Academic literature on the topic 'Bulk Current Injection'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bulk Current Injection.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bulk Current Injection"

1

Grassi, Flavia, Filippo Marliani, and Sergio A. Pignari. "Circuit Modeling of Injection Probes for Bulk Current Injection." IEEE Transactions on Electromagnetic Compatibility 49, no. 3 (August 2007): 563–76. http://dx.doi.org/10.1109/temc.2007.902385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Yanghyun, and Chulhun Seo. "Power Electric Module Verification and Optimization Study using Bulk Current Injection Simulation." Journal of the Institute of Electronics and Information Engineers 59, no. 11 (November 30, 2022): 9–15. http://dx.doi.org/10.5573/ieie.2022.59.11.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pignari, S., and F. G. Canavero. "Theoretical assessment of bulk current injection versus radiation." IEEE Transactions on Electromagnetic Compatibility 38, no. 3 (1996): 469–77. http://dx.doi.org/10.1109/15.536077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Král, P., and J. E. Sipe. "Quantum kinetic theory of two-beam current injection in bulk semiconductors." Physical Review B 61, no. 8 (February 15, 2000): 5381–91. http://dx.doi.org/10.1103/physrevb.61.5381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Orlandi, A. "Circuit model for bulk current injection test on shielded coaxial cables." IEEE Transactions on Electromagnetic Compatibility 45, no. 4 (November 2003): 602–15. http://dx.doi.org/10.1109/temc.2003.819060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grassi, Flavia, Giordano Spadacini, Filippo Marliani, and Sergio A. Pignari. "Use of Double Bulk Current Injection for Susceptibility Testing of Avionics." IEEE Transactions on Electromagnetic Compatibility 50, no. 3 (August 2008): 524–35. http://dx.doi.org/10.1109/temc.2008.926810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Miropolsky, S., and S. Frei. "Reproducing system-level bulk current injection test in direct power injection setup for multiple-port DUTs." Advances in Radio Science 11 (July 4, 2013): 177–82. http://dx.doi.org/10.5194/ars-11-177-2013.

Full text
Abstract:
Abstract. Many investigations have been published on the transferability of RF immunity test results between system and IC-levels. The RF signal level at DUT (Device under Test) inputs, i.e. either RF voltage amplitude or RF input current, is used as a reference value for the load on the DUT. Existing approaches analyze the DUT response as a function of the RF signal level at a single input pin, e.g. supply voltage. Sufficient accuracy of such an approach could be shown in several cases, but results are not sufficient as a general solution for complex DUT. This paper proposes both theoretical analysis and practical implementation of a DPI setup, where a disturbance, equivalent to system-level BCI setup, can be delivered to multiple DUT input ports.
APA, Harvard, Vancouver, ISO, and other styles
8

Jalalifar, Majid, and Gyung-Su Byun. "An Ultra-Low Power QVCO Using Current-Coupling and Bulk-Injection Techniques." IEEE Microwave and Wireless Components Letters 24, no. 11 (November 2014): 781–83. http://dx.doi.org/10.1109/lmwc.2014.2348318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grassi, Flavia, and Sergio A. Pignari. "Bulk Current Injection in Twisted Wire Pairs With Not Perfectly Balanced Terminations." IEEE Transactions on Electromagnetic Compatibility 55, no. 6 (December 2013): 1293–301. http://dx.doi.org/10.1109/temc.2013.2255295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kondo, Yosuke, Masato Izumichi, and Osami Wada. "Simulation of Bulk Current Injection Test for Automotive Components Using Electromagnetic Analysis." IEEE Transactions on Electromagnetic Compatibility 60, no. 4 (August 2018): 866–74. http://dx.doi.org/10.1109/temc.2017.2751580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Bulk Current Injection"

1

Zwemke, Thomas. "Anwendung der Stromeinspeisung (Bulk-current-injection) zur Störfestigkeitsprüfung bei unterschiedlichen Prüfbedingungen." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=96206680X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Diop, Mor Sokhna. "Simulation numérique CEM du test BCI (Bulk Current Injection) de la norme aéronautique DO 160." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT045/document.

Full text
Abstract:
Ces travaux de recherche présentent une modélisation/Simulation du Test BCI (Bulk Current Injection) sous contrainte RTCA – DO 160, test de qualification des équipements très contraignant en termes de coûts et délais. Lors de sa réalisation, il présente aussi beaucoup de disparités dont il est parfois difficile d’identifier les sources et de les maîtriser lors du test avec une maquette physique. La simulation présente tout son intérêt dans l’étude de ces phénomènes (qui peuvent avoir un impact non moins significatif sur les résultats de test) mais aussi la répétabilité des essais.Dans un premier temps, une méthode de modélisation du couplage pince d’injection de courant et câbles est établie qui tient compte de l’évolution en fonction de la fréquence du noyau de ferrite du transformateur RF (Pince de courant) et des paramètres linéiques des câbles. Deux modèles sont principalement proposés dans ces travaux :- Un modèle générique, modèle circuit constitué uniquement d’éléments passifs RLC et élaboré (sous SPICE) à partir de la mesure des paramètres S. Ce modèle fait apparaitre la zone de couplage entre pince et câbles au secondaire.- Un modèle magnétique, macro-modèle développé sous le logiciel Flux2D. Les paramètres géométriques du modèle sont renseignés à partir de la connaissance des dimensions de la pince (diamètres intérieur /extérieur, longueur) et des câbles (diamètres/longueurs). Les paramètres physiques de la pince de courant particulièrement la perméabilité magnétique complexe du noyau de ferrite est obtenue à partir de la mesure du coefficient de réflexion au port d’entrée de la pince et extraction en post-traitement.Les validations dans le domaine fréquentiel ont été effectuées avec une bonne corrélation entre simulations et mesures dans la bande BCI [10 kHz – 400 MHz]. Ces résultats obtenus ont permis l'élaboration d'un modèle complet du test BCI (sous l’outil logiciel PAM-CEM/CRIPTE) qui tient compte d’un toron aéronautique complexe et de l’EST (Équipement Sous Test modélisé au laboratoire Ampère de Lyon). Il est constitué du générateur de perturbation (qui fait office de pince d’injection de courant), du modèle du toron de câbles (constitué de paires torsadées blindées, de paires non-blindées, …) et de l’EST (Équipement Sous Test) dans la bande [10 kHz – 400 MHz]. La bonne concordance entre simulations et mesures laisse présager une utilisation par les avionneurs ou équipementiers pour des études paramétriques concernant le test BCI (influence de la disposition des câbles, queue de cochon, longueur toron, disposition de l’EST par rapport au plan de masse, …) et/ou pour une virtualisation dans une phase de pré-qualification des équipements.Mots clés : CEM (Compatibilité ElectroMagnétique), Test BCI (Bulk Current Injection), Modélisation/Simulation, Norme aéronautique DO 160
This work presents a modeling/simulation approach of BCI (Bulk Current Injection) test under constraint RTCA - DO 160. This qualification test of equipment is very constraining in terms of cost and deadline. During the test, there are also many disparities for which it is difficult to identify sources (and control them) with a physical test setup. The simulation is of interest in the study of phenomena (which can have negative impacts on test results) but also the repeatability of tests.First, a method of modeling for the probe/cables coupling is established which takes into account the variation with frequency of the RF transformer (current probe) of the magnetic ferrite core and the linear parameters of cables (skin/ proximity effects). Two models are proposed in this work:- A generic model which is made up solely of passive elements RLC and elaborated (with SPICE software) from the measurement of S-parameters. It shows the coupling zone between probe and cables (secondary winding).- A magnetic macro-model developed with the Flux2D software. Its geometrical parameters are defined from dimensions of the probe (inner/outer diameter, length) and cables (diameters / length). Physical parameters of the current probe, particularly the complex magnetic permeability of the ferrite core, are obtained from measurement of the S-parameter at the input port of the probe and post-treatment extraction.Frequency domain validations were performed with a good correlation between simulations and measurements in the BCI band ([10 kHz - 400 MHz]).These results led to the development of a complete virtual BCI test (with PAM-CEM / CRIPTE software), which take into account an aeronautic complex harness and a DUT (Device Under Test which is modeled at Ampère laboratory). It consists of disturbance generator, harness model (consisting of shielding twisted cables, no shielding cables, etc.) and DUT (Device Under Test) in the band [10 kHz - 400 MHz].The good correlation between simulations and measurements suggests a use by the aircraft manufacturers or equipment manufacturers for parametric studies about BCI test (uncertainties related to cable positions, pigtail, cable length, DUT position with respect to the ground plane, ...) and /or for virtualization in a pre-qualification phase of the equipment.Keywords: EMC (ElectroMagnetic Compatibility), BCI (Bulk Current Injection) test, Modeling/Simulation, DO 160 aeronautic standard
APA, Harvard, Vancouver, ISO, and other styles
3

Miropolskiy, Sergey [Verfasser]. "Simulation-based Prediction of System-Level RF Immunity Test Results for Automotive Open-Loop Bulk Current Injection Tests / Sergey Miropolsky." München : Verlag Dr. Hut, 2020. http://d-nb.info/1220568090/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miropolsky, Sergey [Verfasser]. "Simulation-based Prediction of System-Level RF Immunity Test Results for Automotive Open-Loop Bulk Current Injection Tests / Sergey Miropolsky." München : Verlag Dr. Hut, 2020. http://d-nb.info/1220568090/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Diomande, Karamoko. "Modélisation des essais BCI (Bulk Current Injection) pour l’aide à la pré-qualification des équipements embarqués dans la bande [10 kHz - 400 MHz]." Limoges, 2012. https://aurore.unilim.fr/theses/nxfile/default/e5be390e-5299-4fd7-ab44-ff634d25e228/blobholder:0/2012LIMO4040.pdf.

Full text
Abstract:
La qualification des équipements aéronautiques est une étape industrielle indispensable du fait de l’augmentation des sources de perturbation électromagnétique, des puissances mises en oeuvre mais aussi en raison du nombre et de la complexité croissante des équipements embarqués. Les recherches menées au titre de cette thèse de doctorat s’intéressent à l’élaboration d’outils orientés métiers d’aide à la pré-qualification des équipements. Pour ce faire, nous avons élaboré plusieurs outils qui, utilisés avec des codes basés sur la méthode Ligne de Transmission Multiconductrice (MTL), permettent l’évaluation des niveaux de contraintes conduites dans la bande [10 kHz - 400 MHz] dans un scénario d’injection BCI fondée sur la norme aéronautique DO160. Ainsi, l’outil principal IMEA est utilisé pour caractériser les interfaces des équipements sous test à travers la génération automatique des matrices impédances associées. Les travaux réalisés mettent aussi en évidence l’importance de la prise en compte des incertitudes liées à la quantification des paramètres géométriques et électriques de l’expérimentation BCI. Ainsi, nous montrons que cet incertain est étroitement lié à la complexité des interfaces et influence fortement la modélisation. Nous mettons en évidence les limites fréquentielles de la modélisation déterministe en fonction de cette complexité des interfaces. Dès lors, il devient judicieux d’appréhender la modélisation sous un aspect statistique dans le cas des configurations réelles. Nous évaluons alors les écarts types en fonction de la complexité des interfaces des équipements sous test
Aeronautical equipments qualification is an important industrial step because of the increasing disturbance source number, power levels and due to the high level of on-board equipments complexity. The researches made in this PHD focused on the elaboration of tools allowing, using the Multiconductor Transmission Lines (MTL) method, the evaluation of conducted constraints level in the frequency bandwidth [10 kHz - 400 MHz]. The aim is to help first step of equipments qualification. So the main developed tool IMEA is used to characterize the equipments under test and the load box interfaces by automatically generating their linked impedance matrices. These works highlight the fact that it is important to take into account uncertainties on electrical and geometrical normative BCI test setup parameters characterization. We demonstrate that this characterization error is closely connected to interfaces complexity and have to be integrated in the modelling processes. The deterministic frequency modelling limitations are shown due to the size of interface under test. So, we introduce statistical modelling which is suitable for real equipment test case. This method is applied on a simple interface and real one identified to Enhanced VHF Radioaltimeter. We then compute the standard deviations according to the equipment interfaces complexity
APA, Harvard, Vancouver, ISO, and other styles
6

近藤, 陽介. "電磁界解析を用いた車載電子機器の伝導性EMC設計技術に関する研究." Kyoto University, 2018. http://hdl.handle.net/2433/232040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Davis, Kevin M. "Development of Prototype Light-weight, Carbon Nanotube Based, Broad Band Electromagnetic Shielded Coaxial Cables." University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1588866235370608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Widmer, Johannes. "Charge transport and energy levels in organic semiconductors." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-154918.

Full text
Abstract:
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design. In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor. For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary. The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES). These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices
Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile
APA, Harvard, Vancouver, ISO, and other styles
9

Zwemke, Thomas [Verfasser]. "Anwendung der Stromeinspeisung (Bulk-current-injection) zur Störfestigkeitsprüfung bei unterschiedlichen Prüfbedingungen / von Thomas Zwemke." 2001. http://d-nb.info/96206680X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Najmaie, Ali Sipe John (supervisor). "Optical injection of spin currents in bulk and quantum well semiconductors." 2005. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=371030&T=F.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Bulk Current Injection"

1

Najmaie, Ali. Optical injection of spin currents in bulk and quantum well semiconductors. 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhat, Ravi Dinesh Rama. Interband optical injection and control of electron spin populations and ballistic spin currents in bulk semiconductors. 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bulk Current Injection"

1

Liang, Tao, Yan-zhao Xie, and Zhan-yu Li. "Coupling efficiency analysis of current injection probe for bulk current injection." In 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). IEEE, 2016. http://dx.doi.org/10.1109/apemc.2016.7522981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Patel, Vipul, and Laura Ball. "Infotainment System Immunity Characterization Via Bulk Current Injection." In SAE 2006 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-1509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

DeRoy, Patrick, Andreas Barchanski, Cyrous Rostamzadeh, Christopher Jones, Ryan Frost, Michael Grobosky, Chris Englefield, Flavia Grassi, and Sergio A. Pignari. "Bulk current injection assessment of automotive remote keyless entry systems." In 2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI). IEEE, 2017. http://dx.doi.org/10.1109/isemc.2017.8077950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marliani, Filippo, Giordano Spadacini, and Sergio A. Pignari. "Double bulk current injection test with amplitude and phase control." In 2007 18th International Zurich Symposium on Electromagnetic Compatibility. IEEE, 2007. http://dx.doi.org/10.1109/emczur.2007.4388287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhu, Liangliang, and Shenhui Jing. "MATLAB-based Multi-parameter Optimization of Bulk Current Injection Probe." In 2019 IEEE International Conference on Computation, Communication and Engineering (ICCCE). IEEE, 2019. http://dx.doi.org/10.1109/iccce48422.2019.9010891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Jinlong, Fujie Qiu, and Shiping Ma. "Effects of Current Probe Input Port Impedance during Bulk Current Injection (BCI) Test." In 2021 IEEE 4th International Conference on Electronics Technology (ICET). IEEE, 2021. http://dx.doi.org/10.1109/icet51757.2021.9451055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Study on bulk current injection (BCI) evaluation method of battery pack." In 2017 2nd International Conference on Mechatronics and Information Technology. Francis Academic Press, 2017. http://dx.doi.org/10.25236/icmit.2017.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sultan, Michel F. "Modeling of a Bulk Current Injection Setup for Susceptibility Threshold Measurements." In 1986 IEEE International Symposium on Electromagnetic Compatibility. IEEE, 1986. http://dx.doi.org/10.1109/isemc.1986.7568237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Diop, Mor S., Edith Clavel, Hassan Cheaito, Christian Vollaire, and Enrico Vialardi. "2D modeling of bulk current injection probe and validation with measurements." In 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). IEEE, 2017. http://dx.doi.org/10.23919/ursigass.2017.8105244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leppaaho, Oskari, Frederic Lafon, Bruno Ferreri, Priscila Fernandez-Lopez, Marine Stojanovic, Richard Perdriau, and Mohammed Ramdani. "Including Experimental Aging of Shielded Cables into Bulk Current Injection Simulations." In 2022 International Symposium on Electromagnetic Compatibility – EMC Europe. IEEE, 2022. http://dx.doi.org/10.1109/emceurope51680.2022.9901089.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bulk Current Injection"

1

Frazier, Sam, and Kurt Sebacher. Development of a Bulk Current Injection Direct-Drive System to Test System Level Components with Stress Waveforms that are Encountered During Full Threat Indirect Effects Lightning. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada284160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography