Academic literature on the topic 'Building life cycle stage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Building life cycle stage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Building life cycle stage"
Xiong, Hai Bei, Chao Zhang, Jiang Tao Yao, and Yang Zhao. "Environmental Impact Comparison of Different Structure Systems Based on Life Cycle Assessment Methodology." Advanced Materials Research 374-377 (October 2011): 405–11. http://dx.doi.org/10.4028/www.scientific.net/amr.374-377.405.
Full textShang, Mei, and Haochen Geng. "A study on carbon emission calculation of residential buildings based on whole life cycle evaluation." E3S Web of Conferences 261 (2021): 04013. http://dx.doi.org/10.1051/e3sconf/202126104013.
Full textKhan, Jam Shahzaib, Rozana Zakaria, Eeydzah Aminudin, Nur Izie Adiana Abidin, Mohd Affifuddin Mahyuddin, and Rosli Ahmad. "Embedded Life Cycle Costing Elements in Green Building Rating Tool." Civil Engineering Journal 5, no. 4 (April 27, 2019): 750–58. http://dx.doi.org/10.28991/cej-2019-03091284.
Full textVolkov, Andrey, Vitaliy Chulkov, and Dmitriy Korotkov. "Life Cycle of a Building." Advanced Materials Research 1065-1069 (December 2014): 2577–80. http://dx.doi.org/10.4028/www.scientific.net/amr.1065-1069.2577.
Full textWang, Yuanfeng, Bo Pang, Xiangjie Zhang, Jingjing Wang, Yinshan Liu, Chengcheng Shi, and Shuowen Zhou. "Life Cycle Environmental Costs of Buildings." Energies 13, no. 6 (March 14, 2020): 1353. http://dx.doi.org/10.3390/en13061353.
Full textOu, Xiao Xing, and De Zhi Li. "Research on Techniques of Reducing the Life Cycle Carbon Emission at Building Design Stage." Applied Mechanics and Materials 744-746 (March 2015): 2306–9. http://dx.doi.org/10.4028/www.scientific.net/amm.744-746.2306.
Full textVorontsova, Оlga, Yuliya Shvets, and Svetlana Sheina. "The use of information technology in the DSTU new campus business center life cycle operational phase management." E3S Web of Conferences 281 (2021): 01043. http://dx.doi.org/10.1051/e3sconf/202128101043.
Full textTabrizi, Toktam B., and Arianna Brambilla. "Toward LCA-lite: A Simplified Tool to Easily Apply LCA Logic at the Early Design Stage of Building in Australia." European Journal of Sustainable Development 8, no. 5 (October 1, 2019): 383. http://dx.doi.org/10.14207/ejsd.2019.v8n5p383.
Full textCheng, Baoquan, Jingwei Li, Vivian W. Y. Tam, Ming Yang, and Dong Chen. "A BIM-LCA Approach for Estimating the Greenhouse Gas Emissions of Large-Scale Public Buildings: A Case Study." Sustainability 12, no. 2 (January 17, 2020): 685. http://dx.doi.org/10.3390/su12020685.
Full textMao, Guozhu, Hao Chen, Huibin Du, Jian Zuo, Stephen Pullen, and Yuan Wang. "ENERGY CONSUMPTION, ENVIRONMENTAL IMPACTS AND EFFECTIVE MEASURES OF GREEN OFFICE BUILDINGS: A LIFE CYCLE APPROACH." Journal of Green Building 10, no. 4 (November 2015): 161–77. http://dx.doi.org/10.3992/jgb.10.4.161.
Full textDissertations / Theses on the topic "Building life cycle stage"
Jalaei, Farzad. "Integrate Building Information Modeling (BIM) and Sustainable Design at the Conceptual Stage of Building Projects." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32536.
Full textRavan, Nazila. "A Study on Life Cycle Assessment-based Tool for the Early Stage of Building Design." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241434.
Full textHaugsbakk, Frida. "Evaluations of how carbon dioxide calculations can be integrated into 3D models at an early design stage for more efficient Life Cycle Assessments on buildings." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230168.
Full textLivscykelanalyser på byggnader och olika typer av miljöbyggnads-certifieringar blir allt vanligare för nya byggprojekt i Sverige. Materialet i en byggnad spelar en stor roll av hela byggnadens miljöpåverkan. Tidigare forskning indikerar att livscykelanalyser inte är en rutin i dagens byggprocesser vilket kan bero på att osäkerheter i de olika metoderna bakom koldioxidberäkningar. Den här artikeln fokuserar på hur koldioxidekvivalenter av byggnadsmaterial kan bli integrerade med Byggnadsinformationsmodellering. Genom möten med experter i området har datainsamling gjorts för det ändamålet. För att undersöka integreringen byggdes en 3D-modell upp och som senare användes för beräkningar av koldioxidutsläpp i ett kostnads-kalkyleringsverktyg samt undersöka hur en införing av koldioxidekvivalenter direkt i 3D-modellen kunde göras. Resultaten visade hur kostnads-beräkningsverktyget fungerar för beräkningar av koldioxidekvivalenter, tidigt i byggprocessen. Svårigheter i att hitta motsvarande material i kalkyleringsverktygets databas upptäcktes under utvärderingen samt en sammanfattande rapport för beräkningarna. Integrationen direkt i 3D-modellen med visuell programmering visade att en inmatning av koldioxidutsläpp för varje material fungerade vilket möjliggör uppdateringar under hela byggprocessen. Det var också möjligt att importera materialinformation till ett koldioxidberäkningsverktyg. Det öppnar upp möjligheter att ändra och uppdatera koldioxidutsläpp för material tidigt i byggprocessen med hjälp av Byggnadsinformationsmodellering och visar behov av organisationsförändringar på grund av dagens traditionella byggprocess.
Foitlová, Lucie. "Hodnocení stavebního projektu z hlediska celoživotních nákladů." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-371824.
Full textNováček, Michal. "Pokročilé uplatnění BIM při návrhu stavebních objektů." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2019. http://www.nusl.cz/ntk/nusl-392305.
Full textKarlapudi, Janakiram. "Enhancement of BIM Data Representation in Product-Process Modelling for Building Renovation." Springer Nature, 2020. https://tud.qucosa.de/id/qucosa%3A73520.
Full textDong, Yahong, and 董雅紅. "Life cycle sustainability assessment modeling of building construction." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206665.
Full textpublished_or_final_version
Civil Engineering
Doctoral
Doctor of Philosophy
Yossef, Delav, and Dino Hot. "Comparative life cycle assessment of organic building materials." Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-37774.
Full textMatos, Raquel Valente de Pinho. "Building life cycle management na reabilitação de edifícios." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/21953.
Full textA gestão de edifícios ao longo do seu ciclo de vida é atualmente um problema que requer uma grande otimização, considerando o alto custo associado à utilização dos edifícios e devido aos custos de operação e manutenção. O número de edifícios existentes que necessitam de ações de reabilitação justifica a necessidade de um modelo de intervenção que otimize a sua vida útil após o processo de reabilitação. O custo do ciclo de vida é uma técnica usada para analisar vantagens de diferentes propostas, relacionadas com o planeamento do ciclo de vida do edificio, que avalia todos os custos que envolvem um ativo durante toda a sua vida, nomeadamente o custo de investimento, operação, manutenção e de fim de vida. No que diz respeito à otimização da gestão do ciclo de vida do edificio, propõe-se a metodologia BIM, que combina o Building Life Cycle Management (BLCM) e a informação digital tendo como suporte o modelo 3D, permitindo mais rigor e controle do que os processos manuais, contribuindo para a redução de perda de informação durante o ciclo de vida do edificio, e facilitando a comunicação entre os vários intervenientes. Assim, a presente dissertação tem o objetivo de otimizar a gestão do ciclo de vida de edifícios e minimizar os custos ao longo deste processo. Para atingir os objetivos pretendidos é analisada a aplicação do BLCM a um caso de estudo de um edifício em reabilitação, no qual se avalia a vida útil das soluções de reabilitação, usando o método fatorial apresentado na ISO 15686. Foi assim possível avaliar quais são as melhores soluções de reabilitação, em termos de durabilidade, comparando com diferentes propostas, e calcular o custo do ciclo de vida. Analisa ainda, a aplicação da metodologia BIM ao caso de estudo, concluindo-se sobre a respetiva vantagem na determinação do Custo do Ciclo de Vida e para o planeamento das ações de manutenção do edifício.
Buildings management along with its life cycle is currently an issue that requires a great optimisation considering the high cost associated with the buildings use and due to the operation and maintenance costs. The number of existing buildings needing rehabilitation actions justify the need of an intervention model that optimise its service life after the rehabilitation process. The Life Cycle Cost is a technique used to analyse the advantages of different proposals related to the planning of the building life cycle and to avaluate all costs involving an assets throughout its life, including investiment, operation maintenance and end of life. Regarding otimizing the Building Life Cycle Management it is proposed BIM methodology that is a combination of Building Life Cycle Management (BLCM) and the digital information of 3D modeling that allows more reability and control than manual process. BLCM also contributes for the reduction of information loss during the building life cycle, and facilitates communication between the stakeholders. So, this thesis aims to optimize the Building Life Cycle Management and minimize costs throughtout this process. In order to achieve the desired objectives, this dissertation analyses the application of BLCM to a case study under a rehabilitation process. With this, it was possible to assess if the solutions of rehabilitation are the best in terms of durability, when compared with other proposals and it allows to calculate the Life Cycle Cost. It was analysed and concluded that the application of BIM methodology can bring advantages for Life Cycle Cost and for future maintenance of buildings.
Qirushi, Andon. "Building Information Modelling (BIM) Effectiveness in Performing Life Cycle Assessment of Building." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7081/.
Full textBooks on the topic "Building life cycle stage"
Kirk, Stephen J. Life cycle costing for design professionals. 2nd ed. New York: McGraw-Hill, 1995.
Find full textKirk, Stephen J. Life cycle costing for design professionals. 2nd ed. New York: McGraw-Hill, 1995.
Find full textL, Kirkham Richard, ed. Whole life-cycle costing: Risk and risk responses. Oxford: Blackwell, 2004.
Find full textSparrow, Paul. Building human resource strategies around competencies: A life cycle model. Manchester: Manchester Business School, 1992.
Find full textColeman, Ken. One question: Answers from America's leading voices for every stage of life. Nashville, Tenn: Howard Books, 2012.
Find full textColeman, Ken. One question: Answers from America's leading voices for every stage of life. Nashville, Tenn: Howard Books, 2012.
Find full textShipp, Graham. Review of renal services: Life cycle costing for end stage renal failure. [London]: [Resource Management Services], 1994.
Find full textCouncil, Canadian Wood. Environmental effects of building materials. Ottawa, Canada: Canadian Wood Council, 1995.
Find full textBook chapters on the topic "Building life cycle stage"
Kneifel, J. D. "Life–Cycle Cost Implications of More Stringent State Energy Codes." In Ideas to Impact: How Building Economic Standards Keep You on Track, 164–83. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2014. http://dx.doi.org/10.1520/stp158620140036.
Full textKutsygina, Olga, Svetlana Uvarova, Svetlana Belyaeva, and Andrey Chugunov. "Technical and Economic Aspects of Energy Saving at the Stages of the Building Life Cycle." In Advances in Intelligent Systems and Computing, 36–44. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19868-8_4.
Full textCirrincione, Laura, and Giorgia Peri. "Covering the Gap for an Effective Energy and Environmental Design of Green Roofs: Contributions from Experimental and Modelling Researches." In Future City, 149–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71819-0_8.
Full textSeeley, Ivor H. "Life Cycle Costing." In Building Economics, 308–79. London: Macmillan Education UK, 1996. http://dx.doi.org/10.1007/978-1-349-13757-2_13.
Full textBernardino-Galeana, Ignacio, Carmen Llatas, María Victoria Montes, Bernardette Soust-Verdaguer, Jacinto Canivell, and Pedro Meda. "Life Cycle Cost (LCC) and Sustainability. Proposal of an IFC Structure to Implement LCC During the Design Stage of Buildings." In Critical Thinking in the Sustainable Rehabilitation and Risk Management of the Built Environment, 404–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61118-7_33.
Full textRaulerson, Peter, Jean-Claude Malraison, and Antoine Leboyer. "RTM Life Cycle." In Building Routes to Customers, 61–101. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-79951-3_5.
Full textLippiatt, Barbara C. "Evaluating Products Over their Life Cycle." In Green Building:, 357–73. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984048.ch14.
Full textRuegg, Rosalie T., and Harold E. Marshall. "Life-Cycle Cost (LCC)." In Building Economics: Theory and Practice, 16–33. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-4688-4_2.
Full textSchmid, Peter. "The Life Cycle of Building." In The GeoJournal Library, 207–26. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-3563-6_13.
Full textLinwood, Jeff, and Dave Minter. "The Portlet Life Cycle." In Building Portals with the Java Portlet API, 41–71. Berkeley, CA: Apress, 2004. http://dx.doi.org/10.1007/978-1-4302-0754-2_3.
Full textConference papers on the topic "Building life cycle stage"
Ramirez, Angel D., Karla Crespo, Daniel A. Salas, and Andrea J. Boero. "Life Cycle Assessment of a Household in Ecuador." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23199.
Full textHu, Yang, Laura A. Schaefer, and Volker Hartkopf. "Life Cycle Energy and Exergy Analysis for Building Cooling Systems: A Comparison Between a Solar Driven Absorption Chiller and an Electric Driven Chiller." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54737.
Full textWei, Bing, Bin Zhang, and Wen Luo. "Research on Assessment Method of Green Buildings in China." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90349.
Full textKurakawa, Kei, Takashi Kiriyama, Yasunori Baba, Hideki Kobayashi, Yasushi Umeda, and Tetsuo Tomiyama. "The Green Browser: An Information Sharing Tool for Product Life Cycle Design." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/dtm-1534.
Full textHang, Yin, and Ming Qu. "Maximizing the Life Cycle Primary Energy Savings of an Integrated Solar Absorption Cooling and Heating System for a Medium-Sized Office Building in Los Angeles, California." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54962.
Full textKhalid, Marwan, and Qingjin Peng. "Investigation of Printing Parameters of Additive Manufacturing Process for Sustainability Using Design of Experiments." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22771.
Full textTawney, Rattan K., James A. Bonner, and Asem M. Elgawhary. "Economic and Performance Evaluation of Combined Cycle Repowering Options." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30565.
Full textDesideri, U., S. Proietti, F. Zepparelli, P. Sdringola, and E. Cenci. "Life Cycle Assessment of a Reflective Foil Material and Comparison With Other Solutions for Thermal Insulation of Buildings." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54786.
Full textLin, Cheng-Xian, Nipesh Pradhananga, and Shahin Vassigh. "An Evaluation of the Effects of Team Projects and Augmented Reality on Student Learning in Sustainable Building Science." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11982.
Full textBroderick, Darren, Peter Wright, and Raouf Kattan. "Minimising the Cost of Coating Ships." In SNAME Maritime Convention. SNAME, 2012. http://dx.doi.org/10.5957/smc-2012-p31.
Full textReports on the topic "Building life cycle stage"
Piette, M. A. Commissioning tools for life-cycle building performance assurance. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/373882.
Full textLippiatt, Barbara C., and Stephen F. Weber. Productivity impacts in building life-cycle cost analysis. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4762.
Full textLandsman, S. D., C. A. Peterson, and R. E. Thornhill. 324 Building life cycle dose estimates for planned work. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/116663.
Full textPetersen, Stephen R. The NIST Building Life-Cycle Cost (BLCC) program (Version 3.0):. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4481.
Full textNeely, Edgar S., Robert D. Neathammer, and Robert P. Winkler. Building Maintenance and Repair Data for Life-Cycle Cost Analyses: Report Generator. Fort Belvoir, VA: Defense Technical Information Center, December 1991. http://dx.doi.org/10.21236/ada245652.
Full textGu, Hongmei, and Richard Bergman. Life cycle assessment and environmental building declaration for the design building at the University of Massachusetts. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2018. http://dx.doi.org/10.2737/fpl-gtr-255.
Full textStadel, Alexander, Petek Gursel, and Eric Masanet. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1223003.
Full textPetersen, Stephen R. A user's guide to the Federal building life-cycle cost (FBLCC) computer program. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.tn.1222.
Full textLiang, Shaobo, Hongmei Gu, Ted Bilek, and Richard Bergman. Life-cycle cost analysis of a mass-timber building: methodology and hypothetical case study. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2019. http://dx.doi.org/10.2737/fpl-rp-702.
Full textCarstafhnur, Sirobe D., and DeAnna L. Dixon. Building Information Modeling (BIM) Primer. Report 1: Facility Life-Cycle Process and Technology Innovation. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada571762.
Full text