Academic literature on the topic 'Burkholderia phytofirmans'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Burkholderia phytofirmans.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Burkholderia phytofirmans"
Mangmang, Jonathan, Rosalind Deaker, and Gordon Rogers. "Effects of Plant Growth Promoting Rhizobacteria on Seed Germination Characteristics of Tomato and Lettuce." Journal of Tropical Crop Science 1, no. 2 (January 12, 2015): 35–40. http://dx.doi.org/10.29244/jtcs.1.2.35-40.
Full textZúñiga, Ana, María Josefina Poupin, Raúl Donoso, Thomas Ledger, Nicolás Guiliani, Rodrigo A. Gutiérrez, and Bernardo González. "Quorum Sensing and Indole-3-Acetic Acid Degradation Play a Role in Colonization and Plant Growth Promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN." Molecular Plant-Microbe Interactions® 26, no. 5 (May 2013): 546–53. http://dx.doi.org/10.1094/mpmi-10-12-0241-r.
Full textKim, Ho-Bin, Min-Ju Park, Hee-Chan Yang, Dong-Shan An, Hai-Zhu Jin, and Deok-Chun Yang. "Burkholderia ginsengisoli sp. nov., a β-glucosidase-producing bacterium isolated from soil of a ginseng field." International Journal of Systematic and Evolutionary Microbiology 56, no. 11 (November 1, 2006): 2529–33. http://dx.doi.org/10.1099/ijs.0.64387-0.
Full textSessitsch, A., T. Coenye, A. V. Sturz, P. Vandamme, E. Ait Barka, J. F. Salles, J. D. Van Elsas, et al. "Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties." International Journal of Systematic and Evolutionary Microbiology 55, no. 3 (May 1, 2005): 1187–92. http://dx.doi.org/10.1099/ijs.0.63149-0.
Full textAguilar Diaz, Trinidad, Vincenzo Bertolini, Guillermo Carrillo Castañeda, Griselda Karina Guillén Navarro, Luz Verónica García Fajardo, and Ricardo Alberto Castro Chan. "Rizobacterias promotoras de crecimiento en Guarianthe skinneri (Orchidaceae)." Revista de Biología Tropical 66, no. 3 (July 4, 2018): 953. http://dx.doi.org/10.15517/rbt.v66i3.30638.
Full textFernandez, Olivier, Andreas Theocharis, Sophie Bordiec, Regina Feil, Lucile Jacquens, Christophe Clément, Florence Fontaine, and Essaid Ait Barka. "Burkholderia phytofirmans PsJN Acclimates Grapevine to Cold by Modulating Carbohydrate Metabolism." Molecular Plant-Microbe Interactions® 25, no. 4 (April 2012): 496–504. http://dx.doi.org/10.1094/mpmi-09-11-0245.
Full textRusch, Antje, Shaer Islam, Pratixa Savalia, and Jan P. Amend. "Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system." International Journal of Systematic and Evolutionary Microbiology 65, Pt_1 (January 1, 2015): 189–94. http://dx.doi.org/10.1099/ijs.0.064477-0.
Full textYang, Aizheng, Saqib Saleem Akhtar, Qiang Fu, Muhammad Naveed, Shahid Iqbal, Thomas Roitsch, and Sven-Erik Jacobsen. "Burkholderia Phytofirmans PsJN Stimulate Growth and Yield of Quinoa under Salinity Stress." Plants 9, no. 6 (May 26, 2020): 672. http://dx.doi.org/10.3390/plants9060672.
Full textNaveed, Muhammad, M. Baqir Hussain, Zahir A. Zahir, Birgit Mitter, and Angela Sessitsch. "Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN." Plant Growth Regulation 73, no. 2 (November 30, 2013): 121–31. http://dx.doi.org/10.1007/s10725-013-9874-8.
Full textWang, Qi, Shan Gao, Xiang Ma, Xinxin Mao, Linyan He, and Xiafang Sheng. "Distinct mineral weathering effectiveness and metabolic activity between mineral-weathering bacteria Burkholderia metallica F22 and Burkholderia phytofirmans G34." Chemical Geology 489 (June 2018): 38–45. http://dx.doi.org/10.1016/j.chemgeo.2018.05.016.
Full textDissertations / Theses on the topic "Burkholderia phytofirmans"
Wang, Bingxue. "Burkholderia phytofirmans strain PsJN effects on drought resistance, physiological responses and growth of switchgrass." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51358.
Full textPh. D.
Theocharis, Andreas I. "Physiological responses of Burkholderia phytofirmans strain PsJN colonized plantlets of grapevine (Vitis vinifera L. ) to low non-freezing temperatures." Reims, 2010. http://theses.univ-reims.fr/sciences/2010REIMS003.pdf.
Full textBurkholderia phytofirmans souche PsJN a été caractérisée comme une rhizobactérie promotrice de la croissance des plantes (PGPR) capable d’induire la résistance de la vigne contre certains phypathogènes. Pour mieux comprendre l’interaction entre la vigne et la souche PsJN, le profil de l’expression de différents gènes de défenses a été analysé au niveau des feuilles de vitroplants après l’inoculation des racines par la bactérie. Les résultats montrent que la souche PsJN induit la propagation d’un signal systémique, des racines vers les feuilles, caractéristique d’une résistance systémique induite (ISR). L’expression de gènes de défenses a également été suivie au niveau des vitroplants bactérisés 4 semaines avant leur traitement par les basses températures. Les résultats montrent une accumulation précoce et/ou intense des transcrits de ces gènes au niveau des vitroplants bactérisés et soumis aux basses températures selon le phénomène de potentialisation. Cet état de potentialisation permet également aux vitroplants bactérisés d’augmenter la teneur en sucres solubles, amidon et proline après le stress thermique. L’étude des marqueurs de peroxydation membranaire a montré une dégradation plus rapide des aldéhydes, du malondialdéhyde et du peroxyde d’hydrogène, une semaine après le début du stress froid, indiquant ainsi une meilleure adaptation des vitroplants bactérisés aux basses températures. En conclusion, B. Phytofirmans souche PsJN est une PGPR inductrice de l’ISR qui est capable de stimuler les mécanismes de défense de la vigne via un état de potentialisation qui lui permettrait une acclimatation en condition de basses températures
Su, Fan. "Modifications physiologiques induites par Burkholderia phytofirmans chez Arabidopsis thaliana. Applications à la protection contre les stress biotique et abiotique." Thesis, Reims, 2015. http://www.theses.fr/2015REIMS032.
Full textEndophytic PGPR Burkholderia phytofirmans PsJN (Bp) promotes growth of various plants and triggers protection against several environmental stresses. To get more insights into the interaction between plant and Bp, we focused on leaf physiological and metabolic aspects of Arabidopsis thaliana. We also determined the mechanisms involved in the defense of leaves after inoculation of the bacteria followed by an abiotic (cold) or a biotic (Pseudomonas syringae pv. tomato DC3000, Pst) stress. Our results show that the induction of growth promotion of A. thaliana by Bp could be related to the accumulation of primary metabolite levels (amino acids, soluble carbohydrates and vitamins) and to the variation of hormone levels in the leaves. Leaf physiology and metabolism are changed locally and distally by Bp epi- and endophytic colonization. In addition, changes in metabolite levels are more pronounced after a relatively long interaction between plant and bacteria.Moreover, Bp inoculation can also reduce cold injury on the photosynthetic activity by a non-stomatal limitation of photosynthesis and accumulation of photosynthetic pigments. Finally, the local presence of Bp causes a delay in the development of Pst, but only in the early stages of the infection. However, the inoculation with Bp does not protect the photosynthetic apparatus during Pst attack.Thus, our results emphasize that the time of presence of a PGPR and his location in the plant could influence the plant physiology and stress tolerance
Compant, Stéphane Clément Christophe Ait Barka Essaïd. "Interaction entre la vigne, Vitis vinifera L., et une bactérie endophytique, Burkholderia phytofirmans souche PsJN : colonisation, induction de défenses et résistance systémique contre Botrytis cinerea." Reims : S.C.D. de l'Université, 2007. http://scdurca.univ-reims.fr/exl-doc/GED00000953.pdf.
Full textCompant, Stéphane. "Interaction entre la vigne, Vitis vinifera L. , et une bactérie endophytique, Burkholderia phytofirmans souche PsJN : colonisation, induction de défenses et résistance systémique contre Botrytis cinerea." Reims, 2007. http://theses.univ-reims.fr/exl-doc/GED00000953.pdf.
Full textThe interaction between grapevine, Vitis vinifera L. , and an endophytic PGPR, Burkholderia phytofirmans strain PsJN, has been studied in this work. This has allowed to characterize phenomenons of bacterial colonization, some plant defence responses as well as induced systemic resistance (ISR) confering protection against the phytopathogen Botrytis cinerea Pers. Association between grapevine and strain PsJN has been studied, firstly, under gnotobotic conditions by using in vitro plantlets, PsJN wild-type strain or some genetically derivatives (PsJN::gfp2x and PsJN::gusA11). This has allowed to determine epi- and endophytic colonization of grapevine roots by strain PsJN as well as a migration of the bacterium from the endorhiza to the leaves, mediated by the plant transpiration stream via xylem vessels. Grapevine colonization by strain PsJN has been then monitored under non-sterile conditions by using fruiting cuttings, with a special emphasis on putative inflorescence colonization. Results have demonstrated an epi- and an endophytic colonization of the root system by strain PsJN and then, its spreading from the endorhiza to grape inflorescence stalk and to young berries, even in presence of other microorganisms. Plant defence compounds as well as a ISR induced by strain PsJN has been then determined on fruiting cuttings. This has been characterized before its systemic spreading inside plants and with some more sterile conditions. Some early events such as hydrogen peroxide and nitric oxide accumulations as well as phenolic compound synthesis have been characterized at the root level. In addition, preliminary results have demonstrated that strain PsJN induces locally and systemically some PR-encoding genes, dependent of salicylate and/or jasmonate signaling pathways. This has allowed to suggest that this bacterium induces common mechanisms of Systemic Acquired Resistance (SAR) and of ISR phenomenons. These phenomenons allow then a protection of grapevine flowers against infection caused by B. Cinerea Pers
Bordiec, Sophie. "Interaction entre la vigne (Vitis vinifera L. ) et une bactérie PGPR, Burkholderia phytofirmans souche PsJN : mécanismes de défense impliqués lors de la perception de la bactérie par la plante, et lors de l’établissement de la protection contre le froid et la pourriture grise." Reims, 2010. http://theses.univ-reims.fr/sciences/2010REIMS030.pdf.
Full textThe PGPR Burkholderia phytofirmans strain PsJN is able to colonize grapevine roots and to diffuse to leaves, inflorescences and berries. The present work aimed to better characterize this interaction. Firstly, our results showed that interaction between grapevine cell suspensions and this bacterium induced plant defense responses. This demonstrated that strain PsJN was locally recognized by the plant cells, which triggered plant immunity modifications. Interaction between grapevine and strain PsJN also confers to the plant a protection against Botrytis cinerea and cold stress (4°C). In order to better characterize this protection, induced defense responses were analyzed in fully bacterized plantlets submitted to these stress. The bacterium induced a protection against cold stress. This protection is correlated with priming of some stress-related gene expressions, an accumulation of proline, and a faster activation of H2O2 and aldehyde scavenging systems. Moreover, it was demonstrated that B. Phytofirmans strain PsJN protects grapevine against B. Cinerea. Analysis of defense-related gene expressions showed no priming of their expressions. Nevertheless, the observed protection was correlated with a higher phytoalexin accumulation. Thus, this work demonstrated that the beneficial relationship between grapevine and strain PsJN induced a protection against cold exposure (4°C) or B. Cinerea attacks, which was correlated with priming phenomenon. Nevertheless, preliminary studies showed that the presence of strain PsJN locally seemed to be an important factor for resistance establishment, since no protection against these stresses was observed in a systemic context
Goordial, Jacqueline. "Characterization of a Novel Chlorobenzoate Degrading bacterium: Burkholderia phytofirmans OLGA172, Isolated from a Pristine Environment." Thesis, 2010. http://hdl.handle.net/1807/25600.
Full textJin, Soulbee. "Evidence of Mobility in the 3-chlorobenzoate Degradative Genes in a Pristine Soil Isolate, Burkholderia phytofirmans OLGA172." Thesis, 2010. http://hdl.handle.net/1807/32205.
Full textSun, Yili. "The role of ACC deaminase in plant growth promotion by the endophytic bacterium Burkholderia phytofirmans PsJN." Thesis, 2008. http://hdl.handle.net/10012/3832.
Full textBook chapters on the topic "Burkholderia phytofirmans"
Mitter, Birgit, Alexandra Petric, Patrick SG Chain, Friederike Trognitz, Jerzy Nowak, Stéphane Compant, and Angela Sessitsch. "Genome Analysis, Ecology, and Plant Growth Promotion of the Endophyte Burkholderia phytofirmans Strain PsJN." In Molecular Microbial Ecology of the Rhizosphere, 865–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118297674.ch81.
Full text