with buildings with lower content of biobased building materials. This effect is especially evident for energy-efficient buildings. Current normal practices tend to account separately for forest-related carbon flows and aspects such as biogenic carbon emissions and sequestration or effects from carbon storage in the products, missing to capture the forest carbon cycle as a whole. Climate neutrality of wood-based construction materials seems like a valid assumption for studies which require methodological simplification, while other aspects such as end-of-life substitution credits, soil carbon disturbances or changes in albedo should be studied carefully due to their potentially high implications and the uncertainties around the methods used to account for them. If forest phenomena are to be included in LCA studies, a robust and complete model of the forest carbon cycle should be used. Another shortcoming is the lack of clear communication of the way some important aspects were handled.<br><p>QC 20150310</p>
APA, Harvard, Vancouver, ISO, and other styles
25

Eufrasio, Espinosa Rafael Mauricio. "A visio-spatial life cycle energy model of building materials within a bioregional context : mapping the embodied energy of fired clay bricks in Cuitzeo, Mexico." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/13164/.

Full text
Abstract:
Despite the general acceptance of Life Cycle Assessments (LCA) to tackle environmental problems associated with the built environment, the literature shows that this complex assessment system presents limitations as a communication tool for decision-making process given that results are difficult to interpret. By trying to reduce the complexity of following multiple variables in LCA, a simplified and more straightforward process emerged to account for only energy using, Life cycle Energy Analysis (LCEA). However, LCEA has also inherited problems associated with LCA. Thus, discrepancies in calculation procedures, the lack of geographical considerations and ecological attitude and assumptions are criticized in both approaches. In this thesis, a Visio-Spatial Life Cycle Energy Model based on Geographical Information Systems (GIS) was developed in order to bridge the gap of LCEA as a communication tool by displaying embodied energy intensities in thematic maps taking into consideration bioregional principles in its analysis. A new dynamic Input-Output model, which efficiently simplifies the extraction process of energy paths from IO tables enabled the integration of hybrid energy coefficients to account for economic establishments dedicated to produce goods and services in the construction sector as illustrated in a bioregional case study area in Mexico. The full capability of the Visio-spatial energy model was then applied to a specific study of fired clay brick production within the bioregion. The results obtained by process analysis methods (PA) had a variation of 33.6% with respect to IO procedures, which can be considered acceptable in hybrid methods. Embodied energy figures expressed in thematic maps helped to reduce geographical assumptions and expand the sense of place in LCEA by visualizing patterns in manufacturing processes within the case study area.
APA, Harvard, Vancouver, ISO, and other styles
26

de, Fatima Dias Jane. "Reuse of Construction Materials." Thesis, Högskolan Dalarna, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:du-30024.

Full text
Abstract:
The building and construction sectors are one of the main contributors to the socio-economic development of a country. Globally, these sectors generate around 5% to 10% of national employment and around 5% to 15% of a country's gross domestic product during construction, use and demolition. On the other hand, the sectors consume around 40% of world primary energy, use 30% of raw materials, generate 25% of solid waste, consume 25% of water, and use 12% of land. Furthermore, the sectors account for up to 40% of greenhouse gas (GHG) emissions, mainly from energy use during the life cycle of buildings. This study aims to assess the potential environmental benefits of reusing concrete and ceramic roof tile within the Swedish context in terms of their CO2 emission. Methodology used was a comparative LCA was to quantify the emissions. In order to calculate LCA, OpenLCA 1.7.0 software was used and to evaluate the emissions, LCIA method selected was ReCiPe, midpoint, Hierarchist model, climate change category expressed in GWP 100 years (in kg CO2eq). The FU of the study was a square meter of roof covering for a period of 40 years with potential to extent up to 80 years. A square meter of concrete roof tile weight 40 kg while ceramic 30 kg. The environment impact evaluation considered three product system, single use (cradle to grave), single use covering (cradle to user) and single reuse (user to cradle) within 40 years lifespan. In order to compare LCA of the roof tiles, two scenarios were created, Scenario 1 concrete RT in single use and single reuse whilst Scenario 2 evaluates ceramic RT. The outcomes of both scenarios were communicated through a model single family house. Dalarna’s Villa is located in Dalarna region in Sweden and a storage facility Ta Till Våra was to validate the benefits of reused materials. Comparative LCA revealed that concrete RT in single use released almost 80% more CO2 emissions than ceramic RT and generated 25% more disposable material by weight. The CO2 released by the single use vs. single reuse concrete RT showed higher emissions in the production of the concrete RT than the single reuse, the same occur with ceramic RT. The reuse of the tiles on the same site had an insignificant impact on the environment in both materials. The comparison shows that reuse reduces associated emissions by about 80% in both cases, reusing concrete is more beneficial, as emissions are reduced by 9.95 kg/m2 as opposed to 2.32 kg/m2 at the ceramics. This study reveals the benefit of reusing concrete and ceramic roof tile. In addition, the advantage of building a storage facility to reuse the disposable building materials, reducing the roofing materials ending at the landfill after 40 years. Furthermore, it demonstrated the reduction of CO2 emissions associated with the embodied energy.
APA, Harvard, Vancouver, ISO, and other styles
27

Dowson, Mark. "Novel retrofit technologies incorporating silica aerogel for lower energy buildings." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/7075.

Full text
Abstract:
The aim of this Engineering Doctorate is to design, build and test novel environmental retrofit technologies to reduce energy consumption in existing buildings. Three contributions to knowledge are documented. The first contribution is the technical verification of a novel proof-of-principle prototype incorporating translucent silica aerogel granules to improve the thermal performance of existing windows without blocking out all of the useful natural light. The study demonstrates that a 10 mm thick prototype panel can reduce heat loss by 80 %, without detrimental reductions in light transmission. Payback periods of 3.5-9.5 years are predicted if applied as openable shutters or removable secondary glazing. The second contribution is a streamlined life cycle assessment of silica aerogel following the ISO 14000 standards. The study assesses the raw materials and electricity use associated with two of the three known methods of aerogel production. Despite being produced in a laboratory that had not been refined for mass manufacture, the production energy and CO2 burden from aerogel production can be recovered within 0-2 years when applied in a glazing application. The third contribution is the development and verification of a novel solar air heater incorporating granular aerogel, retrofitted to an external south facing wall, preheating the air in a mechanical ventilation system with heat recovery on a hard4to4 treat domestic property. During the 7-day in-situ test, peak outlet temperatures up to 45 °C were observed and validated to within 5 % of predictions, preheating the dwelling’s fresh air supply up to 30 °C, facilitating internal temperatures of 21-22 °C without auxiliary heating. The predicted financial and CO2 payback for a range of cover thicknesses is 7-13 years and 0-1 years, respectively. Efficiency up to 60 % and a financial payback of 4.5 years is predicted with an optimised design incorporating a 10 mm thick granular aerogel cover.
APA, Harvard, Vancouver, ISO, and other styles
28

Milić, Vlatko. "Energy Renovation of an Historic Town Using Life Cycle Cost Optimization : An Assessment of Primary Energy Use and CO2 Emissions." Thesis, Linköpings universitet, Energisystem, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129367.

Full text
Abstract:
Historic buildings, buildings built before 1945, represent a third of the total building stock in Sweden. While implementing energy efficiency measures (EEMs) on historic buildings it is important to consider heritage values. This thesis aims to investigate impacts on primary energy use and CO2 emissions while using life cycle cost (LCC) optimization on historic buildings in three studied cases: reference case with no implemented EEMs (case 1), lowest possible LCC (case 2) and a decrease by 50% in energy use (case 3). As a case study 920 historic buildings divided into twelve typical buildings (6 wood buildings, 1w-6w, and 6 stone buildings, 1s-6s) in the downtown area of Visby, Sweden, are used. Within the scope of the thesis, how to achieve the most profitable EEMs and how the profitability of energy renovation varies between the typical buildings in the studied cases will be analyzed also. An interdisciplinary method is applied in the thesis that considers both heritage values and energy savings. However, the keystone of the thesis is the use of the program Optimal Energy Retrofit Advisory-Mixed Integer Linear Programming (OPERA-MILP), which is a part of the interdisciplinary method. With the use of OPERA-MILP, the cost-optimal energy renovation strategy is obtained for a building. The program takes into account all energy-related investment costs, as well as the investment and operation costs for the heating system, during a set time period. The results show unique packages of EEMs for each of the twelve typical buildings with a potential to lower the total LCC by between 4-11% in the building stock and simultaneously decrease the energy use by more than 50%. The thesis also shows a possible decrease in primary energy use from 24%-57%. The CO2 emissions vary significantly depending on what assumptions are made related to electricity production and biomass use; the results show increases up to 224% in CO2 emissions but also decreases up to 85%. All typical buildings are economically viable to energy renovate. The LCC savings are between 1.4-11.8 SEK with a life cycle set to 50 years for every annually saved kWh, except for case 3 where cost is incurred for every annually saved kWh, 10.0-17.2 SEK, for a number of the typical buildings.<br>Historiska byggnader, byggnader uppförda före 1945, utgör en tredjedel av det totala byggnadsbeståndet i Sverige. Historiska byggnader har ofta kulturhistoriska värden som måste beaktas vid energieffektiviseringar. Detta examensarbete syftar till att undersöka påverkan på primärenergianvändning och CO2-utsläpp genom optimering av livscykelkostnaderna (LCC) för historiska byggnader. Som fallstudie används 920 historiska byggnader i Visbys innerstad, indelade i tolv olika typbyggnader (6 träbyggnader, 1w-6w, och 6 stenbyggnader, 1s-6s). Tre fall undersöks: referensfall utan implementerade energieffektiviseringsåtgärder (fall 1), lägsta möjliga LCC (fall 2) och en minskning av energianvändningen med 50 % (fall 3). Inom examensarbetets kommer även de mest lönsamma energieffektiviseringsåtgärderna tas fram. Examensarbetet kommer också att visa hur lönsamheten för energirenovering varierar mellan de olika typbyggnaderna. Vid utförandet av examensarbetet tillämpas en tvärvetenskaplig metod som beaktar både kulturhistoriska värden och energibesparing. Tyngdpunkten ligger dock på användningen av programmet Optimal Energy Retrofit Advisory-Mixed Integer Linear Programming (OPERA-MILP), som är en del av den tvärvetenskapliga metoden. Med användningen av OPERA-MILP erhålls den kostnadsoptimala energieffektiviseringsstrategin för en byggnad. Programmet beaktar alla energirelaterade investeringskostnader, samt investering- och driftkostnader för värmetillförselsystem, under en bestämd tidsperiod. Resultaten visar unika energieffektiviseringspaket för de olika typbyggnaderna med en potential att sänka totala LCC för byggnadsbeståndet med 4-11 % och samtidigt minska energianvändningen med mer än 50 %. Examensarbetet visar också en möjlig minskning i primärenergianvändning med 24-57 %. CO2-utsläppen varierar mycket beroende på vilka antaganden görs relaterat till elektricitetsproduktion och användning av biomassa; resultaten visar ökningar upp till 224 % i CO2-utsläpp men också minskningar ned till 85 %. Samtliga typbyggnader är ekonomiskt lönsamma att energirenovera med LCC-besparingar på 1,4-11,8 SEK med en livscykel satt till 50 år för varje årligen sparad kWh, förutom i fall 3 då kostnader uppstår för varje årligen sparad kWh med 10,0-17,2 SEK, för ett antal av typbyggnaderna.<br>Potential and Policies for Energy Efficiency in Swedish Buildings Built Before 1945 (Stage II) - Energy Systems Analysis
APA, Harvard, Vancouver, ISO, and other styles
29

Borg, Mathias. "Environmental Assessment of Materials, Components and Buildings Building Specific Considerations, Open-loop Recycling, Variations in Assessment Results and the Usage Phase of Buildings." Doctoral thesis, Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mer'eb, Muhammad Musa. "Greenometer-7 a tool to assess the sustainability of a building's life cylce at the conceptual design phase /." Cleveland, Ohio : Cleveland State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1209184917.

Full text
Abstract:
Thesis (D.Eng.)--Cleveland State University, 2008.<br>Abstract. Title from PDF t.p. (viewed on May 8, 2008). Includes bibliographical references (p. 321-343). Available online via the OhioLINK ETD Center. Also available in in print.
APA, Harvard, Vancouver, ISO, and other styles
31

Lennermark, Desirée, Victoria Bjellerup, Lisa Bäckström, and Lisen Wedman. "Demolish or Refurbish an Existing Building? : A bachelor thesis on the climate impact of different methods of renewing a building." Thesis, Uppsala universitet, Institutionen för samhällsbyggnad och industriell teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-412278.

Full text
Abstract:
The purpose of this bachelor thesis is to evaluate different alternatives of renewal regarding an already existing building. The case study building is located in the Ulleråker area in Uppsala, Sweden and is an old mental hospital building from the 1950’s which Uppsala Municipality wishes to restore as part of a bigger investment in the neighborhood. The different alternatives that will be investigated are refurbishment, with different insulation thickness, and a complete demolition and reconstruction of a new building with either wood or concrete. Carbon dioxide emissions connected to buildings will be calculated and analyzed as two elements, one being embodied carbon dioxide, and one being energy usage. Other aspects of interest, the economy and cultural values of the area, will be discussed. To estimate the amount of CO2 emissions, several life cycle assessments will be executed through the software One Click LCA (2015). Calculations will be done by hand in order to estimate the energy usage. Information and data are partly obtained from Uppsala Municipality, partly from literature and available resources. The results show that each option has a different advantage, the refurbishment resulting in considerably lower embodied carbon (114 kg CO2e/m2) but higher energy usage (95 kWh/m2 per year) as compared to the new concrete construction with larger amount of embodied carbon (279 kg CO2e/m2) but lower energy usage (44 kWh/m2 per year). This leads to a conclusion showing that a deep refurbishment is the best option regarding both embodied carbon and energy usage.
APA, Harvard, Vancouver, ISO, and other styles
32

Robinson-Gayle, Syreeta. "Environmental impact and performance of transparent building envelope materials and systems." Thesis, Brunel University, 2003. http://bura.brunel.ac.uk/handle/2438/5445.

Full text
Abstract:
Building envelopes are elements with a long lifetime, which provide a barrier between internal and external space and contribute to the internal environmental conditions provision. Their complex role ensures a large impact on the environmental and energy performance of a building and the occupant perception of a space. This study looks at the use of novel materials and processes to help reduce the environmental impact of buildings by improving facade and transparent roof design. There are three main strands to the work. First, novel building components, ETFE foil cushions were examined. Physical testing has shown that ETFE foil cushions compare favourably to double glazing in terms of thermal and daylighting performance which was also noted as one of the most likeable feature by occupants. Environmental impact analysis has indicated that ETFE foils can reduce the environmental impact of a building through reduced environmental burden of both the construction and operation of the building. Secondly, a cradle-to-gate Life Cycle Analysis (LCA) was carried out for float glass, which considered the environmental impacts of glass manufacture. The embodied energy was calculated to be 13.4 ± 0.5 GJ per tonne while the total number of eco-points 243 ± 11 per tonne. It is shown that float glass is comparable to the use of steel, and highly preferable to the use of aluminium as a cladding panel. Finally, a concept design tool (FACADE) was developed by defining a large number of office facade models and employing dynamic thermal, daylighting and environmental impact modelling to create a database which can be accessed through a user friendly interface application. A parametric analysis has indicated that using natural ventilation where possible can reduce the environmental impact of offices by up to 16%. Improving the standard of the facade and reducing the internal heat loads from lighting and equipment can reduce environmental impact up to 22%. This study makes a significant contribution to understanding the environmental impact of building envelope individual and integrated components.
APA, Harvard, Vancouver, ISO, and other styles
33

Brown, Nils W. O. "Managing high environmental performance? : Applying life cycle approaches and environmental certification tools in the building and real estate sectors." Doctoral thesis, KTH, Miljöstrategisk analys (fms), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-201614.

Full text
Abstract:
The main aim of this thesis is  to demonstrate and critically assess life cycle approaches’ and environmental certification (EC) tools’ potential for supporting decisions for improved environmental performance in the building and real estate sectors. Using life cycle approaches, the thesis shows that for new build and renovation cases aiming for low operational energy use that embodied global warming potential (GWP) due to material production can constitute a large portion of a building’s lifetime GWP. Therefore life cycle based information about materials’ embodied GWP needs to be made available to and utilized by design process decision makers. It was also shown that applying the Swedish EC tool Miljöbyggnad was useful in highlighting potential positive and negative changes in indoor environmental quality arising from renovation packages aiming at significant operational energy use reduction in existing multifamily buildings. However such renovation packages are not profitable from a property owner perspective. Miljöbyggnad may be useful when designing policy instruments to overcome this.    The thesis also showed that EC and related environmental enhancements contribute to achieving property owners’ and tenants’ overall strategic objectives for value creation. For property owners this arises for example through lower energy costs and attracting desirable tenants. For tenants, value creation arises as support for internal and external environmental communication. For the further development of life cycle approaches’ and EC tools’ application to buildings and real estate it is important to consider how they can be adapted to consider ‘distance to sustainable’ targets referencing for instance the planetary boundaries approach. It is also interesting to investigate how valuation of buildings and real estate may be performed in a way that expands from the current narrow focus on the economic perspective to also include environmental and social perspectives.<br><p>QC 20170210</p>
APA, Harvard, Vancouver, ISO, and other styles
34

Schade, Jutta. "Energy simulation and life cycle costs : estimation of a building's performance in the early design phase." Licentiate thesis, Luleå : Luleå University of Technology, 2009. http://pure.ltu.se/ws/fbspretrieve/2785427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hoxha, Elda. "Sustainability of Building Structures." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
The aim of this research is to explore the sustainability of the existing residential buildings and to analyse how sustainability can be assessed if sustainable materials and technologies would be used. The main objectives are concentrated in providing a general knowledge of sustainability and to examine how much sustainable the residential buildings are. To analyze the various technologies and materials that can be used in order to reduce the climate-altering emissions, to improve energy efficiency, to reduce costs and to improve the living conditions. Providing knowledge and tools for the sustainable re-design of existing buildings, which will be addressed to environmental, technical, economic and social feasibility of proposed measures, and to energy control. For the analysis, different case studies in different countries will be studied and then a life-cycle approach will be applied to a theoretical residential building, and all the relevant impact categories for the selected type of buildings will be taken into account. In order to analyze the sustainability of the building, a qualitative research will be done using literature sources, international database, journal articles, technical and official reports from the government or group researchers patented and SimaPro software. Materials and dimensions will be defined and will be studied the integrated energy performance, CO2 emissions, global warming, acoustic comfort, thermal comfort, indoor environmental quality for existing residential building structures. All these steps will be taken in order to allow an LCA analysis of the materials of the residential buildings and to define when can be considered that the system has actually been sustained.
APA, Harvard, Vancouver, ISO, and other styles
36

Music, Nermina, and Hilda Lund. "Energianalys av Sveriges största skola byggd med passivhusteknik." Thesis, Linnéuniversitetet, Institutionen för byggteknik (BY), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76613.

Full text
Abstract:
För att uppnå Sveriges energimål har servicesektorn börjat bygga energieffektiva byggnader. I detta examensarbete har energiberäkningar med hjälp av VIP-Energy utförts för Elmeskolan som är byggd enligt passivhusteknik. Resultatet av energiberäkningen har jämförts med kraven enligt BBR 22 och 25 och passivhusstandarden. Det visade sig att kraven för BBR och passivhusstandarden uppfylldes. Även en beräkning av energiprestanda för BBR 22 och 25 med avseende på bergvärme och fjärrvärme har tagits fram med hjälp av definitioner enligt Boverkets byggregler. Energiprestandan för bergvärme visade sig vara lägre än för fjärrvärme. Tre LCC-kalkyler har utförts med hjälp av en Excel-mall. Den beräknade energiprestandan för Elmeskolan samt det maximala kravet för energiprestanda för passivhusstandarden och BBR 22 har legat till grund för kalkylen. Kalkylen resulterade i att Elmeskolans energikostnad var en fjärdedel i jämförelse med kravet för BBR 22. Syftet med denna studie är att resultatet ska påvisa fördelarna med att uppföra byggnader med passivhusteknik samt påvisa energieffektiviteten för ett passivhus.<br>In order to achieve Sweden's energy goals, the service sector needs to build energy-efficient buildings. Therefore, the national board of housing, building and planning proposed building regulations called BBR that consists of requirements and general recommendations for both new and existing building and contains multidimensional aspects including energy management in the building. Passive house building is also another promising solution to approach an energy efficient building. The main aim of this study is to assess the energy performance of a case study building according to the both BBR and passive house building criteria. Correspondingly, Elmeskolan, which has been built based on passive house standards, is chosen as the case study and a model is developed using a building energy-modelling program, VIP-Energy. The result of the energy calculation has been compared with the requirements of BBR 22 and 25 and the Passive House Standards. The study shows that the requirements for BBR and Passive House Standards were met for the case studied building. The primary energy demand of the heat supply system in the building is assessed by considering either geothermal or district heating system according to the Boverket’s energy management building regulations. It is concluded that the primary energy demand in case of using geothermal system is lower than district heating system to supply building heating demand. A simplified LCC analysis has been considered in this study due to the passive house standard and BBR 22 and 25 building regulations. The results show energy cost of the case studied building that is built based on passive house criteria is 25 % of total energy cost of similar building that built based on BBR 22 requirements. The results show the benefits of passive house requirements in comparison with BBR regulations for the case studied building in terms of thermo-economic objectives.
APA, Harvard, Vancouver, ISO, and other styles
37

McIntosh, Sean P. "Factors Impeding the Advancement of Straw Bale As a Feasible and Sustainable Construction Building Material in North America." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1305896657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Inyim, Peeraya. "Time, Cost, and Environmental Impact Analysis for Sustainable Design at Multiple Building Levels." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/1800.

Full text
Abstract:
Construction projects are complex endeavors that require the involvement of different professional disciplines in order to meet various project objectives that are often conflicting. The level of complexity and the multi-objective nature of construction projects lend themselves to collaborative design and construction such as integrated project delivery (IPD), in which relevant disciplines work together during project conception, design and construction. Traditionally, the main objectives of construction projects have been to build in the least amount of time with the lowest cost possible, thus the inherent and well-established relationship between cost and time has been the focus of many studies. The importance of being able to effectively model relationships among multiple objectives in building construction has been emphasized in a wide range of research. In general, the trade-off relationship between time and cost is well understood and there is ample research on the subject. However, despite sustainable building designs, relationships between time and environmental impact, as well as cost and environmental impact, have not been fully investigated. The objectives of this research were mainly to analyze and identify relationships of time, cost, and environmental impact, in terms of CO2 emissions, at different levels of a building: material level, component level, and building level, at the pre-use phase, including manufacturing and construction, and the relationships of life cycle cost and life cycle CO2 emissions at the usage phase. Additionally, this research aimed to develop a robust simulation-based multi-objective decision-support tool, called SimulEICon, which took construction data uncertainty into account, and was capable of incorporating life cycle assessment information to the decision-making process. The findings of this research supported the trade-off relationship between time and cost at different building levels. Moreover, the time and CO2 emissions relationship presented trade-off behavior at the pre-use phase. The results of the relationship between cost and CO2 emissions were interestingly proportional at the pre-use phase. The same pattern continually presented after the construction to the usage phase. Understanding the relationships between those objectives is a key in successfully planning and designing environmentally sustainable construction projects.
APA, Harvard, Vancouver, ISO, and other styles
39

Johansson, Martin, and Konstantin Kanellos. "Livscykelanalys och optimering av isoleringstjocklek för moderna byggnader : - med fokus på kv Limnologen i Växjö." Thesis, Växjö University, School of Technology and Design, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1541.

Full text
Abstract:
<p>Syftet med denna rapport är att visa hur en ökning av isolertjockleken i ett hus påverkar kostnader och energiåtgång för isoleringen i ett livscykelperspektiv, samt för husets bruksskede. I studien har en optimering av isoleringen på ett pågående byggprojekt i Växjö, kv Limnologen, utförts. Total energiåtgång för isoleringens livscykel har tagits fram från tidigare utförda livscykelanalyser (LCA). Husets värmebehov har beräknats mha information från ritningar och kontakter med personer i anknytning till kv Limnologen. En ekvation har utformats för att finna ett teoretiskt optimum för isolertjockleken med inriktning mot total energiåtgång, koldioxidutsläpp och ekonomi. Resultatet för optimeringen av total energiåtgång visar att optimum ligger vid den dubbla tjockleken för tak och grund, samt tredubbla för väggarna. För koldioxidutsläpp och ekonomin är resultatet mer beroende av husets uppvärmningskälla. Fjärrvärme med biobränslen är mer miljövänligt och ekonomiskt idag i jämförelse med fossila bränslen. Det innebär att hus som är oljeuppvärmda bör isoleras betydligt mer. I denna studie sammanställs en del faktorer såsom energi, koldioxid och ekonomi vilket gör det lättare att analysera och värdera dem. Att isolera till vårt framräknade optimum vore inte relevant då detta är ett teoretiskt värde och inte tar hänsyn till förändringar i konstruktionen och andra problem som kan uppstå. Optimeringskurvan visar att vinsten ökar snabbast de första centimetrarna av tilläggsisolering och om konstruktionen inte påverkas nämnvärt skulle det vara möjligt att utföra detta tillägg. Slutsatsen är att husen som byggs på kv Limnologen är välisolerade enligt dagens förutsättningar.</p><br><p>The aim with this report is to show how an increase of the thickness of insulating in a house influences the costs and the energy consumption for the insulation in a life cycle perspective and for the usage stage of the house. An optimization of the insulation on an ongoing construction project in Växjö, Limnologen has been carried out in the study. Total energy consumption for the insulation’s life cycle has been taken from earlier accomplished life cycle assessments (LCA). The house's heat need has been calculated on the basis of information from blueprints and contacts with persons in connection to Limnologen. An equation has been formulated in order to find a theoretical optimum for the insulating thickness regarding total energy consumption, carbondioxide and economy. The result of the optimization for total energy consumption shows that optimum lies at the the double thickness for ceilings and foundation, and triple for the walls. For carbondioxide and the economy the result is more depending on the house's heating source. District heating with biomass fuel is more environmentally friendly and economic today compared with fossil fuel. It means that houses that are oil heated should be insulated considerably more. In this study a compilation of some factors have been made, such as energy, carbondioxide and economy which makes it easier to compare them. Insulating to the calculated optimum is not relevant because the optimum is a theoretical value and does not take into consideration structure solutions and other problems that can arise. On the other hand the optimization curve shows that the profit increases rapidly at the first centimetres of additional insulation and if the structure is not affected markedly this addition would be profitable to carry out. The conclusion is that the buildings raised at Limnologen are well insulated with the presumptions of today.</p>
APA, Harvard, Vancouver, ISO, and other styles
40

Noori, Mehdi. "Sustainability Assessment of Wind Energy for Buildings." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5995.

Full text
Abstract:
Due to increasing concerns for global climate change, onshore and offshore wind energy technologies have stimulated a tremendous interest worldwide, and are considered as a viable solution to mitigate the environmental impacts related to electricity generation. Although wind energy technologies have been considered as one of the cleanest energy sources, they have a wide range of direct and indirect environmental impacts when the whole supply chain is considered. This study aims to quantify the direct and indirect environmental impacts of onshore and offshore wind power technologies by tracing all of the economy-wide supply chain requirements. To accomplish this goal, we developed a comprehensive hybrid life cycle assessment (LCA) model in which process-based LCA model is combined with the economic input-output (EIO) analysis. The analysis results show that on average, concrete and steel and their supply chains are responsible for 37% and 24% of carbon footprint, consequently. On average, offshore wind turbines produce 48% less greenhouse gas emissions per kWh produced electricity than onshore wind turbines. For the onshore wind turbines, concrete, aggregates, and crushed stone approximately consume 95% of total water in this construction phase. On the other hand, concrete, lead, copper, and aggregate are responsible for around 90% of total water for the offshore wind turbines. It is also found that the more capacity the wind turbine has, the less environmental impact the wind turbine generates per kWh electricity. Moreover, based on the economic and environmental impacts of studied wind turbines and also three more nonrenewable energy sources, this study develops a decision making framework to understand the best energy source mix for a building in the state of Florida. This framework accounts for the uncertainty in the input material by deploying a Monte Carlo simulation approach. The results of decision making framework show that natural gas is a better option among nonrenewable sources. On the other hand, V90-3.0 MW offshore wind turbine is the best source of energy among renewable energy sources for a building. The findings of this research are critical for policy makers to understand the direct and indirect environmental impacts of different onshore and offshore wind energy systems. Also this study furnishes the decision maker with a range of possible energy mixes based on different economic and environmental weights.<br>M.S.C.E.<br>Masters<br>Civil, Environmental, and Construction Engineering<br>Engineering and Computer Science<br>Civil Engineering
APA, Harvard, Vancouver, ISO, and other styles
41

Alkhuder, Juma, and Mazen Alnabhani. "A comparative study of the materials of Villa Zero project using LCA." Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-37773.

Full text
Abstract:
In this thesis a future-world case was undertaken of the life cycle assessment (from cradleto grave) of a single-family house. The house is expected to be constructed by the end of2021 in Borlänge, a city located in Dalarna County. The aim of this study is to investigatewhether the building materials in external walls and roof surpass in terms ofenvironmental impacts compared with other building materials suggested by the authorsof this thesis.Six scenarios were evaluated in terms of the environmental impacts for two buildingelements, external wall, and roof. A base case scenario is taken into consideration foreach building element, considering the fact, that the thermal performance characteristicsof the building materials are comprehensively provided. Consequently, four scenarios aredetermined by the authors.One Click LCA program was used to calculate the environmental impacts of thebuilding materials through the lifecycle of the house during a time horizon of 50 years.Hemp fiber insulation material is planned to be used in the external walls; thus, it isconsidered the baseline case for this thesis. The first study is corresponded to the externalwalls, and it was found that glass wool insulation is more environmentally friendly thanhemp fiber and rock wool insulation.Wood material is planned to be used in the roof; thus, it is considered the baseline casefor this thesis. The second study is corresponded to the roof, and it was found that woodmaterial is more environmentally friendly than concrete and steel.Therefore, the suggested material by the authors surpasses the baseline case materialenvironmentally in respect of external walls, but this was not the case regarding the roof.
APA, Harvard, Vancouver, ISO, and other styles
42

Böhme, Florén Simon. "Solel och solvärme ur LCC-perspektiv för ett passiv-flerbostadshus." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-162430.

Full text
Abstract:
This master’s degree project concerns the combination of a multi dwelling passive house with solar energy for the generation of electricity and domestic hot water (DHW). Different alternatives with either solar thermal systems or photovoltaic (PV) systems are compared with two reference alternatives producing DHW from electricity or district heating. The economical comparison uses a life cycle cost (LCC) perspective based on the present value of expenditures for investment, energy and annual operating and maintenance. The energy yields from the solar energy systems were calculated by hand and with simulation software. Calculation and dimensioning of PV systems were carried out with a software called PVSYST. Solar thermal systems were calculated by hand and with the software Winsun Villa Education. Both softwares use hourly weather data for the calculations. The LCCs are lower for the two reference alternatives than for the solar energy alternatives. The reference alternative with district heating generates the lowest LCC. The alternatives with solar thermal energy replace more energy and have significantly lower LCCs than the PV alternatives. The study also shows the importance of using cheap and environmentally friendly backup energy for producing DHW. When aiming for a quantitative energy use target, the DHW-circulation losses ought to be taken into account as these can be extensive.
APA, Harvard, Vancouver, ISO, and other styles
43

Norell, Arlid Malin. "Energieffektivisering av äldre flerbostadshus : En analys av energisparande åtgärder i 50-talsflerbostadshus klimatskal, ställd mot deras kostnad." Thesis, Luleå tekniska universitet, Industriellt och hållbart byggande, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-69252.

Full text
Abstract:
Äldre flerbostadshus står för en stor del av Sveriges totala energianvändning som behöver sänkas föratt minska klimatpåverkan och klara regeringsmålet om effektivare energianvändning. Examensarbetets syfte är därför att bidra till en ökad kunskap om energieffektivisering genom åtgärder i äldre byggnaders klimatskärm, och om hur åtgärder kan värderas genom energisimulering och livscykelkostnadsanalys. Målet är att identifiera vilka åtgärder som är ekonomiskt och arkitektoniskt lämpliga för äldre flerbostadshus med intresse av att bevara deras karaktär. Det är även att bedöma vilken energibesparing och livscykelkostnad de utvalda åtgärderna genererar. Ett flerbostadshus i centrala Luleå valdes ut som referensbyggnad. Byggnaden är genom sin konstruktion och design representativ för tidseran. Intressanta åtgärder samt åtgärdspaket i dess klimatskal valdes ut. Sedan utfördes en bred litteraturgenomgång om bostadsbyggandet i Sverige 1945–1964, byggnadens energianvändning, energieffektivisering av klimatskalet, de utvalda åtgärderna samt metoderna energisimulering och livscykelkostnadsanalys. Referensbyggnaden dokumenterades och en energisimuleringsmodell byggdes i programvaran IDA ICE. Den nuvarande utformningen av byggnaden simulerades och kalibrerades mot senast uppmätt normalårskorrigerad energianvändning. Sedan utfördes simuleringar för de utvalda åtgärderna och åtgärdspaketen vilka bestämts till tilläggsisolering av vindsbjälklag, byte av fönster till lågenergifönster och tätning av otätheter runt dessa, en kombination av båda tidigare åtgärder (åtgärdspaket 1), tilläggsisolering av fasad och fönsterbyte, samt en kombination av alla tre åtgärder (åtgärdspaket 2). Livscykelkostnaderna för nuläget och för implementering av de olika åtgärderna beräknades genom nuvärdeskostnadsmetoden. Även återbetalningstider beräknades genom simple-payback-metoden. Byggnadens nuvarande utformning gav efter kalibrering en simulerad energianvändning på 136,2 kWh/(m2Atemp,år); 2,9 % över det senast uppmätta normalårskorrigerade värdet. Nuvärdeskostnaden för att inte utföra någon åtgärd beräknades till ca 2 727 tkr. Åtgärderna genererade energibesparingar på 3,5–14,6 %, nuvärdeskostnader på 2 685-5 880 tkr och återbetalningstider på 7-105 år. För varje adderad åtgärd i klimatskalet ökade energibesparingen. Tilläggsisolering av vindsbjälklag visade sig vara den enda lönsamma åtgärden, då den har en nuvärdeskostnad som är lägre än att inte utföra någon åtgärd. En känslighetsanalys utfördes för kostnadsberäkningarna där diskonteringsräntan höjdes och sänktes med 2 % och energipriset höjdes med 10 %. Tilläggsisoleringav vindsbjälklag kvarstod dock som den enda lönsamma åtgärden. Åtgärderna hade kunnat generera högre procentuell energibesparing för en annan liknande byggnad. Referensbyggnaden innehåller ett stort renoverat kontor vilket ger en lägre nuvarande energianvändning och lägre procentuell energibesparing för åtgärder än om endast den äldre bostadsdelen studerats. Då Luleå har Sveriges lägsta energipris är åtgärder med hög investeringskostnad ekonomiskt svårmotiverade. Detta beror på att kostnadsbesparingarna genom minskad energianvändning blir små i förhållande till åtgärdernas investeringskostnader. Tilläggsisolering av fasad kan inte rekommenderas då åtgärden både är mycket olönsam och förändrar byggnadens uttryck väsentligt. Slutsatsen är att tilläggsisolering av vindsbjälklag är den lämpligaste åtgärden för äldre flerbostadshus, av de undersökta åtgärderna för energieffektivisering i klimatskalet. Den är arkitektoniskt lämplig med hänsyn till bevarandet av byggnaden då den inte förändrar byggnadens utseende. Den är även ekonomiskt lämplig då den har en livscykelkostnad som är lägre änalternativet att inte utföra någon åtgärd. För fortsatta studier föreslås bl.a. att undersöka hur åtgärder kan göras mer attraktiva för fastighetsägare, att kartlägga fastigheter från tidseran (skick, energianvändning, resultat av åtgärder, möjligheter) samt att utvärdera potentialen av ny teknik.<br>Old multifamily houses stand for a large part of Sweden’s total energy usage, which must decrease to minimize our environmental impact and to accomplish the government goal of more efficient energy usage. The aim of this master thesis is therefore to contribute to an increased knowledge on energy optimization through building envelope improvements in older buildings, and how energy efficiency measures can be evaluated through building energy simulation and life cycle cost analysis. The goal is to identify which measures that are economically and architecturally appropriate for old multifamily houses with interest in retaining their character. It is also to evaluate which energy saving and life cycle cost the selected measures generate. A multifamily house in central Luleå was selected as reference building. The building is by its construction and design representative for the era. Interesting energy efficiency measures in the building envelope were chosen. Then a wide literature study was carried out on house building in Sweden 1945-1964, building energy usage, energy efficiency through building envelope measures, the selected measures and the methods building energy simulation and life cycle cost analysis. The reference building was documented and an energy simulation model was built in the software IDA ICE. A present version of the building was simulated and calibrated to better match the latest normalised annual value. After that, simulations were performed for the selected measures; additional attic insulation, change to low energy windows and weather stripping these, a combination of both previous measures, additional facade insulation and change of windows, and a combination of all three measures. The life cycle costs of the present situation and for implementation of the different measures were calculated through the net present cost method. Also, payback times were calculated through the simple payback method. The building in its original state showed a post-calibration energy usage of 136,2 kWh/(m2Atemp,year); 2,9 % above the surveyed value. The net present cost for not performing any energy conservation measures was calculated to about 2 727 SEK. The measures generated energy savings of 3,5-14,6 %, net present costs of 2 685 -5 880 SEK and payback times of 7-105 years. For each added measure in the building envelope, the energy saving increased. Additional insulation of the attic turned out to be the only profitable measure, since its net present cost is lower than for not performing any energy conservation measure. A sensitivity analysis was performed for the cost analyses where the discount rate was raised and lowered by 2 % and the energy price raised by 10 %. However, the additional attic insulation remained as the only profitable measure. The energy conservation measures could have generated greater energy savings for a similar building. The reference building contains a large retrofitted office which lowers the present energy usage and the percental energy savings for measures compared to if only the dwelling part had been studied. Since Luleå has Sweden’s lowest energy prices, measures with high investment costs become difficult to give grounds for. This is because the cost savings achieved by their energy savings are low compared to their investment costs. Additional facade insulation cannot be recommended since it both is very unprofitable and highly changes the appearance of the building. The conclusion is that additional attic insulation is the most appropriate energy conservation measure for old multifamily houses, of selected measures in the building envelope. It can be regarded as architecturally appropriate since it does not change the building appearance. It is also economically appropriate since its life cycle cost is lower than for not performing any measure. Suggested future research includes analyzing how energy efficiency measures can be made more attractive for real estate owners, charting real estate from the era (condition, energy usage, results from measures, opportunities) and evaluating the potential of new technology within the field.
APA, Harvard, Vancouver, ISO, and other styles
44

Nilsson, Willkomm Josefine. "Comparison of a hybrid ventilation system and a mechanical ventilation system with heat recovery through life cycle assessment : A case study of a modern Danish office building." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-78758.

Full text
Abstract:
The building sector is responsible for 36% of the energy usage and 39 % of all CO2- emissions in European union (EU). Therefore, it is of great interest to investigate how the building sector can become more energy efficient and lower the environmental impact. It is reported that 80-90 % of a building’s total energy usage occurs during the operational phase. The energy usage is mainly due to lightning, technical equipment and the heating, cooling and ventilation system (HVAC-system). During the last century the energy efficiency in lightning developed significantly meaning the energy used in the HVAC-system becomes increasingly significant. As EU aim to increase the energy efficiency and the ratio of renewable energy in the grid, one can assume that the importance of other phases in the HVAC system lifecycle will be increasingly interesting as for example the manufacturing process and material usage which can be evaluated through life cycle assessment (LCA).This thesis presents a comparison between the environmental impacts of a hybrid ventilation (HV) system and a mechanical ventilation system with heat recovery (MVHR) system through a LCA perspective designed for an office building in Lystrup, Denmark. The office building in Lystrup, Denmark was chosen as the HV system is implemented there. The HV system consists of an automated natural ventilation (NV) system and a mechanical exhaust air ventilation (MEV) system. The environmental impact from the NV was provided through environmental products declarations provided by the company dimensioning the NV system. The data was lacking for the MEV system and that system was therefore dimensioned and evaluated through LCA. The mechanical ventilation system chosen for comparison is a mechanical ventilation system with heat recovery (MVHR) decided by the commissioner of the project, Sweco AB. The MVHR system was dimensioned as well. The project was significantly affected by lack of data resulting in many assumptions. The system boundary of the life cycle was set to cradle to grave excluding the energy usage of producing the ventilation components. The assumed lifetime is 25 years. Gabi Education software was used for calculating the LCA results. The impact categories chosen are global warming potential (GWP), ozone depletion potential (ODP), acidification potential (AP), eutrophication potential (EP), photochemical ozone depletion potential (PODP), abiotic depletion potential (ADP) elements and ADP fossil which are used in the EN15804 standard when conducting LCA for construction components. The CML2001-IA 2001 IA method was used for the life cycle impact assessment in the LCA software which also is recommended according to EN15804.The LCA results were compared between the systems and interpreted through contribution analysis were the result was divided in the following categories; Energy usage (use phase), transportation, material usage (including raw material extraction and material processing) and end of life treatment. The two systems score similarly on all environmental impacts categories except for the global warming potential (GWP) and the abiotic depletion potential (ADP) fossil were the MVHR system scores approximately 3 times higher than the HV system. The MVHR system consumes approximately 3 times more energy during the use phase. The contribution analysis showed that the energy usage (use phase) dominated the contribution in almost all environmental impact categories. Further, the environmental impact caused by the material usage was compared between the MVHR - and HV system and the MVHR system scored higher in all categories except ADP elements.The conclusion drawn from this report is that the HV system is better if one looks to GWP and ADP fossil. The HV contributes less to climate change which is an important environmental concern. Further, the energy usage during use phase contributed most to environmental impacts for both the MVHR - and HV system. The environmental impact of the material usage is less for the HV - compared with the MVHR system.<br>Byggnadssektorn står för 36 % av energianvändningen och 39 % av alla koldioxidutsläpp i Europeiska unionen (EU). Därför är det av stort intresse att undersöka hur byggsektorn kan bli mer energieffektiv och undersöka hur dess miljöpåverkan kan minskas. Det rapporteras att 80–90 % av en byggnads totala energianvändningen inträffar under driftsfasen. Energianvändningen beror främst på belysning och värme-, kyla- och ventilationssystemet (VVS-systemet). Under det sista århundradet har energieffektiviteten gällande belysning förbättrats avsevärt, vilket innebär att betydelsen för energianvändningen till VVS-systemet ökat. Eftersom EU strävar efter att öka energieffektiviteten och mängden förnybar energi i elnätet kan man anta att betydelsen av andra faser i VVS-systemets livscykel kommer att bli allt mer intressant, till exempel tillverkningsprocessen och materialanvändningen vilket kan utvärderas genom livscykelanalys (LCA).   Denna rapport jämför miljöpåverkan från ett hybridventilationssystem (HV) med ett mekaniskt ventilationssystem med värmeåtervinningssystem (FTX-system) ur ett LCA-perspektiv. Studien utförs på kontorsbyggnad i Lystrup, Danmark. Kontorsbyggnaden i Lystrup valdes eftersom ett HV-systemet är implementerat där. HV-systemet består av ett automatiserat naturligt ventilationssystem (NV) och ett mekaniskt frånluftsventilationssystem (F-system). Miljöpåverkan från det NV-systemet tillhandahölls ur miljöproduktdeklarationer (EPD:er) som dimensioneringsföretaget tillhandahöll. Uppgifterna saknades för F-systemet och därför dimensionerades det förhand för att sedan utvärderades genom LCA. Hv-systemet jämfördes mot ett FTX system vilket bestämdes av uppdragsgivaren på företaget Sweco AB. FTX-systemet dimensionerades också förhand för att sedan utvärderas genom LCA. Livscykelns systemgräns sattes till från ”vagga-till-grav” exklusive energianvändningen för att producera ventilationskomponenterna då denna data saknades. Den antagna livslängden för ventilationssystemen är 25 år. LCA programvaran Gabi Education användes för att beräkna LCA resultaten. De miljöpåverkanskategorier som undersökts i den här studien är: global uppvärmningspotentialen, ozonuttunnande potential, försurningspotential, eutrofieringspotential, fotokemisk ozonuttunningspotential, abiotisk utarmningspotential (material) och abiotisk utarmningspotential (fossila bränslekällor) vilka skall användas enligt EN15804-standarden då LCA:er utförs på byggkomponenter. CML2001-IA metoden användes som livscykelkonsekvensbedömningen LCA-programvaran, vilket också rekommenderas enligt EN15804.   LCA-resultaten jämfördes mellan systemen och tolkades genom en bidragsanalys där resultatet delades in i följande kategorier: Energianvändningen (användningsfas), transport, materialanvändning (inklusive råvaruutvinning och materialbearbetning) och slutanvändningsfasen för komponenterna. De två systemen var likvärdiga i de flest miljöpåverkanskategorier utom den globala uppvärmningen potential och abiotiska utarmning potential fossil där FTX-systemet bidrog med ungefär 3 gånger så hög potentiell påverkan än det HV-systemet. FTX-systemet förbrukar ungefär 3 gånger mer energi under användningsfasen. Bidragsanalysen visade att energianvändningen (under användningsfasen) var den dominerade faktorn i nästan alla kategorier av miljöpåverkan. Utöver denna analysen jämfördes miljöpåverkan orsakad av materialanvändningen mellan FTX - och HV-systemet, där FTX-systemet fick högre poäng i alla kategorier utom i abiotiska utarmnings potential (material).   Slutsatsen från den här studien är att det HV-systemet är bättre om man ser till global uppvärmningspotential och abiotisk utarmningspotential fossil. Det HV-system har alltså mindre potential till att bidra till klimatförändringar och mindre potential att utarma fossila bränslekällor. Enligt den här studien är energianvändningen under användningsfasen den faktor som bidrar mest till miljöpåverkanskategorierna för både FTX - och det HV-systemet. Miljöpåverkan orsakad av materialåtgången är mindre för det HV-systemet än FTX systemet.
APA, Harvard, Vancouver, ISO, and other styles
45

Carlsson, Elin, and Victoria Sörebö. "Utveckling av konventionella småhus till passivhus : En studie med analys av livscykelkostnader, förändring av boendekvaliteter och ett förslag till en alternativ utformning." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-67750.

Full text
Abstract:
Klimatförändringarna blir allt mer omfattande i takt med att jordens befolkning ökar. Den negativa miljöpåverkan bottnar till stor del i användandet av råvaror och energiförbrukning vid skapandet av materiella ting. Enligt energimyndigheten (2015) står byggsektorn för ca 40 % av Sveriges totala energianvändning. För att minska energianvändningen har mål både på nationell och internationell nivå skapats. Målen är tänkta att skapa större förståelse av ett mer energieffektivt byggt samhälle för samtliga aktörer inom byggbranschen. En hållbar utveckling av husbyggandet kräver förutom att värna om miljön en beaktning av de ekonomiska och sociala aspekterna.   I det här examensarbetet har det undersökts om två specifika standardhus från en småhusleverantör kan utvecklas till passivhus med bevarad arkitektonisk karaktär. Studien syftar delvis till att undersöka om begreppet passivhus kan fungera som ett hållbart koncept för byggandet av enfamiljshus. Begreppet hållbar utveckling har begränsats och en förenkling har applicerats i arbetet. Den ekologiska aspekten representeras av energiberäkningar och eventuella åtgärder för att standardhusen ska uppnå kraven för passivhus. Den ekonomiska aspekten representeras av en livscykelkostnadsanalys med hjälp av nuvärdesmetoden och återbetalningsmetoden. Den sociala aspekten representeras av en utvärdering av förändring i boendekvaliteter vid utveckling från ett standardhus till passivhus. Studien presenterar även en alternativ utformning av ett passivhus med avsikt att främja positiva boendekvaliteterna.   Standardhusen tillhör en småhusproducent, Intressanta hus, som har sitt huvudsäte i Västerås. Husen utgörs av en villa på 147 m2 i ett plan med pulpettak samt en villa på 151 m2 i två plan med sadeltak. Med anledning av Intressanta hus geografiska läge har Västerås klimat använts som utgångspunkt vid energiberäkningarna. För att addera ytterligare en utmaning har även möjligheter för utveckling till passivhus undersökts för standardhusen i ett subarktiskt klimat i Kiruna. Västerås representerar därmed klimatzon III och Kiruna klimatzon I.   Resultaten avslöjade att det är möjligt att utveckla standardhuset i två plan med sadeltak till passivhus och samtidigt bevara den arkitektoniska karaktären i de båda klimatzonerna. Standardhuset med ett plan och pulpettak är endast möjligt att anpassa till passivhus i klimatzon III med bevarad arkitektonisk karaktär. Livscykelkostnadsanalysen visar med hjälp av nuvärdesmetoden att det är ekonomiskt fördelaktigt att investera i passivhus som ett koncept för en kalkylperiod på 50 år. Den boendekvalitet som främst förändras är bostadens ljusinsläpp och för passivhuset i ett plan är skillnaden av ljusinsläpp markant i klimatzon I.   Studiens slutsats är att konceptet passivhus är en metod av husbyggnation som främjar den hållarbara utvecklingen i förenklad form. Resultaten är framförallt positiva för klimatzon III men om byggnaden har låg formfaktor kan konceptet fungera bra även i kallare klimat som återfinns i klimatzon I.<br>The climate changes increases as the population increases. The negative environmental impact is mostly based on the use of raw materials and energy consumption in the production of various products. According to Energimyndigheten (2015), the building sector is the cause of about 40 % of Sweden's total energy use. In order to reduce the energy use goals have been created at both national and international levels. The goals are intended to create a greater understanding of a more energy efficient society for all actors within the construction industry. In addition to create a sustainable development of the building sector one needs to also take in account the social and economic aspects.   This master thesis examined whether two specific standard houses from a small house producer can be adapted to passive houses with a preserved architectural character. The purpose of the study is partly to investigate whether the concept of passive houses can serve as a sustainable concept of building single family houses. The concept of sustainable development has been simplified. The ecological aspect is represented by the energy calculations and possible actions that the standard houses need to achieve in order to meet the requirements for passive houses. The economic aspect is represented by a life cycle cost analysis using the Net Present Value method and the Simple Payback method. The social aspect is represented by an evaluation of changes in living qualities as the standard houses develops to passive houses. The study also presents an alternative design of a passive house with the purpose of improving the accommodation qualities.   The standard houses belong to a small-house-producer, Intressanta hus, who has their main market in Västerås. The houses is represented by a 147m2 villa with one floor and a pulpit roof and a 151m2 villa with two floors and a pitched roof. Due to Intressanta hus geographic location, the typical climate for Västerås has been used in the energy calculations. To add another dimension, opportunities for developing the standard houses to passive houses have also been investigated for the typical climate in Kiruna. Therefore Västerås represents climate zone III and Kiruna represents climate zone I.   The results revealed that it is possible to adapt the standard house with two floors and a pitched roof to a passive house while preserving the architectural character in both climate zones. The standard house with one floor and a pulpit roof is only possible to adjust to a passive house in climate zone III with a preserved architectural character. The life cycle cost analysis using the Net Present Value showed that it is an economical advantage to invest in a passive house in a period of 50 years. The accommodation quality that changes the most is the incident light in the houses and for the passive house with one floor the difference of light is remarkably high in climate zone I.
APA, Harvard, Vancouver, ISO, and other styles
46

Teodoro, Maria Inês Tavares de Matos. "Energia embutida na construção de edificações no Brasil: contribuições para o desenvolvimento de políticas públicas a partir de um estudo de caso em Mato Grosso do Sul." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/106/106131/tde-01022018-151533/.

Full text
Abstract:
O consumo de energia embutida nas edificações acontece ao longo do seu ciclo de vida nas atividades relacionadas com a construção e manutenção. Trata-se de um consumo de cálculo complexo uma vez que o seu valor está contabilizado em outros setores econômicos como o setor industrial de produção de materiais construção e o setor de transportes. A contribuição da energia embutida nas edificações do Brasil chega a 40% do seu ciclo de vida energético. Para além disso as necessidades de infraestrutura no país, em particular no setor residencial, deverão resultar em elevados consumos energéticos para a sua construção, contribuindo para pressionar as necessidades de expansão dos sistemas de oferta de energia. Neste contexto, o objetivo central desta pesquisa é calcular a energia embutida na construção de um condomínio residencial na cidade de Campo Grande no Estado de Mato Grosso do Sul. Para tal foi utilizada um metodologia baseada em Avaliação de Ciclo de Vida Energético (ACVE) tendo sido considerados dois cenários que diferem quanto à eficiência energética na etapa do transporte. Obteve-se um consumo de energia embutida inicial por unidade de área de 4,99 GJ/m2 para o cenário 1 e 5,52 GJ/m2 para o cenário 2, com participações de energia não renovável de 61,2% e 64,2%, respectivamente. No cenário 1 a etapa de fabricação dos materiais respondeu por 96,1% do consumo de energia embutida, o transporte contribuiu com 3,2% e a construção com 0,7%. Já no cenário 2, a participação de cada etapa foi de 86,8%, 12,6% e 0,6% respectivamente. Os resultados do estudo de caso apresentado e o panorama elaborado sobre a energia embutida nas edificações brasileiras realizado nesta tese reforçam a necessidade de incluir a energia embutida como critério de eficiência energética no desenvolvimento de políticas públicas que contribuam para reduzir o consumo de energia no setor de edificações.<br>The embodied energy in buildings is an energy consumption that happens throughout its life cycle in the activities related to construction and maintenance. Embodied energy calculation is a complex process since its value is accounted for in other economic sectors such as the manufacture of building materials and transportation. The contribution of embodied energy in Brazilian buildings reaches 40% of its energy consumption life cycle. In addition, infrastructure needs in the country, particularly in the residential sector, should result in high energy consumption for its construction, contributing to put pressure on the expansion needs of the energy supply system. In this context, the main objective of this research is to calculate the embodied energy in the construction of a residential condominium in the city of Campo Grande in the State of Mato Grosso do Sul. A methodology based on Life Cycle Energy Assessment (LCEA) was used considering two scenarios that differ in terms of energy efficiency at the transportation stage. Initial Embodied Energy per unit area was 4.99 GJ/m2 for scenario 1 and 5.52 GJ/m2 for scenario 2, with a non-renewable energy share of 61.2% and 64, 2%, respectively. In scenario 1, the material manufacturing stage accounted for 96.1% of the initial embodied energy value, transportation contributed with a share of 3.2% and the construction stage with 0.7%. In scenario 2, the share of each stage was 86.8%, 12.6% and 0.6%, respectively. The results of the presented case study and the elaborated panorama on the embodied energy in Brazilian buildings carried out in this thesis reinforce the need to include embodied energy as a criterion of energy efficiency in the development of public policies that contribute to reduce energy consumption in the building sector.
APA, Harvard, Vancouver, ISO, and other styles
47

Ševčík, Jaroslav. "Funkční díly v ocenění stavebního objektu." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240175.

Full text
Abstract:
Diploma thesis deals with comparing of current awards by Classification of building structures and works and awards by Functional parts. It is possible to calculate Building life cycle costs by Functional parts. This is definately the advantage of the system because the calculation cannot be done by Classification of building structures and works. A new law on public procurement deals with Building life cycle costs as an evaluation criterion. So it is recommended to use Functional parts awards. The other goal of the thesis is to find bridges between Functional parts and the issue of BIM. BIM is a trend of global construction industry.
APA, Harvard, Vancouver, ISO, and other styles
48

Kleinerová, Jana. "Optimalizace nákladů provozní fáze stavebních objektů." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240394.

Full text
Abstract:
The thesis discusses the operating costs and the possibilities for their optimization. Specifically, it focuses on one of the greatest possible operating costs and it's heating costs. In the first part of the thesis are defined in general expenses, the price and the production, operating costs, optimization of these costs, life cycle of buildings and technological methods to improve the thermal and technical properties of the object. Finally, the theoretical part describes the terms for calculating the energy performance of the building and the payback period, which evaluates the effectiveness of investments. The practical part is assessed according to specific building energy performance, and especially in terms of its demand for heating. The building is designed for six variants of insulation, which is again judged on their energy performance. Subsequently these measures for better thermal insulating properties of the object assessed according to their cost efficiency and return on investment of individual variants.
APA, Harvard, Vancouver, ISO, and other styles
49

Micolier, Alice. "Développement d’une méthodologie d’évaluation cohérente et intégrée de l’impact des choix de conception sur la qualité de l’air intérieur et les performances énergétiques et environnementales des bâtiments résidentiels." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0380.

Full text
Abstract:
A l'heure où le secteur de la construction connaît une profonde transformation portée par des préoccupations énergétiques et environnementales, les solutions de conception proposées pour répondre à ces objectifs ne doivent pas compromettre la qualité de l’air intérieur (QAI). Malgré les risques majeurs de santé publique liés à celle-ci, des outils manquent aux acteurs de la conception pour juger de la performance des solutions de conception proposées en terme de QAI. Cette thèse vise à répondre à cet enjeu en proposant une méthodologie d’évaluation cohérente et intégrée des performances sanitaires, énergétiques et environnementales des solutions de conception. L'Analyse du Cycle de Vie (ACV) a été identifiée comme pertinente pour intégrer dans un cadre méthodologique normé l’évaluation de la QAI à celle de la performance énergétique et environnementale à travers des métriques d’impacts communes.Afin de considérer au mieux les impacts générés par la pollution de l’air intérieur et les consommations énergétiques en phase opérationnelle du bâtiment, nous avons développé un modèle numérique couplant les transferts de chaleur et de masse dans l’enveloppe du bâtiment. Ce modèle permet d’évaluer l’émission des polluants depuis les matériaux de construction (inventaire) jusqu’à leur devenir dans les environnements intérieurs (transport) en fonction de la température. L’intégration de ce modèle à la méthodologie d’ACV nous a permis de quantifier l’impact de différents matériaux de construction sur l’environnement intérieur et extérieur du bâtiment et de les mettre en regard avec les impacts générés lors de leur production et fin de vie respective. Les résultats obtenus nous ont montré la sensibilité de ce modèle aux paramètres comportementaux.L’occupant a un rôle majeur dans la problématique de la QAI et sa prise en compte est un élément clé afin de quantifier l’exposition des occupants aux polluants intérieurs avec moins d’incertitudes. Nous avons développé un modèle agent simulant le comportement humain au sein des bâtiments résidentiels à l’aide d’une architecture cognitive avancée intégrant à la fois le comportement délibératif et social des occupants. Le couplage du modèle de transport des polluants et du modèle-agent de comportement humain nous a permis d’explorer au travers d’un cas d’étude dans quelle mesure l’exposition à la pollution intérieur est sensible au mode de vie des occupants et le comportement des occupants influe sur le devenir des polluants dans les environnements intérieurs. Ceci constitue une étape préliminaire pour estimer un intervalle de confiance des résultats de simulations, ouvrant ainsi la voie à un processus de garantie de performance en terme de QAI<br>The construction sector is undergoing a profound transformation driven by energy and environmental concerns. The design solutions proposed to meet these objectives must not compromise indoor air quality (IAQ). Despite the major public health risks associated with this issue, design actors lack tools to assess the performance of the design solutions in terms of IAQ. This thesis aims to address this challenge by proposing a consistent and integrated methodology for evaluating the health, energy and environmental performance of building design solutions. Life Cycle Assessment (LCA) has been identified as a relevant methodology for integrating into a standardised methodological framework the evaluation of the building performance in terms of IAQ, energy and environment through common impact metrics.In order to better characterise the impacts generated by indoor air pollution and energy consumption during the operational phase of the building, we developed a numerical model coupling heat and mass transfers in the building envelope. This model evaluates the emission of pollutants from building materials (inventory) until their fate in indoor environments (transport) as a function of the temperature. The integration of this model into the LCA allowed us to quantify the impact of different construction materials on the indoor and outdoor environment of the building and to compare them with the impacts generated during their production and end of life phase. The results obtained show the sensitivity of this model to behaviour-driven parameters.The occupant has a major role in the problem of IAQ and its consideration is a key element to quantify occupants’ exposure to indoor pollutants with fewer uncertainties. We developed an agent-based model simulating human behaviour within residential buildings using an advanced cognitive architecture that integrates both the deliberative and social behaviour of occupants. By coupling the pollutant transport model with the human behavioural agent model, we explored to which extent the exposure to indoor pollution is sensitive to the occupants' lifestyle and the occupants' behaviour influences the fate of pollutants in indoor environments. This is a preliminary step in estimating a confidence interval of the simulation results, paving the way for a performance guarantee process in terms of IAQ
APA, Harvard, Vancouver, ISO, and other styles
50

Foitlová, Lucie. "Hodnocení stavebního projektu z hlediska celoživotních nákladů." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-371824.

Full text
Abstract:
The theoretical part deals at the beginning with evaluation of effectiveness of the project, as well as with the information about individual stages of the life cycle of the building, wear and tear of the buildings, lifetime of the elements and whole life costs of the building that are of particular interest to the investor. In conclusion, there are mentioned wastes and emissions. The thesis is completed by a case study of the family house where the whole life costs of the building life cycle are solved.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography