Academic literature on the topic 'C-c bond formation reactions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'C-c bond formation reactions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "C-c bond formation reactions"
Liu, Jialin, Xiaoyu Xiong, Jie Chen, Yuntao Wang, Ranran Zhu, and Jianhui Huang. "Double C–H Activation for the C–C bond Formation Reactions." Current Organic Synthesis 15, no. 7 (October 16, 2018): 882–903. http://dx.doi.org/10.2174/1570179415666180720111422.
Full textMatsuda, Fuyuhiko. "C-C Bond Formation Reactions with SmI2." Journal of Synthetic Organic Chemistry, Japan 59, no. 2 (2001): 92–100. http://dx.doi.org/10.5059/yukigoseikyokaishi.59.92.
Full textKaur, Mandeep, Opinder Kaur, Rahul Badru, Sandeep Kaushal, and Pritpal Singh. "Ionic Liquid Assisted C-C Bond Formation." Current Organic Chemistry 24, no. 16 (November 9, 2020): 1853–75. http://dx.doi.org/10.2174/1385272824999200801022221.
Full textMejía, Esteban, and Ahmad A. Almasalma. "Recent Advances on Copper-Catalyzed C–C Bond Formation via C–H Functionalization." Synthesis 52, no. 18 (May 19, 2020): 2613–22. http://dx.doi.org/10.1055/s-0040-1707815.
Full textPuerto Galvis, Carlos, and Vladimir Kouznetsov. "Recent Advances for the C–C and C–N Bond Formation in the Synthesis of 1-Phenethyl-tetrahydroisoquinoline, Aporphine, Homoaporphine, and β-Carboline Alkaloids." Synthesis 49, no. 20 (September 21, 2017): 4535–61. http://dx.doi.org/10.1055/s-0036-1589512.
Full textBeletskaya, Irina P. "Palladium catalyzed C-C and C-heteroatom bond formation reactions." Pure and Applied Chemistry 69, no. 3 (January 1, 1997): 471–76. http://dx.doi.org/10.1351/pac199769030471.
Full textMa, Dongge, Anan Liu, Shuhong Li, Chichong Lu, and Chuncheng Chen. "TiO2 photocatalysis for C–C bond formation." Catalysis Science & Technology 8, no. 8 (2018): 2030–45. http://dx.doi.org/10.1039/c7cy01458a.
Full textSaavedra, Beatriz, Alessandro Meli, Carla Rizzo, Diego J. Ramón, and Francesca D'Anna. "Natural eutectogels: sustainable catalytic systems for C–C bond formation reactions." Green Chemistry 23, no. 17 (2021): 6555–65. http://dx.doi.org/10.1039/d1gc01647d.
Full textRao, Bin, and Rei Kinjo. "Boron-Based Catalysts for C−C Bond-Formation Reactions." Chemistry - An Asian Journal 13, no. 10 (May 2, 2018): 1279–92. http://dx.doi.org/10.1002/asia.201701796.
Full textSubrahmanyam, Ayyagari V., Sankaran Thayumanavan, and George W. Huber. "CC Bond Formation Reactions for Biomass-Derived Molecules." ChemSusChem 3, no. 10 (August 24, 2010): 1158–61. http://dx.doi.org/10.1002/cssc.201000136.
Full textDissertations / Theses on the topic "C-c bond formation reactions"
Balanta, Castillo Angelica. "Novel molecular and colloidal catalysts for c-c bond formation processes." Doctoral thesis, Universitat Rovira i Virgili, 2011. http://hdl.handle.net/10803/66243.
Full textThis doctoral thesis focuses on the synthesis and characterization of metal nanoparticles (Pd, Ni, Pt) stabilized by several types of ligands and the used of these nanoparticles in new C-C or C-heteroatom bond formation reactions: a) Pd-catalysed asymmetric allylic substitution reactions; b) Pd-catalysed asymmetric Suzuki-Miyaura coupling reactions; c) Ni-catalysed Suzuki-Miyaura coupling reactions; d) Pt-catalysed 1,4-addition of phenylboronic acid to 2-cyclohexen-1-one reaction. For each reaction, the synthesis and characterization of metal nanoparticles and molecular complexes using several types of ligands were performed and both types of catalytic systems were tested in the appropriate reactions. Remarkably, excellent enantioselectivities using Pd/phosphite ligand were obtained in allylic substitution reaction. An efficient recovery of the catalytic system was carried out using ionic liquids as reaction medium. New active and selective nanoparticles were synthesized and characterized. These nanoparticles were applied successfully in various C-C bond formation reactions.
Arulraj, Kaneshalingam. "Catalytic C-C bond formation and asymmetric 1,3 dipolar cycloaddition reactions." Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426827.
Full textMateo, Martínez Ana. "Computational studies of C-B bond formation reactions." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/668479.
Full textLa gran cantidad de fluorocarbonos en la naturaleza y su estabilidad a animado a la comunidad científica a buscar nuevas metodologías para la rotura del enlace C-F de estos compuestos. De esta manera, estos fluorocarbonos pueden ser utilizados como reactivos en la síntesis orgánica. La estabilidad de los fluoruros de arilo se da por la fuerza del enlace C-F, que es el enlace simple más fuerte de la naturaleza. Ésta es su principal característica y la razón de su poca reactividad. Por este motivo, es desafiante para la comunidad científica encontrar la manera de romper el enlace C-F. De la misma forma el enlace C-O tiene características muy similares a las del C-F y por esto, se ha utilizado como alternativa para evitar residuos fluorados. Esta Tesis trata del estudio computacional de la ruptura de los enlaces C-F y C-O mediante borilaciones y catalizadas por un catalizador de níquel. Concretamente, se ha estudiado tres reacciones diferentes y las hemos comparado y buscado sus puntos en común.
The large presence of fluorocarbons in nature and its great stability encourage science community to found new methods to break the C-F bond of this compounds, because it could be used as a starting reactant in organic synthesis. The stability of aryl fluorides is given because its C-F bond is the strongest single bond in the nature. That is its principal characteristic and the reason of it lack of reactivity. For this reason, it is challenging for scientists found the manner for C-F cleavage. As the same wise, C-O becomes an alternative of C-F to avoid the fluoride waste. This Thesis is about the computational study of the C-F and C-O cleavage through the borylation catalysed by nickel catalyst. Concretely, we have studied three borylation of C-F and C-O bonds and we compared it and show what have in common the three reactions.
Wilkinson, Jon N. "Regioselective reactions at a diruthenium centre." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266954.
Full textEbe, Yusuke. "Iridium-Catalyzed Carbon-Carbon Bond Formation Reactions via C-H Bond Activation." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225417.
Full textLin, Xufeng, and 林旭鋒. "Density functional theory studies of selected transition metals catalyzed C-C and C-N bond formation reactions." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39359645.
Full textMasuda, Yuusuke. "Development of New C-C Bond Forming Reactions Utilizing Light as Energy Source." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225634.
Full textLin, Xufeng. "Density functional theory studies of selected transition metals catalyzed C-C and C-N bond formation reactions." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B39359645.
Full textMata, Campaña Yvette Angela. "Screening of Modular Carbohydrate Ligand Libraries in Asymmetric Metal-catalyzed C-C and C-X Bond Formation Reactions." Doctoral thesis, Universitat Rovira i Virgili, 2007. http://hdl.handle.net/10803/9090.
Full textAquesta tesi s'ha centrat en la síntesi de compostos derivats de la D-(+)-glucosa, de la D-(+)-fructosa i la D-(+)-galactosa i l'aplicació com a lligands de catalitzadors homogenis quirals en quatre reaccions asimètriques: substitució al·lílica, Heck, addició 1,2 i addició conjugada 1,4. Per assolir aquest objectiu, s'ha plantejat la síntesi de tres famílies de compostos: fosfit-oxazolina (L1-L5), fosfit-fosforoamidit (L6) i monofosfit (L7-L11) (Figura 1).
Després de la introducció (Capítol 1) i els objectius (Capítol 2), al capítol 3 es discuteix la síntesi i caracterització de les tres llibreries de compostos (L1-L11) i s'estudia l'aplicació de les tres llibreries a la reacció de substitució al·lílica asimètrica catalitzades per pal·ladi.
La primera llibreria de compostos fosfit-oxazolina (L1-L5) ha mostrat altes enantioselectivitats (fins a un 99%) i bones activitats en un ampli ventall de substrats amb diferents propietats electròniques i estèriques. S'han observat importants efectes al variar els substituents de l'anell oxazolina, de la quiralitat axial i dels diferents substituents del biaril. L'estudi de diferents intermedis de reacció pal·ladi al·lil mitjançant espectroscòpia de ressonància magnètica nuclear ha permès entendre el comportament catalític d'aquests compostos. L'estudi també ha indicat que l'atac nuclèofil té lloc preferentment al carboni al·lílic terminal localitzat trans al fosfit.
Figura 1. Fosfit-oxazolina (L1-L5), fosfit-fosforamidit (L6) i monofosfit (L7-L11).
Les reaccions de substitució asimètrica utilitzant els compostos fosfit-fosforoamidit (L6) han mostrat que l'excés enantiomèric depèn preferentment dels substituents de les posicions en para dels bifenils. Aquests efectes han estat diferents segons el tipus de substrat. S'han obtingut excessos enantiomèrics fins a un 89% i altes activitats utilitzant el substrat rac-1,3-difenil-acetoxipropè, rac-(E)-etil-2,5-dimetil-3-hex-4-enilcarbonat i el rac-3-acetoxicicloheptè. Pel substrat lineal 1-(1-naftil)al·lil acetat, aquests lligands han mostrat no ser útils en termes de regioselectivitat però s'han obtingut bons excessos enantiomèrics de fins a un 72%.
Si comparem aquests resultats amb els obtinguts amb els compostos fosfit-oxazolina (L1-L5) s'observa que el canvi de la funció oxazolina per la funció fosforoamidit té un efecte negatiu en la reacció de substitució al·lílica i en general decreixen les enantioselectivitats i la versalitat d'aquests compostos.
L'aplicació de la llibreria de compostos monofosfit (L7-L11) en la reacció de substitució al·lílica asimètrica ha mostrat moderades enantioselectivitats (fins a un 46%). Els resultats en la catàlisi es veuen afectats en gran mesura per la diferència en la mida de l'anell carbohidrat, de les configuracions del carboni-3 i del carboni-4 de l'esquelet del lligand i pel tipus de substituents de l'anell biaril.
El capítol 4 descriu l'aplicació dels compostos fosfit-oxazolina (L1-L5) com a lligands en la reacció de Heck asimètrica intermolecular. Una selecció correcta dels substituents en la funció oxazolina i del fosfit han permès obtenir excel·lents activitats (fins un 100% de conversió en 10 minuts), regioselectivitats i enantioselectivitats (fins un 99%) en un ampli rang de substrats utilitzant diferents fonts de triflat.
El capítol 5 descriu l'aplicació de les tres llibreries de compostos (L1-L11) a les reaccions d'addició 1,2 a aldehids catalitzades per níquel. En primer lloc, s'ha estudiat l'aplicació dels compostos L1-L6. S'ha observat que la selectivitat del procés depèn principalment del grup funcional unit a l'esquelet del lligand, de les propietats estèriques del substituent en la funció oxazolina i de l'estructura del substrat. S'ha obtingut fins a un 59% d'excés enantiomèric utilitzant el precursor de catalitzador que conté el lligand L3a. En canvi, la utilització de la llibreria de compostos monofosfit (L7-L11) ha mostrat elevades enantioselectivitats (fins a 94%) i activitats en diferents tipus de substrat utilitzant baixes concentracions de catalitzador i sense excés de lligand.
El capítol 6 descriu l'aplicació de les tres famílies de compostos (L1-L11) com a lligands en la reacció d'addició 1,4 catalitzada per coure de compostos organometàl·lics a diferents enones amb diferents propietats estèriques.
L'ús de les llibreries de compostos fosfit-oxazolina (L1-L5) i fosfit-fosforamidit (L6) han proporcionat bones enantioselectivitats (fins a 78%) en l'addició de reactius de trialquilalumini a diferents enones. En canvi, la llibreria de compostos monofosfit (L7-L11) ha mostrat bones activitats però enantioselectivitats fins a 57%.
The growing demand for enantiomerically pure compounds for the development of pharmaceuticals, agrochemicals and flavors has captured the interest of the chemist in the last few decades. Of the various methods for producing enantiopure compounds, enantioselective homogeneous metal catalysis is an attractive one. In this context, carbohydrates have many advantages: they are readily available, are highly functionalized and have several stereogenic centers. This enables series of chiral ligands to be synthesized and screened in the search for high activities and selectivities for each particular reaction.
In this context, this thesis focuses on the development of new chiral ligand libraries derived from carbohydrates, the synthesis of new catalyst precursors and their application in the Pd-catalyzed asymmetric allylic substitution, Pd-catalyzed asymmetric Heck reactions, Ni-catalyzed asymmetric addition of trialkylaluminium to aldehydes, and Cu-catalyzed asymmetric 1,4-conjugated addition of trialkylaluminium reagents to enones.
For this porpose, we have designed and syntezied 3 new sugar based ligand libraries: phosphite-oxazoline (L1-L5), phosphite-phosphoroamidite (L6) i monophosphite (L7-L11) (Figure 1).
After introduction (Chapter 1) and objectives (Chapter 2), in chapter 3 is discussed the synthesis and characterization of the ligand libraries (L1-L11) and and their application in the asymetric Pd-catalyzed allylic substituion reactions.
Using phosphite-oxazoline ligands (L1-L5) we observed important effects of the oxazoline substituents and the axial chirality and the substituents of the biaryl moieties. However, the effects of these parameters depended on each substrate. High enantioselectivities (up to 99%) and good activities have been achieved in a wide range of substrates with different steric and electronic properties.
The study of the Pd-1,3-diphenyl, 1,3-dimethyl and 1,3-cyclohexenyl allyl intermediates by NMR spectroscopy made it possible to understand the catalytic behaviour observed. This study also indicated that the nucleophilic attack takes place predominantly at the allylic terminal carbon atom located trans to the phosphite moiety.
Figura 1. Fosfit-oxazolina (L1-L5), fosfit-fosforamidit (L6) i monofosfit (L7-L11).
Asymmetric substitution reactions with catalyst precursors containing the phosphite-phosphoroamidite ligands showed that enantiomeric excesses depend strongly on the substituents at the para positions of the biphenyl moieties. However, these effects were different depending on the substrate in study. Enantiomeric excesses of up to 89% with high activities were obtained for rac-1,3-diphenyl-3-acetoxyprop-1-ene, rac-(E)-ethyl-2,5-dimethyl-3-hex-4-enylcarbonate and rac-3-acetoxycycloheptene. For the monosubstituted linear substrate 1-(1-naphthyl)allyl acetate, these ligands proved to be inadequate in terms of regioselectivities. However, we obtained good enantioselectivity by carefully selecting the substituents on the para position of the biphenyl moieties (ee's up to 72%).
If we compare these results with those from the catalyst precursors containing the previous phosphite-oxazoline ligands (L1-L5), we found that the replacement of the oxazoline moiety by a phosphoroamidite group decreased enantioselectivities and versatibility.
Asymmetric allylic alkylation with catalyst precursors containing the sugar-based monophosphite ligand library showed that the catalytic performance is highly affected by the size of the sugar backbone, the configurations at C-3 and C-4 of the ligand backbone and the type of substituents/configurations in the biaryl phosphite moiety. Low-to-moderate enantioselectivities (up to 46%) were obtained.
In the asymmetric Pd-catalyzed Heck reactions (Chapter 4) with catalysts precursors based on phosphite-oxazoline ligands, we obtained excellent activities (up to 100% conversion in 10 minutes), regio- (up to >99%) and enantioselectivities (up to 99%) were obtained in a wide range of substrates and triflate sources.
In the asymmetric Ni-catalyzed 1,2-addition of trialkylaluminium to aldehydes (Chpater 5) with catalysts precursors based on phosphite-oxazoline and phosphite-phosphoroamidite ligands, we found that the selectivity depends strongly on the type of functional group attached to the carbohydrate backbone, on the steric properties of the oxazoline substituents and on the substrate structure. Enantioselectivities up to 59% were obtained using the catalyst precursor containing the phosphite-oxazoline ligand L3a. In contrast to what we observed with the previous two ligand libraries, using sugar-based monophosphite ligands (L7-L11) provides high enantioselectivities (up to 94% ee) and activities in different substrate types, with low catalysts loadings and without excess of ligand.
In Chapter 6, we described the phosphite-oxazoline and phosphite-phosphoroamidite ligands as chiral auxiliaries in the asymmetric Cu-catalyzed 1,4-conjugated addition of trialkylaluminium reagents to several enones provides good enantioselectivities (up to 80% ee).
In the asymmetric Cu-catalyzed asymmetric 1,4-conjugated addition of trialkylaluminium reagents to several enones with catalysts precursors based on sugar monophosphite ligands, we found good activites and enantioselectivities up to 57% ee.
Sung, Simon. "Understanding of Cu-catalysed coupling reactions for C-N bond formation." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/51150.
Full textBooks on the topic "C-c bond formation reactions"
Mahrwald, Rainer. Enantioselective Organocatalyzed Reactions II: Asymmetric C-C Bond Formation Processes. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textHorvath, Michael John. Initial studies into selective C-F bond formation via the reactions of fluoride ion with organometallic complexes. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1991.
Find full textVigalok, Arkadi, ed. C-X Bond Formation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12073-2.
Full textKrische, Michael J., ed. Metal Catalyzed Reductive C–C Bond Formation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72879-5.
Full textRolf, Scheffold, Schweizerischer Chemiker-Verband, and International Seminar on Modern Synthetic Methods (1986 : Interlaken, Switzerland)., eds. Sound and light in synthesis ; Synthesis of enantiomerically pure compounds with C, C bond formation: Conference papers of the International Seminar on Modern Synthetic Methods 1986, Interlaken, April 17th/18th, 1986. Berlin: Springer-Verlag, 1986.
Find full textMahrwald, Rainer. Enantioselective Organocatalyzed Reactions II: Asymmetric C-C Bond Formation Processes. Springer, 2016.
Find full textMahrwald, Rainer. Enantioselective Organocatalyzed Reactions II: Asymmetric C-C Bond Formation Processes. Springer, 2013.
Find full textZuckerman, J. J., and A. P. Hagen. Inorganic Reactions and Methods: The Formation of Bonds to C, Si, Ge, Sn, Pb:Part 1. VCH Publishing, 1991.
Find full textInorganic Reactions and Methods: The Formation of Bonds to C, Si, GE, Sn, PB (PT. 2) (Inorganic Reactions & Methods). Wiley-VCH Verlag GmbH, 1989.
Find full textBook chapters on the topic "C-c bond formation reactions"
Li, Jie Jack. "Buchwald-Hartwig C-N bond and C-O bond formation reactions." In Name Reactions, 56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04835-1_47.
Full textLi, Jie Jack. "Buchwald-Hartwig C-N bond and C-O bond formation reactions." In Name Reactions, 60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05336-2_49.
Full textJia, Yi-Xia, and Tiexin Zhang. "Other Reactions For C-C Bond Formation." In Stereoselective Organocatalysis, 313–50. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118604755.ch09.
Full textLi, Bin, and Pierre H. Dixneuf. "Metal-Catalyzed C-H Bond Activation and C-C Bond Formation in Water." In Metal-Catalyzed Reactions in Water, 47–86. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527656790.ch2.
Full textShimada, Shigeru, and Maddali L. N. Rao. "Transition-Metal Catalyzed C–C Bond Formation Using Organobismuth Compounds." In Bismuth-Mediated Organic Reactions, 199–228. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/128_2011_202.
Full textGryko, Dorota, and Dominika Walaszek. "C-C Bond Formation by Aldol Reaction." In Stereoselective Organocatalysis, 81–127. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118604755.ch03.
Full textZhang, Yong, and Wei Wang. "CC Bond Formation by Michael Reaction." In Stereoselective Organocatalysis, 147–203. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118604755.ch05.
Full textDeuss, Peter J., Megan V. Doble, Amanda G. Jarvis, and Paul C. J. Kamer. "Hybrid Catalysts for Other CC and CX Bond Formation Reactions." In Artificial Metalloenzymes and MetalloDNAzymes in Catalysis, 285–319. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804085.ch10.
Full textLópez, Luis A., and Jesús González. "Zinc-Catalyzed CN and CO Bond Formation Reactions." In Zinc Catalysis, 149–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675944.ch7.
Full textReetz, M. T. "Synthetic and Mechanistic Studies of Lewis Acid Mediated C-C-Bond Formation." In Selectivities in Lewis Acid Promoted Reactions, 107–25. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2464-2_6.
Full textConference papers on the topic "C-c bond formation reactions"
Kwon, Eilhann, and Marco J. Castaldi. "Polycyclic Aromatic Hydrocarbon (PAH) Formation in Thermal Degradation of Styrene Butadiene Copolymer (SBR)." In 14th Annual North American Waste-to-Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/nawtec14-3188.
Full textCezo, James D., Nicholas Anderson, Eric Kramer, Kenneth D. Taylor, Mark E. Rentschler, and Virginia L. Ferguson. "Tissue Hydration Influences Bursting Pressure of Fused Arteries." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14724.
Full textKalek, Marcin, and Jacek Stawinski. "Synthetic studies on the P–C bond formation via a palladium-catalyzed cross-coupling reaction. Application to the synthesis of P-arylated nucleic acids." In XIVth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2008. http://dx.doi.org/10.1135/css200810214.
Full textKumar, Anand, and Anchu Ashok. "Catalytic Decomposition of Ethanol over Bimetallic Nico Catalysts for Carbon Nanotube Synthesis." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0039.
Full textSuttie, W. J., A. Cheung, and M. G. Wood. "ENZYMOLOGY OF THE VITAMIN K-DEPENDENT CARBOXYLASE: CURRENT STATUS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643991.
Full textSoto, Paola Rivera, Pedro O. Quintero, Mellyssa Mulero, and Dimeji Ibitayo. "Microstructural Stability of Au-Sn SLID Joints for Harsh Environments." In ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48323.
Full textBesson, Thierry, Damien Hédou, Carole Dubouilh-benard, Nadège Loaëc, Laurent Meijer, and Corinne Fruit. "Synthesis of Bioactive 2-(arylamino)thiazolo[5,4-f]-quinazolin-9-ones via the Hügershoff Reaction or Cu- Catalyzed Intramolecular C-S Bond Formation." In 2nd International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/ecmc-2-a010.
Full textChen, Guanyi, Beibei Yan, and Gang Li. "Circulating Fluidised Bed Gasification of Biomass: Modelling of Fuel-Bound Nitrogen Evolution." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90616.
Full textLAULLOO, SABINA, SALMA Moosun, SHABNEEZ Bhewa, and MINU BHOWON. "Palladium Schiff Base Complexes: Potential catalysts for C-C bond reactions." In The 20th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/ecsoc-20-a022.
Full textGanapathy, D., and G. Sekar. "An efficient and reusable palladium nanocatalyst in C-C bond forming cross-coupling reactions." In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_201386477.
Full textReports on the topic "C-c bond formation reactions"
Lees, Alistair J. Photochemistry of Intermolecular C-H Bond Activation Reactions. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/761218.
Full textLees, A. J. [Photochemistry of intermolecular C-H bond activation reactions]. Progress report, [September 15, 1994--March 15, 1995]. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/35271.
Full textBausch, M. Studies of the energetics of C-S bond-breaking reactions in radical ions derived from coal model compounds. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/6918142.
Full textBrophy, Kenny, and Alison Sheridan, eds. Neolithic Scotland: ScARF Panel Report. Society of Antiquaries of Scotland, June 2012. http://dx.doi.org/10.9750/scarf.06.2012.196.
Full text