Academic literature on the topic 'Butanol'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Butanol.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Butanol"
Ahmed M.Abbas and Zainab Abbas Al-Dulaimy. "Some Thermodynmic Properties of binary Mixtures of Alcohol isomers and Sulfolane at 298.15K." journal of the college of basic education 22, no. 96 (December 27, 2022): 25–36. http://dx.doi.org/10.35950/cbej.v22i96.9012.
Full textFu, Shuai, Dan Li, Tinghao Liu, Lijuan Liu, Huaqing Yang, and Changwei Hu. "Mechanism Insight into Catalytic Performance of Ni12P5 over Ni2P toward the Catalytic Deoxygenation of Butyric Acid." Catalysts 12, no. 5 (May 21, 2022): 569. http://dx.doi.org/10.3390/catal12050569.
Full textSekhar, M. Chandra, Dereje Wakgari, Dunkana Negussa Kenie, and K. Chandrasekhar Reddy. "Study of Intermolecular Interactions between 2-Chloroaniline Isomeric Butanol Complexes in Gas Phase by Using DFT, NBO, QTAIM and RDG Analysis." Asian Journal of Chemistry 31, no. 3 (2019): 538–44. http://dx.doi.org/10.14233/ajchem.2019.21651.
Full textRiggio, Roque, Hector E. Martinez, Norma Z. De Salas, Miriam D. De Toigo, and Juan F. Ramos. "Excess properties for cyclohexanone + butanols at 298.15 K." Canadian Journal of Chemistry 73, no. 8 (August 1, 1995): 1274–77. http://dx.doi.org/10.1139/v95-156.
Full textRiggio, Roque, Juan F. Ramos, and Hector E. Martinez. "Excess properties for acetophenone + butanols at 298.15 K." Canadian Journal of Chemistry 79, no. 1 (January 1, 2001): 50–53. http://dx.doi.org/10.1139/v00-173.
Full textUeda, Yoshinori, Wei Zhao, Hideshi Ihara, Yoshihiro Imahori, Eleni Tsantili, Sumithra Wendakoon, Alan Chambers, and Jinhe Bai. "Functional Characteristics of Aldehyde Dehydrogenase and Its Involvement in Aromatic Volatile Biosynthesis in Postharvest Banana Ripening." Foods 11, no. 3 (January 26, 2022): 347. http://dx.doi.org/10.3390/foods11030347.
Full textBrei, Volodymyr. "OXIDATION OF ALCOHOLS OVER CERIUM-OXIDE CATALYST: CORRELATION BETWEEN THE ACTIVATION ENERGY OF THE REACTION AND THE CHEMICAL SHIFT δ (R13 COH)." Ukrainian Chemistry Journal 85, no. 8 (August 15, 2019): 66–72. http://dx.doi.org/10.33609/0041-6045.85.8.2019.66-72.
Full textTsuchikawa, Satoru, and H. W. Siesler. "Near-Infrared Spectroscopic Monitoring of the Diffusion Process of Deuterium-Labeled Molecules in Wood. Part I: Softwood." Applied Spectroscopy 57, no. 6 (June 2003): 667–74. http://dx.doi.org/10.1366/000370203322005364.
Full textTanaka, Hiroyuki, Teruaki Muramatsu, and Masahiro Kato. "Isobaric vapor-liquid equilibria for three binary systems of 2-butanone with 3-methyl-1-butanol, 1-butanol, or 2-butanol." Journal of Chemical & Engineering Data 37, no. 2 (April 1992): 164–66. http://dx.doi.org/10.1021/je00006a007.
Full textMOHAMMED, Bushra Sumayya, Poornesh SUTRAMAY, Samreen AHMADI, Salma FATHIMA, Srinitha ASKANI, Pruthvi Charan JAMBIGA, Ramya THUMMA, Sunitha Bai DHARAVATH, and Shasthree TADURI. "PHYTOCHEMICAL SCREENING AND ANTI-BACTERIAL ACTIVITY OF ERYTHRINA VARIEGATA LEAF, STEM AND ROOT EXTRACTS." Journal of Plant Development 30, no. 1 (2023): 77–87. http://dx.doi.org/10.47743/jpd.2023.30.1.927.
Full textDissertations / Theses on the topic "Butanol"
Baral, Nawa Raj. "Techno-economic Analysis of Butanol Production through Acetone-Butanol-Ethanol Fermentation." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480501106426567.
Full textOutram, Victoria. "In situ product recovery of butanol from the acetone butanol ethanol fermentation." Thesis, University of Newcastle upon Tyne, 2018. http://hdl.handle.net/10443/4152.
Full textAleksic, Snezana. "Butanol Production from Biomass." Connect to resource online, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1242762960.
Full textDong, Jie. "Butanol Production from Lignocellulosic Biomass and Agriculture Residues by Acetone-Butanol-Ethanol Fermentation." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1404312445.
Full textSantos, Graciete Mary dos 1982. "Efeito da vinhaça na produção biológica de álcoois e ácidos orgânicos voláteis por meio de consórcio microbiano." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/304712.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola
Made available in DSpace on 2018-08-30T07:46:17Z (GMT). No. of bitstreams: 1 Santos_GracieteMarydos_M.pdf: 3271887 bytes, checksum: 539f68130eb11eac441d2bca07c2e7da (MD5) Previous issue date: 2015
Resumo: No Brasil, o efluente industrial produzido em maior quantidade é a vinhaça, caracterizada por altos níveis de ácidos orgânicos, fósforo, cálcio, potássio e magnésio. O reaproveitamento energético da vinhaça mostra-se como uma alternativa interessante para produção de biocombustíveis ou sub-produtos. Este trabalho avaliou o potencial da vinhaça como fonte de substrato e nutrientes para produção de álcoois e ácidos orgânicos voláteis (AOV) por meio fermentação em batelada utilizando consórcio anaeróbio (lodo de bovinocultura) pré-tratados com choque térmico (TT) e choque ácido-térmico (AT). Foram utilizados dois meios diferentes, de sacarose (S) e de vinhaça (V), sendo a sacarose a principal fonte de carbono. A vinhaça provou ser uma excelente fonte de nutrientes para os microrganismos envolvidos na fermentação butírica, uma vez que a adição de vinhaça melhora significativamente a produção de ácido butírico em comparação com meio de cultura sintético. As máximas concentrações de ácido butírico, iso-butírico e acético foram de 14,13 ± 0,77 g L-1 na amostra ATV B3; 10,34 ± 0,43 g L-1na amostra ATV B2 e; 4,13 ± 0,06 g L-1na amostra TTV B3, respectivamente. O rendimento dos AOV acético, iso-butírico e butírico e de etanol foi mais elevado nas amostras ATV B3 e TTV B3, atingindo valores máximos de 0,14; 0,28; 0,69 e; 0,26 g g-1 carboidratos totais, respectivamente. Não foram encontradas diferenças significativas entre métodos de pré-tratamento e enriquecimento de inóculo, AT e TT no que diz respeito a produção de ácido butírico e etanol. Em escala maior, operando em reator de 1,5 L, a fermentação de vinhaça bruta e melado de cana por consórcio microbiano AU mostrou potencial para produção de solventes como o butanol, uma vez que concentrações elevadas de ácido butírico foram produzidas, com concentração máxima, rendimento e produtividade de 13,85 g L-1; 0,64 g g-1 e; 199,98 mg L h-1, respectivamente. A caracterização microbiológica, pirosequenciamento, revelou a ocorrência em maior abundância de bactérias do gênero Clostridium, principalmente no consórcio AU e Lactobacillus mais abundante nos consórcios TT e AT. Foi identificada uma espécie conhecida pela produção de butanol, o C. pasteurianum no consórcio AU. Contudo, o presente trabalho representa um passo importante no desenvolvimento de um processo industrial para reutilização da vinhaça. A exploração de novos microrganismos e estudo dos fatores que interferem no processo de fermentação como pH, temperatura, nutrientes, densidade da cultura, cargas aplicadas e características do substrato, são fundamentais para o entendimento dos efeitos sinérgicos e antagônicos da associação de culturas
Abstract: In Brazil, industrial waste produced in the greatest amount is vinasse, characterized by high levels of organic acids, phosphorus, calcium, potassium and magnesium. The energy reuse of vinasse shows up as an interesting alternative for the production of biofuels or byproducts. This study evaluated the potential of vinasse as a source of substrate and nutrients for the production of alcohols and volatile fatty acids (VFA) through fermentation batch using anaerobic consortium (cattle sludge) pre-treated with heat shock (TT) and acid-shock thermal (AT). We used two different media, sucrose (S) and vinasse (V), with sucrose being the main source of carbon. The vinasse proved to be an excellent source of nutrients for microorganisms involved in the butyric fermentation, since the addition of vinasse significantly improves the production of butyric acid as compared to synthetic culture medium. The maximum concentrations of butyric acid, iso-butyric and acetic acid were 14.13 ± 0.77 g L-1 in the sample ATV B3; 10.34 ± 0.43 g L-1 in ATV B2 and 4.13 ± 0.06 g L-1 in TTV B3, respectively. The yield of acetate, iso-butyric acid, butyrate and ethanol was higher in ATV B3 and TTV B3 samples, reaching maximum values of 0.14; 0.28; And 0.69; 0.26 g g-1 total carbohydrates, respectively. There were no significant differences between pretreatment and enrichment methods inoculum, TA and TT as regards the production of butyric acid and ethanol. On a larger scale, operating at 1.5 L reactor, crude fermentation vinasse and molasses of sugar cane from AU microbial consortium showed potential for producing butanol as the solvent, since high concentrations of butyric acid was produced, with maximum concentration, yield and productivity of 13.85 g L-1 0.64 g g-1 and 199.98 mg h L-1, respectively. Microbiological characterization, pyrosequencing, revealed the occurrence in greater abundance of the genus Clostridium bacteria, particularly the AU and most abundant Lactobacillus in consortium TT and AT consortia. C. pasteurianum, known for the production of butanol was identified in AU consortium. However, this study represents an important step in the development of an industrial process for reuse of vinasse. The exploration of new microorganisms and study of the factors that interfere in fermentation process such as pH, temperature, nutrients, cultures, applied loads and characteristics of the substrate are critical for understanding the synergistic and antagonistic effects of culture associatio
Mestrado
Agua e Solo
Mestra em Engenharia Agrícola
Lu, Congcong. "Butanol Production from Lignocellulosic Feedstocks by Acetone-Butanol-Ethanol Fermentation with Integrated Product Recovery." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306823156.
Full textMarkskog, Linda. "Investigation of butanol tolerance in Saccharomyces cerevisiae and of genes linked to butanol tolerance." Thesis, Linköpings universitet, Biologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138357.
Full textTeixeira, Miguel Monteiro. "Mixotrophic fermentation for butanol production." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22401.
Full textThe current economy is still dominated by the fossil-based chemical industry that represents a nefarious contribution to the environment. To avoid the permanence of this industry, the necessity to optimize fermentations to cost-competitive processes started to arise. It is known that heterotrophic organisms can transform organic carbon into fermentation products with great economic interest. However, for most fermentations where sugars are used as carbon source, over one-third of the sugar carbon is lost to CO2. The CO2 evolves from the Embden-Meyerhof-Parnas (EMP) glycolysis decarboxylation reaction that converts pyruvate into acetyl-CoA. To overcome this carbon loss, one route to recapture evolved CO2 using the Wood-Ljungdahl carbon fixation pathway (WLP), in a process called anaerobic, non-photosynthetic (ANP) mixotrophy, was reviewed in the present work. The ANP mixotrophy is defined as the concurrent utilization of organic (for example, sugars) and inorganic (for example, CO2) substrates in a single organism. Comparing with the EMP glycolysis, this metabolism allows higher productivities and lower CO2 emissions during fermentations. With the purpose of increasing the biobutanol productivity in anaerobic ABE fermentations performed by Clostridium beijerickii NCIMB 8052, a genetic engineering strategy was designed to enable the ANP mixotrophic metabolism in this strain. Through a set of different fermentations and bioinformatic researches, it was concluded that Clostridium beijerickii NCIMB 8052 is not naturally capable of performing the ANP mixotrophic metabolism due to a group of genes, considered as essential for the WLP, that were found to be missing in this strain. Several cloning techniques were used to insert and overexpress, via plasmid, these genes into Clostridium beijerickii NCIMB 8052. At the end, none of the genes were successfully transformed.
Os organismos heterotróficos têm a capacidade de metabolizar carbono orgânico para gerar produtos de fermentação indispensáveis para a sociedade atual. Numa economia ainda dominada pela industria química à base de recursos fósseis, a urgência em otimizar e viabilizar os processos fermentativos é cada vez mais significativa. Em fermentações onde os açucares são utilizados como fonte principal de carbono, sabe-se que cerca de um terço do carbono proveniente do açúcar é perdido na forma de CO2. Este fenómeno deve-se a uma reação de descarboxilação, durante a via glicolítica Embden-Meyerhof-Parnas (EMP), responsável por converter o piruvato em acetil-CoA. Numa tentativa de colmatar estas perdas de carbono, o presente trabalho revê uma via alternativa para recapturar o CO2 desenvolvido usando o metabolismo de fixação de CO2 Wood-Ljungdahl (WLP), num processo chamado fermentação mixotrófica anaeróbia, não-fotossintética (ANP). O mixotrofismo ANP, definido como a utilização simultânea de substratos orgânicos (como açucares) e inorgânicos (como CO2) por um único organismo, evita as perdas de carbono, aumentando os rendimentos de produção e reduzindo as emissões de CO2 durante as fermentações. O objetivo deste trabalho foi o de tentar aumentar a produtividade de biobutanol em fermentações anaeróbias Acetona-Butanol-Etanol (ABE) realizadas pela bactéria Clostridium beijerickii NCIMB 8052. Para isso delineou-se uma estratégia de engenharia genética para ativar o metabolismo ANP mixotrófico na estirpe em causa. Através de um conjunto de diferentes fermentações experimentais e de diferentes análises bioinformáticas, concluiu-se que C. beijerickii NCIMB 8052 não é capaz de realizar o metabolismo mixotrófico ANP de forma natural e que isso se deve à ausência, no seu genoma, de um grupo de genes considerados essenciais para o funcionamento do metabolismo de WLP. Usaram-se várias técnicas de clonagem na tentativa de inserir os respetivos genes, via plasmídeo, em C. beijerickii NCIMB 8052, mas não foram obtidos os resultados esperados. Comprovou-se que nenhum dos genes de interesse foi clonado com sucesso
Chung, Gregory. "Planar laser-induced fluorescence of nitric oxide in isomeric butanol and butane stagnation flames." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107877.
Full textLes efforts significatifs pour réduire la dépendance globale aux hydrocarbures ont entraîné le développement de biocarburants comme alternative. Malgré leur importance accrue, les biocarburants a base d'alcool nécessitent toujours une étude fondamentale, particulièrement en ce qui à trait aux émissions d'oxydes d'azote (NOx). La fluorescence planaire induite par un laser (PLIF) est utilisée pour obtenir les profils de production d'oxyde nitrique (NO) à partir de flammes de stagnation pré-mélangées de n- et iso-butanol ainsi que de nand iso-butane pour mettre en contexte les carburants alcalins. Les mesures PLIF sont corrigées par un traitement ultérieur et quantifiées par une méthode de calibration. La vélocimétrie particule-image (PIV) est utilisée pour caractériser la vitesse de la ligne-médiane de l'écoulement expérimental qui est ensuite utilisée pour les simulations de cinétique chimique de la flamme expérimentale. Les simulations sont générées pour les flammes de n-butanol et de n-butane et sont combinée à un sous-mécanisme pour le NOx.Même si les deux modèles semblent bien prédire la production de NO dans la région après-flamme, il existe une disparité dans la production de NO dans la région de la flamme, ce qui suggère que les mécanismes cinétiques-chimiques requièrent amélioration. Le n-butanol démontre un piètre accord pour tous les ratios d'équivalence testés. Le n-butane, pour sa part, est imprécis pour le cas riche. Cette étude fourni de nouvelles données expérimentales qui aident à l'amélioration des modèles cinétiques-chimiques du butanol et du butane. Cette étude tend aussi à valider le sous-mécanisme du NOX pour de combustibles à chaînes plus longues.
Natalense, Júlio César. "Prospecção tecnológica do biobutanol no contexto brasileiro de biocombustíveis." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/85/85131/tde-13082013-091628/.
Full textTwo examples of renewable fuels in use today are bioethanol and biodiesel. New alternatives on biofuels include cellulosic ethanol and biobutanol. They present several advantages over the conventional biofuels, either in terms of better productivity and optimization of the use of biomass, as well as higher performance attributes. The research and industrial interest has grown on biobutanol, with improvements on the traditional ABE fermentation process, on the development of new microorganism strains to improve yield, and separation techniques to isolate the solvent. Companies have announced plans for the introduction of biobutanol in blends with gasoline in the north-american market. The interest on biobutanol as a fuel in Brazil is still limited, since the infrastructure is tailored to bioethanol already, and most of the car fleet uses engines adapted to this fuel. Sugar cane can be used as a potential feedstock in the butanol production process, enabling Brazil to become a key exporter to supply biobutanol to other countries. For the short future biobutanol will be produced in Brazil to replace petro-butanol as a solvent in industrial applications only, or for the export market as a fuel. This work proposes the use of technology roadmapping as a technique for long term strategic planning of the biobutanol development, aligning long term goals with the resources, funding, and priorities to fulfill the needs in the development process.
Books on the topic "Butanol"
Organisation, International Labour, International Program on Chemical Safety., United Nations Environment Programme, World Health Organization, and WHO Task Group on Environmental Health Criteria for Butanols (1985 : Geneva, Switzerland), eds. Butanols, four isomers: 1-butanol, 2-butanol, tert-butanol, isobutanol. Geneva: World Health Organization, 1987.
Find full textRichard, Irwin. NTP summary report on the metabolism, disposition, and toxicity of 1, 4-butanediol (cas no. 110-63-4). Research Triangle Park, NC: U,S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Toxicology Program, 1996.
Find full textSingh, Anita, Richa Kothari, Somvir Bajar, and Vineet Veer Tyagi. Sustainable Butanol Biofuels. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165408.
Full textInternational Program on Chemical Safety., International Labour Organisation, and United Nations Environment Programme, eds. tert-Butanol health and safety guide. Geneva: World Health Organization, 1987.
Find full textInternational Program on Chemical Safety. tert-Butanol health and safety guide. Geneva: World Health Organization, 1987.
Find full textInternational Program on Chemical Safety., International Labour Organisation, and United Nations Environment Programme, eds. 2-Butanol health and safety guide. Geneva: World Health Organization, 1987.
Find full textInternational Program on Chemical Safety., International Labour Organisation, and United Nations Environment Programme, eds. 1-Butanol health and safety guide. Geneva: World Health Organization, 1987.
Find full textUnited States. Dept. of Transportation. Office of Hazardous Materials Safety. and John A. Volpe National Transportation Systems Center (U.S.), eds. Truck transport of hazardous chemicals, 1-Butanol. Cambridge, MA: U.S. Dept. of Transportation, Research and Special Programs Administration, John A. Volpe National Transportation Systems Center, 1995.
Find full textWayman, Morris. Develop a novel biomass catalysed pretreatment and hydrolysis for cosolvent fuel butanol and ethanol fermentation. Toronto: Morris Wayman Limited, 1987.
Find full textOrganisation, International Labour, United Nations Environment Programme, and World Health Organization, eds. Isobutanol health and safety guide. Geneva: World Health Organization, 1987.
Find full textBook chapters on the topic "Butanol"
Ahmad, Shamshad, Anu Bharti, Mohd Islahul Haq, and Richa Kothari. "Bioeconomy: Current Status and Challenges." In Sustainable Butanol Biofuels, 57–75. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165408-3.
Full textBajar, Somvir, Anita Singh, Neha Yadav, Kavita Yadav, Anjali Prajapati, and Neeta Rani. "Current Status and Future Prospective on Different Generations of Biofuel Production." In Sustainable Butanol Biofuels, 1–28. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165408-1.
Full textKumari, Sonika, Pankaj Kumar, Veeramuthu Ashokkumar, Richa Kothari, Sheetal Rani, Jogendra Singh, and Vinod Kumar. "Butanol Biofuels: Current Status and Challenges." In Sustainable Butanol Biofuels, 76–92. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165408-4.
Full textKothari, Richa, Kajol Goria, Anu Bharti, Har Mohan Singh, Vinayak V. Pathak, Ashish Pathak, and V. V. Tyagi. "Sustainable Development Goals (SDGs-7) for Bioeconomy with Bioenergy Sector." In Sustainable Butanol Biofuels, 29–56. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165408-2.
Full textSingh, Renu, Sibananda Darjee, Bharti Rohtagi, Ashish Khandelwal, Sapna Langyan, Amit Kumar Singh, Manoj Shrivastava, Anu Bharti, Har Mohan Singh, and Sujata Kundan. "Biobutanol Production Using Nanotechnology: A Way Forward." In Sustainable Butanol Biofuels, 241–57. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165408-12.
Full textAnita and Narendra Kumar. "Bio-butanol: Potential Feedstocks and Production Techniques." In Sustainable Butanol Biofuels, 146–63. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165408-7.
Full textNalawade, Ketaki, Vrushali Kadam, Shuvashish Behera, Kakasaheb Konde, and Sanjay Patil. "Mechanisms and Applications of Biofuel: Acetone-Butanol-Ethanol Fermentation." In Sustainable Butanol Biofuels, 121–45. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165408-6.
Full textKaur, Japleen, Zaheer Ud Din Sheikh, Anita Singh, Somvir Bajar, and Meenakshi Suhag. "Genetic Engineering in Butanol Production: Recent Trends." In Sustainable Butanol Biofuels, 221–40. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165408-11.
Full textBhatnagar, Kirti, Neha Jaiswal, Anju Patel, Pankaj Kumar Srivastava, and Arti Devi. "Biomaterial As Feedstocks for Butanol Biofuel: Lignocellulosic Biomass." In Sustainable Butanol Biofuels, 164–81. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165408-8.
Full textDevi, Arti, Anita Singh, Somvir Bajar, and Deepak Pant. "Pretreatment and Hydrolysis of Biomaterials for Butanol Production." In Sustainable Butanol Biofuels, 199–220. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165408-10.
Full textConference papers on the topic "Butanol"
Morozova, Tatyana, and Sergey Semyonov. "Acetone-butanol fermentation of lignocellulosic hydrolysates for the butanol production." In PROSPECTS OF FUNDAMENTAL SCIENCES DEVELOPMENT (PFSD-2017): Proceedings of the XIV International Conference of Students and Young Scientists. Author(s), 2017. http://dx.doi.org/10.1063/1.5009834.
Full textAlemahdi, Nika, Antonio Garcia, and Martin Tuner. "ɸ-Sensitivity Evaluation of n-Butanol and Iso-Butanol Blends with Surrogate Gasoline." In 16th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-24-0089.
Full textKumar, Vasu, Dhruv Gupta, Mohd Waqar Naseer Siddiquee, Aksh Nagpal, and Naveen Kumar. "Performance and Emission Characteristics of n-Butanol and Iso-Butanol Diesel Blend Comparison." In SAE 2015 Commercial Vehicle Engineering Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2015. http://dx.doi.org/10.4271/2015-01-2819.
Full textXu, Yuhao, and C. Thomas Avedisian. "THE BURNING CHARACTERISTICS OF N-BUTANOL, GASOLINE, AND N-BUTANOL GASOLINE MIXTURE DROPLETS." In First Thermal and Fluids Engineering Summer Conference. Connecticut: Begellhouse, 2016. http://dx.doi.org/10.1615/tfesc1.cbf.012802.
Full textSoloiu, Valentin, Marvin Duggan, Jabeous Weaver, Brian Vlcek, Spencer Harp, and Gustavo Molina. "RCCI Operation With PFI of n-Butanol and DI of Biodiesel Compared With DI of Binary Mixtures of n-Butanol and Biodiesel." In ASME 2013 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icef2013-19245.
Full textYadav, Jaykumar, and Asvathanarayanan Ramesh. "Comparison of Single and Multiple Injection Strategies in a Butanol Diesel Dual Fuel Engine." In ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/power-icope2017-3211.
Full textRatul, Tanjir H., Ramkumar N. Parthasarathy, and Subramanyam R. Gollahalli. "Effects of Equivalence Ratio on the Emission and Temperature Characteristics of Spray Flames of Jet A/Butanol Blends Under Lean Conditions." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86039.
Full textXu, Zhengxin, Mianzhi Wang, Jie Hou, Saifei Zhang, Jingping Liu, Wayne Chang, and Chia-fon F. Lee. "Development and Validation of a Reduced Toluene/N-Heptane/N-Butanol Mechanism for Combustion and Emission Prediction in IC Engine." In ASME 2015 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icef2015-1157.
Full textMorovati, Mostafa, Hitesh Bindra, Shuji Esaki, and Masahiro Kawaji. "Enhancement of Pool Boiling and Critical Heat Flux in Self-Rewetting Fluids at Above Atmospheric Pressures." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44593.
Full textMuelas, Álvaro, Pilar Remacha, Adrián Martínez, and Javier Ballester. "Combustion Behavior of Jet A Droplets and its Blends With Butanol." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64181.
Full textReports on the topic "Butanol"
Lee, Ivan C., Jeffrey G. St. Clair, and Adam S. Gamson. Catalytic Oxidative Dehydration of Butanol Isomers: 1-Butanol, 2-Butanol, and Isobutanol. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada550017.
Full textFushimi, Kazuyo, Eiji Kinoshita, and Yasufumi Yoshimoto. Effect of Butanol Isomer on Diesel Combustion Characteristics of Butanol/Gas Oil Blend. Warrendale, PA: SAE International, October 2013. http://dx.doi.org/10.4271/2013-32-9097.
Full textYou Mak, Kayley, Erik Hanschen, and Blake Hovde. Bacterial bioremediation of n-butanol. Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1902069.
Full textChen, Jiann-Shin. Enzymology of acetone-butanol-isopropanol formation. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7147408.
Full textChen, Jiann-Shin. Enzymology of acetone-butanol-isopropanol formation. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5531414.
Full textChen, Jiann-Shin. Enzymology of acetone-butanol-isopropanol formation. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6849263.
Full textChen, Jiann-Shin. Enzymology of acetone-butanol-isopropanol formation. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6871775.
Full textRamey, David E., and Shang-Tian Yang. Production of Butyric Acid and Butanol from Biomass. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/843183.
Full textKinoshita, Eiji, Kazunori Hamasaki, and Ryota Imabayashi. Diesel Combustion Characteristics of Biodiesel with 1-Butanol. Warrendale, PA: SAE International, November 2011. http://dx.doi.org/10.4271/2011-32-0590.
Full textJeor, Jeffery D., David W. Reed, Dayna L. Daubaras, and Vicki S. Thompson. Development of a High Temperature Microbial Fermentation Processfor Butanol Production. Office of Scientific and Technical Information (OSTI), June 2016. http://dx.doi.org/10.2172/1367541.
Full text