Dissertations / Theses on the topic 'Buildings, mechanical equipment'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 44 dissertations / theses for your research on the topic 'Buildings, mechanical equipment.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Wu, Kin-kwong, and 吳健光. "A study of the cost management process and estimation techniques for estimating building services installations in the buildingconstruction industry." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31251523.
Full textLee, Kin-wang, and 李健宏. "A comparative study of the life cycle cost of mechanical building services installations based on different maintenance strategies." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B4500898X.
Full textKubíček, Lukáš. "Příprava a realizace výstavby mateřské školy." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2019. http://www.nusl.cz/ntk/nusl-392313.
Full textHelán, Tomáš. "Rezidence Austerlitz, vybrané části stavebně technologického projektu." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240482.
Full textPlaček, Michal. "Stavebně technologický projekt polyfunkčního souboru EASTGATE." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226500.
Full textAlexa, Martin. "Stavebně technologický projekt mateřské školy." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-371896.
Full textMráček, Ondřej. "Polyfunkční dům Olomouc Hněvotínská - stavebně technologický projekt." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226478.
Full textŠorm, Petr. "Hrubá stavba objektu AV v Praze Dejvicích - stavebně technologický projekt." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2014. http://www.nusl.cz/ntk/nusl-227006.
Full textOsina, Lukáš. "Stavebně technologický projekt montované haly." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227664.
Full textNěmec, Lukáš. "Laboratorní centrum UTB Zlín - stavebně technologický projekt." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227703.
Full textHalík, Tomáš. "Stavebně technologický projekt bytového domu Rezidence na Plachtě." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409922.
Full textKrejčí, Michal. "Bytový dům v Třebíči - příprava a realizace stavby." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-225616.
Full textKubrtová, Zuzana. "Vybrané části stavebně technologického projektu muzea motorsportu." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240058.
Full textJurečka, Matěj. "Stavebně technologický projekt bytového domu ve Frýdku." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2019. http://www.nusl.cz/ntk/nusl-392132.
Full textKuchaříková, Vlasta. "Stavebně technologický projekt bytového domu typ M6,Brno-Slatina." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-225446.
Full textBartoň, Marek. "Bytový dům Anglický dvůr - stavebně technologický projekt." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409916.
Full textSikora, Marek. "Mateřská škola v Čelákovicích, příprava realizace stavby." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409945.
Full textVaněk, Jiří. "Technologický projekt sportovní haly v obci Nové Veselí." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-225618.
Full textBrůžek, Zdeněk. "Mezinárodní centrum klinického výzkumu v Brně - stavebně technologický projekt." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-239966.
Full textJuračka, Lukáš. "Průmyslový areál AQUASYS - stavebně technologický projekt." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-225378.
Full textKousal, Tomáš. "Vybrané části stavebně technologického projektu administrativní a výrobní haly společnosti Hydraulics s.r.o." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265376.
Full textHanzlík, Vlastimil. "Administrativní budova Lomnického - stavebně technologická příprava stavby." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2019. http://www.nusl.cz/ntk/nusl-391905.
Full textŠrámek, Pavel. "Stavebně technologický projekt výrobní a skladovací haly v Hodoníně." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240111.
Full textVochyán, David. "Administrativní budova ESKO-T, stavebně technologický projekt." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265518.
Full textŠevčík, Daniel. "Bytový dům Mrštíkova Hustopeče, Blok B - stavebně technologický projekt." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409946.
Full textHerben, Tomáš. "Bytový dům Hlaváčkova – stavebně technologický projekt." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265294.
Full textBradáčová, Eliška. "Stavebně technologický projekt budovy C Technologického parku Brno." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2019. http://www.nusl.cz/ntk/nusl-391890.
Full textLux, Ondřej. "Bytový dům Palmovka - stavebně technologická příprava výstavby." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265540.
Full textLech, Martin. "Obchodní centrum Holešov - stavebně technologická příprava." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226104.
Full textSeménka, Petr. "Stavebně technologický projekt administrativní budovy firmy Ray Service, a.s. ve Starém Městě." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409943.
Full textVopršalová, Tereza. "Stavebně technologický projekt bytových domů Nad Městem, Nové Město na Moravě." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372308.
Full textBrym, Jan Václav. "Administrativní budova firmy Esko-T v Třebíči - stavebně technologický projekt." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227798.
Full textHačka, Martin. "Stavebně technologický projekt rekonstrukce operačních sálů KPRCH Fakultní nemocnice Brno." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-371924.
Full textTěžký, Filip. "Příprava realizace bytového domu v Brně - Slatině." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2019. http://www.nusl.cz/ntk/nusl-391973.
Full textHomolová, Sandra. "Stavebně technologický projekt lékárny v areálu FN Olomouc." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227234.
Full textChamrádová, Klára. "Areál TRIANGL v Uherském Hradišti - stavebně technologický projekt." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240197.
Full textJílek, Jan. "Objekt B3 bytového komplexu Sadová - stavebně technologický projekt." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409930.
Full textMacháčová, Kateřina. "Stavebně technologický projekt polyfunkčních domů v Olomouci." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240060.
Full textKarafiátová, Hana. "Stavebně technologický projekt výstavby penzionu pro seniory." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226094.
Full textKondáš, Ondřej. "Polyfunkční dům Brno, Černovice - stavebně technologický projekt." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265233.
Full textKUO, CHEN CHENG, and 陳政國. "Research on the Design and Installation of Mechanical and Electrical Equipment Configuration of Buildings." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/urk5zr.
Full text正修科技大學
營建工程研究所
106
Human’s living space has changed and developed from caves, buildings of wood, bricks, and then the modern types of structure such as reinforced concrete, steel, and all the way to the latest new RC. However, in the demand of functionalities and new requirements, building machinery and equipment within the architectural structure have increased and become more complex than before. The functions of the building machinery and equipment need to upgrade with users’new requirements. In addition, the machinery and equipment to be installed varies with the functions and types of the space. The position and floor for each machine and equipment to install in the building must be drawn up in the planning and designing phase to cater to the functions and connection between spaces. Other than that, issues such as the equipment weight, power source supply, and waste water and gas have to be included during the initial designing stage for a more comprehensive consideration. This thesis discusses the functionality, performance, specification, and weight of the machinery and equipment in accordance with the architectural structure load capacity, mounting space, as well as the configuration of the required power source supply. These relevant issues must be reviewed and designed at the intial stage. Issues for the following preparation plan also need to be addressed in a more comprehensive way, from manufacturing, shipping, handling, to the on-site installation based on the tasks completed at different construction stages. Moreover, after the machinery and equipment installation, they have to connect with the monitoring system for testing the function and completeness to ensure the power output is as the same as the setting. Furthermore, the vibration and noise during the equipment operation might deteriorate the structure stability and user comfort; in this case, measures to reduce the influence of vibration such as shock-resistant structure (suspension or isolation) and sound insulation and absorbing mechanism are required. The equipment must be configured in a way, which is easy and feasible for future maintenance and operation. The configuration also has to have sufficient space and be flexible for future expansion and replacement for the old equipment to satisfy the future demands. These are the issues discussed in this thesis and it is expected to become a reference for designing and planning at the intial building stage for the industry.
Cheng, Shu-chu, and 鄭淑朱. "The Research of Practicability for Mechanical Drainage Equipment in Building Application." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/82332767448648777530.
Full text國立臺灣科技大學
建築系
102
Abstract Gravity drainage system is the major method that was used for building drainage system until now. Owing to the few information and less understanding, mechanical drainage equipment was not generally adopted as building application so far. Mechanical drainage system use devices such as pump to disgorge sewage upward or horizontal transportation for building sewage. Mechanical drainage system can be more efficient under certain special circumstances and replace the gravity drainage system. It can be a pressure drainage system or a vacuum drainage system in term of its working mechanism. The main approach of this research is based on the reviews of the issues and investigation on user. This research tried to sort out the feasibility by taking the structural factors and the environmental elements into account via SWOT theory. By analyzing the properties and operational mechanism of the gravity drainage and the mechanical drainage, with the method of SWOT theory, we concluded both of its characters and applicability. In addition, through a survey of professional and users’ opinions with verification of actual case studies, this paper comes to a conclusion and suggestion about the practicability of its future development. Through investigation and analysis of this research, we have a clearer idea of the practicability for mechanical drainage equipment in building application. Applying mechanical drainage equipment appropriately will hence help to provide a healthier drainage system for building in order to create a safety, sanitary, comfortable and sustainable building environment, and to promote the quality of living and environment.
Jiaqing, Guo, and 郭嘉慶. "Study on Life Cycle and Disaster Prevention Benefits of Building Mechanical and Electrical Equipment." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/5587ee.
Full text東南科技大學
營建與空間設計系營建科技與防災碩士班
106
The life cycle of the equipment in the building, including the initial stage and the operation of the planning and design includes maintenance costs of the process, so in the maintenance and management of the need for a high degree of technology and fixed management procedures to maintain the reliability and functionality of the building system, INZ construction industry with the new thinking and concept, gradually will be the architectural design and electronic, Capital Communications and other related systems, the introduction of a variety of people-oriented automation, information, digital and other integrated services functions. It is concluded that the appropriate and good facilities management system has become the key to the success of the construction operation, the pros and cons of the building is related to the two key points, one is the concept of system integration, the first is the input-output disaster prevention benefits, and then create economic benefits and mechanical and electrical facilities management and maintenance Therefore, how to evaluate the performance of building facilities management and maintenance has become an important issue to promote the development of architecture. Building Mechanical and electrical fire safety equipment, the establishment of building facilities management and maintenance of the standard operating procedures, set up the construction of regular facilities and equipment inspection declaration system content, so as to develop the implementation of building equipment maintenance and import management system and formal education, professional license, Technical training and other people to cultivate the system and the development of equipment planning and long-term repair plan for the main body of the relevant laws and regulations of the integration strategy.The results of this study can provide decision makers ' reference for the maintenance and implementation of the fire-fighting equipment in the building and the analysis of reducing the disaster incidence.
Lu, Wei-Yu, and 盧威宇. "Simulation and Validation Measurement of Vibration Isolation and Anti-Earthquake Performance for Mechanical Equipments and Piping Systems in Buildings." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/83835678805508251347.
Full text國立臺灣海洋大學
系統工程暨造船學系
96
As to promote the adoption of lightweight structures and environment protecting green buildings, the anti-earthquake steel construction high-rise buildings have gradually become the substitute of conventional reinforced concrete buildings. Owing to the change of building material, it emerges that the low-frequency noise problem, induced by the mechatronic equipments installed inside buildings, becomes more and more serious and annoying. The study aims at the source identification and transmission path diagnosis of such kind noise problem by means of power flow of the stress waves in structure-borne vibration to rank the sequence of vabrational power flow transmission level for a multi-source/multi-path system.The four-pole parameters method is employed for the assessment of isolation performance of a machine-isolator-seating structure in-series system as well. This method has the unique part to take into consideration of the influence of seating elasticity on the isolation effectiveness of the isolator. Besides, machines, the noise generated by piping system in a building pertains to a widely distributed one. To predict the pipe wall vibration radiating sound field induced by the impulsive pressure load and to appropriately select the piping sheathing material to reduce pipe noise, a simulation model combining experimental modal analysis, the finite element method and the boundary element method is established. By applying this model to assess the pipe noise reduction effect to a number of pipe sheathing material, a kind of sandwich material is found to be the best to have a reduction of noise over 10 dB in a wide band. While, in the finite element analysis, the sheathing material is modeled by contact elements. Some relevant factors, such as bounding tightness of the sheathing material and the friction coefficients, on the influence of noise isolation are discussed. Apart from the reduction of low-frequency noise from mechatronic equipments by isolators, the anti-earthquake capability of these equipments should be taken into account as in equal importance to avoid capsizing or failure by extra-distortion in case of encountering a large scale earthquake. A two-phase isolation idea is proposed in this study. In the first phase, the allowance of the bearing clearance of the anti-earthquake limitation mount is remained for the range of the dynamic displacement in isolating the machine induced structure-borne vibration via elastic isolators. When the mechatronic equipments encounter earthquake greater than a medium scale, the anti-earthquake limitation mounts elaborate its function in the second phase to limit the displacement of the equipment. Thus prevent the equipments from malfunction or capsizing. The application of the 2 phase mounting system has been successfully used in both mechanical parking tower, and ventilation system of a high-rise building to attain the expected effect in structure-borne noise control. The model established for the simulation and validation measurement in cope with the low-frequency noise problem in a building has a generic and holistic nature. It is applicable to buildings of any configuration and diverse materials to prevent the structure-borne noise and vibration resulted from various mechatronic equipments inside the building. From several applications of case study in the program, it shows that the developed model can be credible with an error within 5 %.