Academic literature on the topic 'Burst-suppression'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Burst-suppression.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Burst-suppression"

1

Kranaster, Laura, Peter Plum, Carolin Hoyer, Alexander Sartorius, and Heiko Ullrich. "Burst Suppression." Journal of ECT 29, no. 1 (March 2013): 25–28. http://dx.doi.org/10.1097/yct.0b013e3182622c0e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wennberg, Richard A. "Asynchronous burst suppression." Clinical Neurophysiology 111, no. 2 (February 2000): 367. http://dx.doi.org/10.1016/s1388-2457(99)00237-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cendes, F., E. Andermann, and F. Andermann. "Focal suppression-burst." Neurology 47, no. 2 (August 1, 1996): 613. http://dx.doi.org/10.1212/wnl.47.2.613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Urrego, Jose A., Stephen A. Greene, and Manuel J. Rojas. "Brain burst suppression activity." Psychology & Neuroscience 7, no. 4 (June 2014): 531–43. http://dx.doi.org/10.3922/j.psns.2014.4.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Niedermeyer, Ernst. "The Burst-Suppression Electroencephalogram." American Journal of Electroneurodiagnostic Technology 49, no. 4 (December 2009): 333–41. http://dx.doi.org/10.1080/1086508x.2009.11079736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Niedermeyer, E., David L. Sherman, Romergryko J. Geocadin, H. Christian Hansen, and Daniel F. Hanley. "The Burst-Suppression Electroencephalogram." Clinical Electroencephalography 30, no. 3 (July 1999): 99–105. http://dx.doi.org/10.1177/155005949903000305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Litscher, G., and G. Schwarz. "Burst-Suppression-Erkennung beim pEEG - Detection of Burst Suppression in the pEEG." Biomedizinische Technik/Biomedical Engineering 42, no. 1-2 (1997): 12–15. http://dx.doi.org/10.1515/bmte.1997.42.1-2.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chemali, Jessica, ShiNung Ching, Patrick L. Purdon, Ken Solt, and Emery N. Brown. "Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression." Journal of Neural Engineering 10, no. 5 (September 10, 2013): 056017. http://dx.doi.org/10.1088/1741-2560/10/5/056017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wendling, Woodrow W., Bonita M. Shapiro, Frank J. Ammaturo, Dong Chen, Peter S. Pham, Satoshi Furukawa, and Christer Carlsson. "ETOMIDATE FOR ELECTROENCEPHALOGRAPHIC BURST SUPPRESSION." Journal of Neurosurgical Anesthesiology 9, no. 4 (October 1997): 387. http://dx.doi.org/10.1097/00008506-199710000-00049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zeiler, Frederick A., Eva Akoth, Lawrence M. Gillman, and Michael West. "Burst Suppression for ICP Control." Journal of Intensive Care Medicine 32, no. 2 (July 9, 2016): 130–39. http://dx.doi.org/10.1177/0885066615593939.

Full text
Abstract:
Background: The goal of our study was to perform a systematic review of the literature to determine the effect that burst suppression has on intracranial pressure (ICP) control. Methods: All articles from MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library, the International Clinical Trials Registry Platform (inception to January 2015), reference lists of relevant articles, and gray literature were searched. The strength of evidence was adjudicated using both the Oxford and the Grading of Recommendation Assessment Development and Education (GRADE) methodology. Results: Seven articles were considered for review. A total of 108 patients were studied, all receiving burst suppression therapy. Two studies failed to document a decrease in ICP with burst suppression therapy. There were reports of severe hypotension and increased infection rates with barbiturate-based therapy. Etomidate-based suppressive therapy was linked to severe renal dysfunction. Conclusions: There currently exists both Oxford level 2b and GRADE C evidence to support that achieving burst suppression reduces ICP, and also has no effect on ICP, in severe traumatic brain injury. The literature suggests burst suppression therapy may be useful for ICP reduction in certain cases, although these situations are currently unclear. In addition, the impact on patient functional outcome is unclear. Further prospective study is warranted.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Burst-suppression"

1

Ferron, Judy-Fay. "Étude in vivo du "burst-suppression"." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26218/26218.pdf.

Full text
Abstract:
Cette étude résume certains concepts liés à l’anesthésie générale, détaille les mécanismes d’action de l’isoflurane, un anesthésiant volatil, et aborde le phénomène du burst-suppression. Elle vise principalement la compréhension de l’impact de l’isoflurane, à des doses amenant le burst-suppression, sur l’inhibition dans le réseau thalamo-cortical. Nous effectuons des enregistrements intracellulaires de neurones corticaux in vivo et de potentiels de champs locaux à différentes doses d’anesthésiants chez le chat. Conjointement à ces enregistrements, nous appliquons des drogues en iontophorèse en péri-synaptique des neurones enregistrés et nous stimulons les noyaux thalamiques projetant dans les aires corticales enregistrées. Nous suggérons que l’isoflurane amène une diminution de l’inhibition corticale, via une plus grande recapture du glutamate par les glies, ce qui diminue l’activation des interneurones corticaux.
This study summarizes some concepts about general anesthesia, details the mechanisms of action of the volatile anesthetic isoflurane and describes the phenomenon of burst-suppression. It aims at understanding the impact of isoflurane, under doses sufficient to induce burst-suppression, on inhibition in the thalamo-cortical network. We performed intracellular recordings of cortical neurons in vivo and local field potentials under different doses of anesthesia in cats. Additionally, we applied drugs in iontophoresis in the perisynaptic space of the recorded neurons and we stimulated thalamic nuclei projecting to the areas where recordings were performed. We suggest that isoflurane diminishes the cortical inhibition, by an increase of the glutamate uptake by glial cells leading to a diminished activation of cortical interneurons.
Inscrite au Tableau d'honneur de la Faculté des études supérieures
APA, Harvard, Vancouver, ISO, and other styles
2

Ferron, Judy-Fay, and Judy-Fay Ferron. "Étude in vivo du "burst-suppression"." Master's thesis, Université Laval, 2009. http://hdl.handle.net/20.500.11794/21020.

Full text
Abstract:
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2009-2010
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2009-2010
Cette étude résume certains concepts liés à l’anesthésie générale, détaille les mécanismes d’action de l’isoflurane, un anesthésiant volatil, et aborde le phénomène du burst-suppression. Elle vise principalement la compréhension de l’impact de l’isoflurane, à des doses amenant le burst-suppression, sur l’inhibition dans le réseau thalamo-cortical. Nous effectuons des enregistrements intracellulaires de neurones corticaux in vivo et de potentiels de champs locaux à différentes doses d’anesthésiants chez le chat. Conjointement à ces enregistrements, nous appliquons des drogues en iontophorèse en péri-synaptique des neurones enregistrés et nous stimulons les noyaux thalamiques projetant dans les aires corticales enregistrées. Nous suggérons que l’isoflurane amène une diminution de l’inhibition corticale, via une plus grande recapture du glutamate par les glies, ce qui diminue l’activation des interneurones corticaux.
Cette étude résume certains concepts liés à l’anesthésie générale, détaille les mécanismes d’action de l’isoflurane, un anesthésiant volatil, et aborde le phénomène du burst-suppression. Elle vise principalement la compréhension de l’impact de l’isoflurane, à des doses amenant le burst-suppression, sur l’inhibition dans le réseau thalamo-cortical. Nous effectuons des enregistrements intracellulaires de neurones corticaux in vivo et de potentiels de champs locaux à différentes doses d’anesthésiants chez le chat. Conjointement à ces enregistrements, nous appliquons des drogues en iontophorèse en péri-synaptique des neurones enregistrés et nous stimulons les noyaux thalamiques projetant dans les aires corticales enregistrées. Nous suggérons que l’isoflurane amène une diminution de l’inhibition corticale, via une plus grande recapture du glutamate par les glies, ce qui diminue l’activation des interneurones corticaux.
This study summarizes some concepts about general anesthesia, details the mechanisms of action of the volatile anesthetic isoflurane and describes the phenomenon of burst-suppression. It aims at understanding the impact of isoflurane, under doses sufficient to induce burst-suppression, on inhibition in the thalamo-cortical network. We performed intracellular recordings of cortical neurons in vivo and local field potentials under different doses of anesthesia in cats. Additionally, we applied drugs in iontophoresis in the perisynaptic space of the recorded neurons and we stimulated thalamic nuclei projecting to the areas where recordings were performed. We suggest that isoflurane diminishes the cortical inhibition, by an increase of the glutamate uptake by glial cells leading to a diminished activation of cortical interneurons.
This study summarizes some concepts about general anesthesia, details the mechanisms of action of the volatile anesthetic isoflurane and describes the phenomenon of burst-suppression. It aims at understanding the impact of isoflurane, under doses sufficient to induce burst-suppression, on inhibition in the thalamo-cortical network. We performed intracellular recordings of cortical neurons in vivo and local field potentials under different doses of anesthesia in cats. Additionally, we applied drugs in iontophoresis in the perisynaptic space of the recorded neurons and we stimulated thalamic nuclei projecting to the areas where recordings were performed. We suggest that isoflurane diminishes the cortical inhibition, by an increase of the glutamate uptake by glial cells leading to a diminished activation of cortical interneurons.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhan, Tiange. "Investigating EEG burst suppression for coma outcome prediction." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119913.

Full text
Abstract:
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
"June 2018." Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 97-100).
Every year, over 300,000 incidents of cardiac arrest occur in the United States. Of the people who are successfully resuscitated and brought to the hospital, approximately 80% remain unconscious for some amount of time Marion [2009]. Predicting whether or not a patient will wake up from coma, as well as the patient's neurological function after waking up, is an important task in guiding treatment decisions for physicians and family of the patient. This project seeks to improve this prediction process by analyzing features of the patients' EEG recordings during coma with the aim to determine quantitative metrics which are predictive of patients' outcome. Specifically, we focus on the analysis of the similarity of bursts during burst suppression, which has been hypothesized to be linked with poor outcome. Our work confirms that similarity of bursts is indeed linked with poor outcome, and we also find that dynamic time warping gives a viable alternative to the previously used method of cross-correlation as a measure of similarity of bursts, with good predictive power for patient outcome.
by Tiange Zhan.
M. Eng.
APA, Harvard, Vancouver, ISO, and other styles
4

Löfhede, Johan. "Classification of Burst and Suppression in the Neonatal EEG." Licentiate thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-3448.

Full text
Abstract:
The brain requires a continuous supply of oxygen and even a short period ofreduced oxygen supply risks severe and lifelong consequences for theaffected individual. The delivery is a vulnerable period for a baby who mayexperience for example hypoxia (lack of oxygen) that can damage the brain.Babies who experience problems are placed in an intensive care unit wheretheir vital signs are monitored, but there is no reliable way to monitor thebrain directly. Monitoring the brain would provide valuable informationabout the processes going on in it and could influence the treatment and helpto improve the quality of neonatal care. The scope of this project is todevelop methods that eventually can be put together to form a monitoringsystem for the brain that can function as decision-support for the physician incharge of treating the patient.The specific technical problem that is the topic of this thesis is detection ofburst and suppression in the electroencephalogram (EEG) signal. The thesisstarts with a brief description of the brain, with a focus on where the EEGoriginates, what types of activity can be found in this signal and what theymean. The data that have been available for the project are described,followed by the signal processing methods that have been used for preprocessing,and the feature functions that can be used for extracting certaintypes of characteristics from the data are defined. The next section describesclassification methodology and how it can be used for making decisionsbased on combinations of several features extracted from a signal. Theclassification methods Fisher’s Linear Discriminant, Neural Networks andSupport Vector Machines are described and are finally compared with respectto their ability to discriminate between burst and suppression. An experimentwith different combinations of features in the classification has also beencarried out. The results show similar results for the three methods but it canbe seen that the SVM is the best method with respect to handling multiplefeatures.
APA, Harvard, Vancouver, ISO, and other styles
5

Schlumberger, Emilie. "Encephalopathie epileptique precoce avec suppression-burst : contribution a la classification nosologique : a propos d'une serie de 23 observations." Université Louis Pasteur (Strasbourg) (1971-2008), 1990. http://www.theses.fr/1990STR1M213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Smurzynski, Jacek, W. Jedrzejczak, and Krzysztof Blinowska. "Suppression in Otoacoustic Emissions Evoked by Closely-spaced Two-tone Burst Stimuli." Digital Commons @ East Tennessee State University, 2008. https://dc.etsu.edu/etsu-works/2197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sonkajärvi, E. (Eila). "The brain's electrical activity in deep anaesthesia:with special reference to EEG burst-suppression." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526209722.

Full text
Abstract:
Abstract Several anaesthetics are able to induce a burst-suppression (B-S) pattern in the electroencephalogram (EEG) during deep levels of anaesthesia. A burst-suppression pattern consists of alternating high amplitude bursts and periods of suppressed background activity. All monitors measuring the adequacy of anaesthesia recognize the EEG B-S as one criterion. A better understanding of EEG burst-suppression is important in understanding the mechanisms of anaesthesia. The aim of the study was to acquire a more comprehensive understanding of the function of neural pathways during deep anaesthesia. The thesis is comprised of four prospective clinical studies with EEG recordings from 64 patients, and of one experimental study of a porcine model of epilepsy with EEG registrations together with BOLD fMRI during isoflurane anaesthesia (II). In study I, somatosensory cortical evoked responses to median nerve stimulation were studied under sevoflurane anaesthesia at EEG B-S levels. In study III, The EEGs of three Parkinson`s patients were observed to describe the characteristics of B-S during propofol anaesthesia using scalp electrodes and depth electrodes in the subthalamic nucleus. In study IV, EEG topography was observed in 20 healthy children under anaesthesia mask induction with sevoflurane. Twenty male patients were randomized to either controlled hyperventilation or spontaneous breathing groups for anaesthesia mask induction with sevoflurane in study V. EEG alterations in relation to haemodynamic responses were examined in studies IV and V. Somatosensory information reached the cortex even during deep anaesthesia at EEG burst-suppression level. Further processing of these impulses in the cortex was suppressed. The EEG slow wave oscillations were synchronous over the entire cerebral cortex, while spindles and sharp waves were produced by the sensorimotor cortex. The development of focal epileptic activity could be detected as a BOLD signal increase, which preceded the EEG spike activity. The epileptogenic property of sevoflurane used at high concentrations especially during hyperventilation but also during spontaneous breathing together with heart rate increase, was confirmed in healthy children and male. Spike- and polyspike waveforms concentrated in a multifocal manner frontocentrally
Tiivistelmä Useat anestesia-aineet pystyvät aiheuttamaan aivosähkökäyrän (EEG) purskevaimentuman syvän anestesian aikana. Purskevaimentuma koostuu EEG:n suuriamplitudisten purskeiden sekä vaimentuneen taustatoiminnan vaihtelusta. Kaikkien anestesian syvyyttä mittaavien valvontalaitteiden toiminta perustuu osaltaan EEG:n purskevaimentuman tunnistamiseen. Tämän ilmiön parempi tunteminen on tärkeää anestesiamekanismien ymmärtämiseksi. Tutkimuksen päämääränä oli saada kattavampi käsitys hermoratojen toiminnasta syvässä anestesiassa. Väitöskirjatyö koostuu neljästä prospektiivisesta yhteensä 64 potilaan EEG-rekisteröinnit sisältävästä tutkimuksesta sekä yhdestä kokeellisen epilepsiatutkimuksen koe-eläintyöstä, jossa porsailla käytettiin isofluraanianestesiassa sekä EEG-rekisteröintejä sekä että magneettikuvantamista (fMRI) samanaikaisesti (II). Ensimmäisessä osatyössä tutkittiin keskihermon stimulaation aiheuttamia somatosensorisia herätepotentiaaleja aivokuorella EEG:n purskevaimentumatasolla sevofluraanianestesian aikana. Kolmannessa osatyössä selvitettiin propofolianestesian aiheuttamaa EEG:n purskevaimentumaa kolmelta Parkinsonin tautia sairastavalta potilaalta käyttäen sekä pintaelektrodien että subtalamisen aivotumakkeen syväelektrodien rekisteröintejä. Neljännessä osatyössä tutkittiin EEG:n topografiaa 20:llä terveeellä lapsella indusoimalla anestesia sevofluraanilla. Kaksikymmentä miespotilasta nukutettiin sevofluraanilla ja heidät satunnaistettiin joko kontrolloidun hyperventilaation tai spontaanin hengityksen ryhmiin osatyössä V. EEG-muutoksia sekä niiden yhteyttä verenkiertovasteisiin selviteltiin molemmissa osatöissä IV ja V. Omasta kehosta tuleviin tuntoärsykkeisiin liittyvä somatosensorinen informaatio saavutti aivokuoren myös syvässä EEG:n purskevaimentumatasoisessa anestesiassa. Impulssien jatkokäsittely aivokuorella oli kuitenkin estynyt. EEG:n hidasaaltotoiminta oli synkronista koko aivokuoren alueella, sen sijaan unisukkulat ja terävät aallot paikantuivat sensorimotoriselle aivokuorelle. Paikallisen epileptisen toiminnan kehittyminen oli mahdollista havaita jo ennen piikikkäiden EEG:n aaltomuotojen ilmaantumista edeltävänä BOLD-ilmiöön liittyvänä aivoverenkierron lisääntymisenä. Sevofluraanin epileptogeenisyys varmistui erityisesti hyperventilaation, mutta myös spontaanin hengityksen yhteydessä ja näihin liittyi sykkeen nousu sekä terveillä lapsilla että miehillä. Piikkejä ja monipiikkejä käsittävien aaltomuotojen keskittymistä esiintyi otsalohkon keskialueilla
APA, Harvard, Vancouver, ISO, and other styles
8

Mariam, Tasnuva. "Burst-suppression events and fast, large-amplitude, sharp waves in the cortical EEG during deep isoflurane coma." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reinicke, Christine [Verfasser]. "Neuronal networks of burst suppression EEG as revealed by source analysis and renormalized partial directed coherence / Christine Reinicke." Kiel : Universitätsbibliothek Kiel, 2017. http://d-nb.info/1138980374/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Togo, Masaya. "Short “Infraslow” Activity (SISA) With Burst Suppression in Acute Anoxic Encephalopathy: A Rare, Specific Ominous Sign With Acute Posthypoxic Myoclonus or Acute Symptomatic Seizures." Kyoto University, 2019. http://hdl.handle.net/2433/242412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Burst-suppression"

1

Walker, Matthew C. Convulsive and non-convulsive status epilepticus. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199688395.003.0030.

Full text
Abstract:
This chapter describes the definition, epidemiology, classification, diagnosis, and treatment of status epilepticus, concentrating on the roles that electroencephalography (EEG) plays. The term status epilepticus now encompasses a range of conditions from continuous convulsive seizures to clinically subtle non-convulsive seizures, which may manifest as changes in behaviour or personality. EEG is critical for the diagnosis of non-convulsive status epilepticus. Furthermore, the progression of convulsive status epilepticus is to an electromechanical dissociation in which continuous electrical seizure activity may have no or minimal clinical manifestations. In the later stages of status epilepticus, EEG is necessary to monitor treatment, but is confounded by the interpretation of periodic EEG patterns, which represent a continuum from interictal through to ictal activity. Post-status epilepticus EEG patterns have prognostic value: periodic epileptiform discharges, burst suppression patterns (off anaesthesia) and repetitive seizure activity are indicative of a poor long-term prognosis.
APA, Harvard, Vancouver, ISO, and other styles
2

Luginbühl, Martin, and Arvi Yli-Hankala. Assessment of the components of anaesthesia. Edited by Antony R. Wilkes and Jonathan G. Hardman. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199642045.003.0026.

Full text
Abstract:
In modern anaesthesia practice, hypnotic drugs, opioids, and neuromuscular blocking agents (NMBAs) are combined. The introduction of NMBAs in particular substantially increased the risk of awareness and recall during general anaesthesia. Hypnotic drugs such as propofol and volatile anaesthetics act through GABAA receptors and have typical effects on the electroencephalogram (EEG). During increasing concentrations of these pharmaceuticals, the EEG desynchronization is followed by gradual synchronization, slowing frequency, and increasing amplitude of EEG, thereafter EEG suppressions (burst suppression), and, finally, isoelectric EEG. Hypnotic depth monitors such as the Bispectral Index™, Entropy™, and Narcotrend® are based on quantitative EEG analysis and translate these changes into numbers between 100 and 0. Although they are good predictors of wakefulness and deep anaesthesia, their usefulness in prevention of awareness and recall has been challenged, especially when inhalation anaesthetics are used. External and patient-related artifacts such as epileptiform discharges and frontal electromyography (EMG) affect the signal so their readings need careful interpretation. Their use is recommended in patients at increased risk of awareness and recall and in patients under total intravenous anaesthesia. Monitors of analgesia and nociception are not established in clinical practice but mostly remain experimental although some are commercially available. Some use EEG changes induced by noxious stimulation (EEG arousal) or quantify the frontal EMG in relation to EEG, while others are based on the sympathoadrenergic stress response. Various other devices are also discussed in this chapter.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Burst-suppression"

1

Kapucu, Fikret Emre, T. Lipping, V. Jäntti, and A. M. Huotari. "Phase Coupling in EEG Burst Suppression during Propofol Anesthesia." In IFMBE Proceedings, 260–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-69367-3_70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cusenza, M., A. Accardo, and A. Orsini. "EEG fractal dimension combined with burst suppression ratio as a measure of depth of anesthesia." In IFMBE Proceedings, 497–500. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

de Tribolet, N., and P. Ravussin. "Total Intravenous Anesthesia Using Propofol for Burst Suppression in Cerebral Aneurysm Surgery: Preliminary Report of 44 Cases." In New Trends in Management of Cerebro-Vascular Malformations, 174–75. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-9330-3_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Burst/Suppression." In Clinical Electrophysiology, 26–27. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444322972.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carrascosa-Romero, María Carmen, and Carlos De Cabo De La Vega. "GABAergic Interneurons in Severe Early Epileptic Encephalopathy with a Suppression-Burst Pattern: A Continuum of Pathology." In Epileptology - The Modern State of Science. InTech, 2016. http://dx.doi.org/10.5772/64458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Magee, Patrick, and Mark Tooley. "Monitoring Depth of Anaesthesia." In The Physics, Clinical Measurement and Equipment of Anaesthetic Practice for the FRCA. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199595150.003.0023.

Full text
Abstract:
There are, and have been, many monitors designed to monitor depth of anaesthesia and to give an indication of awareness during surgery, which use electrical signals obtained from the human body. Some have been designed as just research devices, some have been available commercially, but have been withdrawn, and some are still available. Most, but not all, are based on the spontaneous EEG and the AER. Some have been designed to use properties of the ECG. Although useful, all of the discussed monitors have some shortcomings, and not all are 100% sensitive and specific to discriminate between consciousness and unconsciousness, and none correlate exactly with clinical states and levels of anaesthesia. The design of the commercial monitor, the Cerebral Function Monitor (CFM) was based on simple time domain measures already discussed [Maynard et al. 1969]. The CFM took the EEG from a single pair of parietal electrodes. The signal was amplified and passed through a band-pass filter and differentiator, which had the effect of accentuating the gain of the higher end of the 2–15 Hz pass band. The output of this specialised filter was integrated to produce a voltage output, which varied with time. It was plotted on a logarithmic scale. The trace on the paper gave an indication of the power of the EEG and the width of the line gave an indication of the signal’s variability. A schematic of an example of a CFM trace is shown in Figure 19.1(a). The CFM although useful did have its problems [Sechzer 1977]. When used to monitor depth of anaesthesia, the machine was shown to be unreliable, especially when using inhalational agents. The response is biphasic, as has already been discussed in chapter 18. Also burst suppression, as already discussed, is smoothed out by the action of the filtering in the CFM, so effectively the burst suppression can artificially elevate the readings producing a paradoxical rise in cerebral function [Sinha 2007] The machine was further developed into the Cerebral Function Analysing Monitor (CFAM)[Maynard 1984]. This machine produced two chart recorder outputs, as shown in Figure 19.1. There was a chart similar to the CFM trace, and also a chart that produced frequency domain data consisting of the EEG displayed as traditional EEG frequency bands.
APA, Harvard, Vancouver, ISO, and other styles
7

Dik, Olga E., and Alexander D. Nozdrachev. "Chapter 7. Mechanisms of antinoceptive response of a sensory neuron." In Mechanisms of changes in dynamical complexity of physiological signal patterns, 132–75. St. Petersburg State University, 2019. http://dx.doi.org/10.21638/11701/9785288059322.08.

Full text
Abstract:
The seventh chapter is devoted to the determination of the mechanisms of changes in the dynamic complexity of the patterns of impulse activity of nociceptors. As a result of the study of the mechanisms of changes in the dynamic complexity of the patterns of impulse activity of nociceptive neurons when the antinociceptive response occurs, it was found that the change in this complexity is based on rearrangements in the temporal organization of patterns due to bifurcations of stationary states and limit cycles, leading to the appearance of two types of burst activity. The mechanism of correction of the damaging pain effect is based on the molecular mechanism of suppression of this activity associated with the modification of the activation gating structure of slow sodium NaV1.8 channels under the action of comenic acid, a drug substance of the non-opioid analgesic “Anoceptin”. The methodology for analyzing the considered molecular mechanism can be used in the search for new pharmacological targets for further research related to the development of innovative pharmacological strategies in the correction of pathological conditions.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Burst-suppression"

1

Wang, Yunhua, and Rajeev Agarwal. "Automatic Detection of Burst Suppression." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4352350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Jaeyun, Woo-Jin Song, and Hyun-Chool Shin. "EEG binarization for burst suppression segmentation." In 2018 International Conference on Information Networking (ICOIN). IEEE, 2018. http://dx.doi.org/10.1109/icoin.2018.8343235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Dandan, Haiyan Ding, Datian Ye, Xinlin Hou, Yunfeng Liu, and Congle Zhou. "Burst Suppression EEG in Neonatal Convulsions." In 2010 International Conference on Biomedical Engineering and Computer Science (ICBECS). IEEE, 2010. http://dx.doi.org/10.1109/icbecs.2010.5462478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Evangelou, Simos A., David J. N. Limebeer, and Maria Tomas-Rodriguez. "Suppression of burst oscillations in racing motorcycles." In 2010 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010. http://dx.doi.org/10.1109/cdc.2010.5717690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaszubowska-Anandarajah, A., R. Oberland, E. Bravi, A. Surpin, O. Aharoni, U. Ghera, R. Giller, et al. "EDFA transient suppression in optical burst switching systems." In 2012 14th International Conference on Transparent Optical Networks (ICTON). IEEE, 2012. http://dx.doi.org/10.1109/icton.2012.6254384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chemali, J. J., K. F. K. Wong, K. Solt, and E. N. Brown. "A state-space model of the burst suppression ratio." In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6090354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jafarian, Amirhossein, Dean R. Freestone, Dragan Nesic, and David B. Grayden. "Identification of A Neural Mass Model of Burst Suppression." In 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019. http://dx.doi.org/10.1109/embc.2019.8856998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prerau, Michael J., and Patrick L. Purdon. "A probabilistic framework for time-frequency detection of burst suppression." In 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2013. http://dx.doi.org/10.1109/ner.2013.6696008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chakravarty, Sourish, Taylor E. Baum, Jingzhi An, Pegah Kahali, and Emery N. Brown. "A hidden semi-Markov model for estimating burst suppression EEG." In 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019. http://dx.doi.org/10.1109/embc.2019.8856802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wong, Chi Wai, and Kenichi Rinoie. "Bubble Burst Control Using Smart Structure Sensor Actuators for Stall Suppression." In 39th AIAA Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-4277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography