Academic literature on the topic 'Building physic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Building physic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Building physic"
Yuliyanti, Y. "Perancangan Lingkungan Fisik Dengan Pendekatan Green Building." Jurnal Teknik Industri 17, no. 2 (May 9, 2017): 72. http://dx.doi.org/10.22219/jtiumm.vol17.no2.72-83.
Full textMinarovičová, Katarína. "Window Today – Still an Important Architectural Element of Exterior and Interior." Applied Mechanics and Materials 820 (January 2016): 27–32. http://dx.doi.org/10.4028/www.scientific.net/amm.820.27.
Full textKonoplianyk, A. Y., and I. M. Iliev. "Research of characteristics of heat-resistant concretes with additives of expanded perlite sand." Metallurgicheskaya i gornorudnaya promyshlennost, no. 1 (2019): 62–66. http://dx.doi.org/10.33101/s001-150002091.
Full textKeprdová, Šárka. "Physic-Mechanical Properties of Cement Composites Consisting of Organic Raw Materials." Advanced Materials Research 1100 (April 2015): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amr.1100.7.
Full textBernard, Tomasz, and Azra Korjenic. "Hygro-Thermal Behaviour of Timber Frame Straw Bale Construction as an Energy Efficient Building Technology." Advanced Materials Research 1041 (October 2014): 92–95. http://dx.doi.org/10.4028/www.scientific.net/amr.1041.92.
Full textAbdou Lawane, Gana, Adamah Messan, Anne Pantet, Raffaele Vinai, and Jean Hugues Thomassin. "Local Materials for Building Houses: Laterite Valorization in Africa." Advanced Materials Research 875-877 (February 2014): 324–27. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.324.
Full textYunianti, Sri Rahmi, Sudaryono Sudaryono, and Doddy Aditya Iskandar. "Keterhubungan Ruang Permukiman Tradisional di Desa Sukarara Berlandaskan Nilai-Nilai Nyensek dan Begawe." Region: Jurnal Pembangunan Wilayah dan Perencanaan Partisipatif 13, no. 1 (January 31, 2018): 80. http://dx.doi.org/10.20961/region.v13i1.17544.
Full textFerraz, E., J. A. F. Gamelas, J. Coroado, C. Monteiro, and F. Rocha. "Exploring the potential of cuttlebone waste to produce building lime." Materiales de Construcción 70, no. 339 (July 20, 2020): 225. http://dx.doi.org/10.3989/mc.2020.15819.
Full textIR Harsritanto, Bangun, Satrio Nugroho, Muhammad Denton Alif Ghafirin, and Aditya Rio Prabowo. "Did We Need Low Energy Campus Mosque?" E3S Web of Conferences 125 (2019): 08001. http://dx.doi.org/10.1051/e3sconf/201912508001.
Full textYi, Cheng, Jing Shi, Xiao Long Zhao, Wen Hai Zhao, Qiang Liu, and Hui Xin Liu. "Comprehensive Assessment of Green Degree of Building Material Using Fuzzy AHP." Applied Mechanics and Materials 71-78 (July 2011): 769–77. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.769.
Full textDissertations / Theses on the topic "Building physic"
Gábrová, Lenka. "Analýza technických požadavků na stavby se zaměřením na stavební fyziku." Master's thesis, Vysoké učení technické v Brně. Ústav soudního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-232686.
Full textTink, Victoria J. "The measured energy efficiency and thermal environment of a UK house retrofitted with internal wall insulation." Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/33727.
Full textJack, Richard. "Building diagnostics : practical measurement of the fabric thermal performance of houses." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/19274.
Full textJordaan, Bertus Scholtz. "Building a Cross-Cavity Node for Quantum Processing Networks." Thesis, State University of New York at Stony Brook, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13424934.
Full textWorldwide there are significant efforts to build networks that can distribute photonic entanglement, first with applications in communication, with a long-term vision of constructing fully connected quantum processing networks (QPN). We have constructed a network of atom-light interfaces, providing a scalable QPN platform by creating connected room-temperature qubit memories using dark-state polaritons (DSPs). Furthermore, we combined ideas from two leading elements of quantum information namely collective enhancement effects of atomic ensembles and Cavity-QED to create a unique network element that can add quantum processing abilities to this network. We built a dual connection node consisting of two moderate finesse Fabry-Perot cavities. The cavities are configured to form a cross-cavity layout and coupled to a cold atomic ensemble. The physical regime of interest is the non-limiting case between (i) low N with high cooperativity and (ii) free-space-high-N ensembles. Lastly, we have explored how to use light-matter interfaces to implement an analog simulator of relativistic quantum particles following Dirac and Jackiw-Rebbi model Hamiltonians. Combining this development with the cross-cavity node provides a pathway towards quantum simulation of more complex phenomena involving interacting many quantum relativistic particles.
Passaro, Davide. "Model building on gCICYs." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411813.
Full textEtt av de största problemen i modern teoretisk fysik är att hitta en teori för kvantgravitation.För en konsekvent kvantteori gravitation skulle vara en väsentlig del i fysikens pussel, och koppla samman gravitationsfysiken för planeter och galaxer, som beskrivs av allmänna relativitetsteorin, till fysiken för partiklar, beskrivet av kvantfältteori.Bland de mest lovande teorierna finns strängteorin som föreslår att ersätta partiklar med strängar som materiens grundläggande beståndsdel.Förutom att lösa kvantgravitationproblemet hoppas teoretiska fysiker genom strängteorin att förenkla beskrivningen av partikelfysik.Detta skulle ske genom att ersätta hela partikelzoo med ett enda objekt: strängen.Olika vibrationer i strängen skulle motsvara olika partiklar och interaktioner mellan strängar skulle motsvara interaktioner mellan partiklar.För att vara motsägelsefri kräver dock strängteori att det finns minst sex fler dimensioner än de vi kan uppleva.En av strategierna som för närvarande studeras för att förlika extra dimensioner med och moderna experiment kallas ``kompaktifiering'' eller ``compactification'' på engelska.Strategin föreslår att dessa extra dimensioner ska vara kompakta och så små att de är osynliga för observationer.Interesant nog påverkar geometrin i det sexdimensionella kompakta rummet i stor utsträckning fysiken som strängteorin producerar: olika rum skulle producera olika partiklar och olika grundläggande naturkrafter.I den här uppsatsen studerar jag två exempel på sådana sexdimensionella rum som kommer från en uppsättning av rum som kallas `` generaliserade CICYs'' som nyligen har upptäckts.Med hjälp av de tekniker som liknar de som har utvecklats för andra liknade rum, visar jag att vissa aspekter av en strängteori kompaktifierad på generaliserade CICY återspeglar de som mäts genom moderna partikelfysikexperiment.
Janovick, Patrick. "PROGRESS TOWARD BUILDING A RATCHET IN COLD ATOM DISSIPATIVELATTICES." Miami University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=miami1533338035196042.
Full textCampbell, Sara L. S. B. Massachusetts Institute of Technology. "Building an apparatus for ultracold lithium-potassium Fermi-Fermi mixtures." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61204.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 93-95).
In this thesis, I designed and built laser systems to cool, trap and image lithium-6 and potassium-40 atoms. I also constructed the vacuum system for the experiment and experimentally tested a new method to coat the chamber with a Titanium-Zirconium- Vanadium alloy that acts as a pump. The final apparatus will use a 2D Magneto- Optical Trap (MOT) as a source of cool potassium and a Zeeman slower as a source of cool lithium. The atoms will then be trapped and cooled together in a double-species 3D MOT. In the 3D MOT, we will perform photoassociation spectroscopy on the atoms to determine the Li-K molecular energies and collisional properties. Using this information, we can transfer weakly-bound Feshbach LiK molecules into their ground state. LiK has an electric dipole moment and will open the door to the study of novel materials with very long-range interactions. This new material might form a crystal, a superfluid with anisotropic order parameter or a supersolid.
by Sara L. Campbell.
S.B.
I'Anson, S. J. "Physical aspects of chemical injection damp-proof courses." Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373622.
Full textStirewalt, Heather R. "Computation as a Model Building Tool in a High School Physics Classroom." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10785706.
Full textThe Next Generation Science Standards (NGSS) have established computational thinking as one of the science and engineering practices that should be developed in high school classrooms. Much of the work done by scientists is accomplished through the use of computation, but many students leave high school with little to no exposure to coding of any kind. This study outlines an attempt to integrate computational physics lessons into a high school algebra-based physics course which utilizes Modeling Instruction. Specifically, it aims to determine if students who complete computational physics assignments demonstrate any difference in understanding force concepts as measured by the Force Concept Inventory (FCI) versus students who do not. Additionally, it investigates students’ attitudes about learning computation alongside physics. Students were introduced to Vpython programs during the course of a semester. The FCI was administered pre and post instruction, and the gains were measured against a control group. The Computational Modeling in Physics Attitudinal Student Survey (COMPASS) was administered post instruction and the responses were analyzed. While the FCI gains were slightly larger on average than the control group, the difference was not statistically significant. This at least suggests that incorporating computational physics assignments does not adversely affect students’ conceptual learning.
McHattie, Samuel Alexander. "Seismic Response of the UC Physics Building in the Canterbury Earthquakes." Thesis, University of Canterbury. Civil and Natural Resource Engineering, 2013. http://hdl.handle.net/10092/8801.
Full textBooks on the topic "Building physic"
Pinterić, Marko. Building Physics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57484-4.
Full textPinterić, Marko. Building Physics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67372-7.
Full textHens, Hugo. Applied Building Physics. Berlin, Germany: Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, 2012. http://dx.doi.org/10.1002/9783433600917.
Full textHens, Hugo, ed. Applied Building Physics. Berlin, Germany: Wilhelm Ernst & Sohn, 2016. http://dx.doi.org/10.1002/9783433607114.
Full textIntroductory physics: Building understanding. Hoboken, N.J: John Wiley & Sons, 2004.
Find full textBankvall, Claes. Thermal research in the field of building physics with application to buildings. Stockholm: Swedish Councilfor Building Research, 1990.
Find full textLemieux, Daniel J., and Jennifer Keegan, eds. Building Science and the Physics of Building Enclosure Performance. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2020. http://dx.doi.org/10.1520/stp1617-eb.
Full textTanaya, Michael, Huaming Chen, Jebediah Pavleas, and Kelvin Sung. Building a 2D Game Physics Engine. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2583-7.
Full textHens, Hugo. Building Physics - Heat, Air and Moisture. Berlin, Germany: Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, 2012. http://dx.doi.org/10.1002/9783433601297.
Full textHens, Hugo. Building Physics: Heat, Air and Moisture. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783433602379.
Full textBook chapters on the topic "Building physic"
Egges, Arjan. "Game Physics." In Building JavaScript Games, 337–53. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-6539-9_26.
Full textPinterić, Marko. "Basics of thermodynamics." In Building Physics, 3–20. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57484-4_1.
Full textPinterić, Marko. "Heat transfer." In Building Physics, 21–57. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57484-4_2.
Full textPinterić, Marko. "Heat transfer in building components." In Building Physics, 59–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57484-4_3.
Full textPinterić, Marko. "Moisture in building components." In Building Physics, 99–146. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57484-4_4.
Full textPinterić, Marko. "Basics of waves." In Building Physics, 147–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57484-4_5.
Full textPinterić, Marko. "Sound propagation." In Building Physics, 161–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57484-4_6.
Full textPinterić, Marko. "Building acoustics." In Building Physics, 191–213. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57484-4_7.
Full textPinterić, Marko. "Illumination." In Building Physics, 215–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57484-4_8.
Full textPinterić, Marko. "Moisture in Building Components." In Building Physics, 117–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67372-7_4.
Full textConference papers on the topic "Building physic"
Broc, Daniel. "Soil-Structure Interaction: Theoretical and Experimental Results." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93155.
Full textOgunsola, Oluwaseyi T., and Li Song. "Performance Analysis of a Simplified Model of Cooling Load for a Typical Office Building." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64040.
Full textTaveres-Cachat, Ellika, Francesco Goia, and Steinar Grynning. "Solar efficiency index of building envelopes and load matching in low energy buildings." In 7th International Building Physics Conference. Syracuse, New York: International Association of Building Physics (IABP), 2018. http://dx.doi.org/10.14305/ibpc.2018.be-10.04.
Full textFernandez, Christopher, and Sheldon Jeter. "Evaluation of Simplified Physics-Based Building Energy Model for the Purpose of Automatic Fault Detection." In ASME 2021 15th International Conference on Energy Sustainability collocated with the ASME 2021 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/es2021-63925.
Full textTimmer, Alexander. "Simulation of Building Physics for Beginning Design Students." In 7th International Building Physics Conference. Syracuse, New York: International Association of Building Physics (IABP), 2018. http://dx.doi.org/10.14305/ibpc.2018.ps30.
Full textBrambilla, Arianna, Federica Brunone, Alberto Sangiorgio, and Marco Imperadori. "Inter-ActiveHouse: users-driven building performances for Nearly Zero Energy Buildings in Mediterranean climates." In 7th International Building Physics Conference. Syracuse, New York: International Association of Building Physics (IABP), 2018. http://dx.doi.org/10.14305/ibpc.2018.hf-3.03.
Full textLi, Yuguo. "The Physics in Natural Ventilation of Cities and Buildings." In 7th International Building Physics Conference. Syracuse, New York: International Association of Building Physics (IABP), 2018. http://dx.doi.org/10.14305/ibpc.2018.k05.
Full textKnight, Kelly J., Chris Barringer, Jon M. Berkoe, Glenn E. McCreery, Robert J. Pink, and Donald M. McEligot. "Physical and Computational Modeling for Chemical and Biological Weapons Airflow Applications." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39451.
Full textEscobar, Sergio, Jorge E. Gonza´lez, Adam Wong, and Mark Aschheim. "A Method to Estimate Real-Time Energy Performance and Carbon Offsets in Residential Buildings." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90152.
Full textZhang, Linyu, Yongchang Li, Scott Duncan, Juhyun Kim, and Dimitri Mavris. "Development of a Building-Specific, Multi-Criteria Energy Technology Portfolio Evaluation Approach." In ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6654.
Full textReports on the topic "Building physic"
Easley, Matthew, and Elizabeth Bradley. Generalized Physical Networks for Automated Model Building. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada454690.
Full textAndeen, Timothy. Building Towards Discovery: Preparing for New Physics at the LHC. Office of Scientific and Technical Information (OSTI), July 2017. http://dx.doi.org/10.2172/1527366.
Full textChristie, D. J., R. J. Foley, D. N. Frank, M. A. Henesian, J. T. Hunt, W. G. Labiak, D. W. Larson, J. K. Lawson, R. W. Lee, and S. E. Mayo. NTES laser facility for physics experiments: Building 381 high bay option. Office of Scientific and Technical Information (OSTI), July 1989. http://dx.doi.org/10.2172/5886821.
Full textFernandez, Katya, Marian Ruderman, and Cathleen Clerkin. Building Leadership resilience: The CORE Framework. Center for Creative Leadership, 2020. http://dx.doi.org/10.35613/ccl.2020.2043.
Full textCarson, J. Integrating fuel cell power systems into building physical plants. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460163.
Full textBulgac, A. LOW-ENERGY NUCLEAR PHYSICS NATIONAL HPC INITIATIVE: BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF). Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1070098.
Full textSecrest, T. J., and A. K. Nicholls. The composition of a quad of buildings sector energy: Physical, economic, and environmental quantities. Office of Scientific and Technical Information (OSTI), July 1990. http://dx.doi.org/10.2172/6740199.
Full textFytanidis, Dimitrios, Romit Maulik, Ramesh Balakrishnan, and Rao Kotamarthi. A physics-informed data-driven low order model for the wind velocity deficit at the wake of isolated buildings. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1782670.
Full textSouthwell, Brian, Angelique (Angel) Hedberg, Christopher Krebs, and Stephanie Zevitas, eds. Building and Maintaining Trust in Science: Paths Forward for Innovations by Nonprofits and Funding Organizations. RTI Press, September 2019. http://dx.doi.org/10.3768/rtipress.2019.cp.0010.1909.
Full textDavid A. King. THE FINAL DEMISE OF EAST TENNESSEE TECHNOLOGY PARK BUILDING K-33 Health Physics Society Annual Meeting West Palm Beach, Florida June 27, 2011. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1034278.
Full text