Academic literature on the topic 'C-H Amination'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'C-H Amination.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "C-H Amination"

1

Zhao, Yingsheng, Chao Wang, and Jian Han. "Recent Development in N-Auxilixary-Assisted Intramolecular Amination for Amine Substrates." Synlett 26, no. 08 (2015): 997–1002. http://dx.doi.org/10.1055/s-0034-1380167.

Full text
Abstract:
Direct coupling of N–H with C–H has aroused great attention in the last decades; during which the directing-group-assisted intramolecular C–N bond formation via transition metal has been achieved significant progress. Herein, we highlight the recent development in the directing-group-assisted intramolecular amination for amine substrates to build the important N-containing heterocyclic compounds.1 Introduction2 Triflamide-Promoted Intramolecular Amination3 Picolinamide-Assisted Intramolecular Amination4 Palladium-Catalyzed Intramolecular Amination under Assistance of Oxalyl Amide5 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
2

Yeston, Jake. "Double C–H amination." Science 371, no. 6529 (2021): 580.4–580. http://dx.doi.org/10.1126/science.371.6529.580-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Fen, Yuan-Yuan Song, Wen-Jing Zhu, Chun-Sen Liu, Ya-Zhou Lu, and Miao Du. "Rhodium-catalyzed multiple C–H activation/highly meta-selective C–H amination between amidines and alkynes." Chemical Communications 56, no. 76 (2020): 11227–30. http://dx.doi.org/10.1039/d0cc04885b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bandara, H. M. D., D. Jin, M. A. Mantell, et al. "Non-directed aromatic C–H amination: catalytic and mechanistic studies enabled by Pd catalyst and reagent design." Catalysis Science & Technology 6, no. 14 (2016): 5304–10. http://dx.doi.org/10.1039/c6cy00457a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Louillat, Marie-Laure, and Frederic W. Patureau. "Oxidative C–H amination reactions." Chem. Soc. Rev. 43, no. 3 (2014): 901–10. http://dx.doi.org/10.1039/c3cs60318k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Ritesh, and Anirban Mukherjee. "Metalloporphyrin Catalyzed C–H Amination." ACS Catalysis 9, no. 4 (2019): 3604–17. http://dx.doi.org/10.1021/acscatal.9b00009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jeffrey, Jenna L., and Richmond Sarpong. "Intramolecular C(sp3)–H amination." Chemical Science 4, no. 11 (2013): 4092. http://dx.doi.org/10.1039/c3sc51420j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bach, T., A. Nörder, P. Herrmann, and E. Herdtweck. "Diastereoselective Catalytic C-H Amination." Synfacts 2010, no. 10 (2010): 1141. http://dx.doi.org/10.1055/s-0030-1258647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Lei, Laurent Liardet, Jingshan Luo, Dan Ren, Michael Grätzel, and Xile Hu. "Photoelectrocatalytic arene C–H amination." Nature Catalysis 2, no. 4 (2019): 366–73. http://dx.doi.org/10.1038/s41929-019-0231-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Juping, Kangcheng Zheng, Ting Li, and Xiaojing Zhan. "Mechanism and Chemoselectivity of Mn-Catalyzed Intramolecular Nitrene Transfer Reaction: C–H Amination vs. C=C Aziridination." Catalysts 10, no. 3 (2020): 292. http://dx.doi.org/10.3390/catal10030292.

Full text
Abstract:
The reactivity, mechanism and chemoselectivity of the Mn-catalyzed intramolecular C–H amination versus C=C aziridination of allylic substrate cis-4-hexenylsulfamate are investigated by BP86 density functional theory computations. Emphasis is placed on the origins of high reactivity and high chemoselectivity of Mn catalysis. The N p orbital character of frontier orbitals, a strong electron-withdrawing porphyrazine ligand and a poor π backbonding of high-valent MnIII metal to N atom lead to high electrophilic reactivity of Mn-nitrene. The calculated energy barrier of C–H amination is 9.9 kcal/mo
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "C-H Amination"

1

Wang, Anqi. "Cu-Catalyzed Amination of sp3 C-H Bonds." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-dissertations/509.

Full text
Abstract:
Presented herein is the development, optimization and mechanistic investigation of an Cu catalytic system for the oxidation of sp 3 C-H bond of simple arenes to form C-N bond in a direct manner. Due to the prevalence of nitrogen containing molecules among biologically active synthetic and natural compounds, synthetic chemists have always been motivated to develop new efficient ways to directly transform ubiquitous carbonhydrogen (C-H) bonds into carbon- nitrogen (C-N) bonds. Recent advances in transition metal catalyzed C-H amination has demonstrated that it is not only possible but
APA, Harvard, Vancouver, ISO, and other styles
2

Bahgat, Sofi-Rosamelia. "Beta-diketiminato copper complexes in C-H bond amination." Connect to Electronic Thesis (CONTENTdm), 2010. http://worldcat.org/oclc/646165084/viewonline.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hennessy, Elisabeth Therese. "C-H Amination Catalysis from High-Spin Ferrous Complexes." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11186.

Full text
Abstract:
The C-H amination and olefin aziridination chemistry of iron supported by dipyrromethene ligands (RLAr, L=1,9-R2-5-aryldipyrromethene, R = Mes, 2,4,6-Ph3C6H2, tBu, Ad, 10-camphoryl, Ar = Mes, 2,4,6-Cl3C6H2) was explored. The weak-field, pyrrole-based dipyrrinato ligand was designed to generate an electrophilic, high-spin metal center capable of accessing high valent reactive intermediates in the presence of organic azides. Isolation of the reactive intermediate in combination with a series of mechanistic experiments suggest the N-group transfer chemistry proceeds through a rapid, single-electr
APA, Harvard, Vancouver, ISO, and other styles
4

Rey-Rodriguez, Romain. "Fonctionnalisation directe métallo-catalysée de liaison C-H d’énamides." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2005/document.

Full text
Abstract:
L’objectif de cette thèse de doctorat a été la mise au point de nouvelles méthodes de synthèse pour la fonctionnalisation directe de liaison C-H d’énamide via des réactions métallo-catalysées ou métallo-assistées dans des processus chimio-, régio- et éventuellement énantiosélectifs. Dans un premier temps, nous avons développé la trifluorométhylation d’énamide sélectivement en position C3 via une catalyse au Fe(II) impliquant l’utilisation de nouvelles sources de fluor (réactif de Togni II) et dont le mécanisme radicalaire a pu être mis en avant. Dans un second temps, deux nouvelles méthodes de
APA, Harvard, Vancouver, ISO, and other styles
5

Polat, Dilan Emine. "Synthesis of N-Oxyureas and Their Applications in Amination Reactions." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39839.

Full text
Abstract:
Given the occurrence and diversity of nitrogen-containing molecules, the development of new amination methods is of significant importance. Indeed, a recent study shows that 60% of the FDA approved drugs contain a nitrogen heterocycle. Undoubtedly, novel methodologies arising for uncommon intermediates for the incorporation of nitrogen atoms are needed to access more complex molecules. The present document focus on the development of new methods for the formation of C-N and N-N bonds for the synthesis of acyclic and heterocyclic products. Isocyanates are useful synthons and reactive inte
APA, Harvard, Vancouver, ISO, and other styles
6

Börgel, Jonas Verfasser], Tobias [Akademischer Betreuer] Ritter, and Franziska [Akademischer Betreuer] [Schönebeck. "Late-stage functionalization of arenes: from C-H amination to C-H oxygenation and deoxyfluorination / Jonas Börgel ; Tobias Ritter, Franziska Schoenebeck." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/121086293X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nasrallah, Ali. "Complexe de Rhodium(II) et iode hypervalent en catalyse : époxydation d’alcènes et amination de liaisons C(sp³)-H." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS427.

Full text
Abstract:
Cette thèse a pour but de développer de nouveaux procédés catalytiques en combinant de réactifs de l’iode hypervalent avec des complexes de rhodium(II).Le premier chapitre concerne l’observation de l’époxyde comme produit secondaire inatendu dans les conditions de transfert de nitrène catalytique, et le développement d’une nouvelle méthode de préparation d’époxydes qui combine un réactif de l’iode hypervalent(III) et un complexe de dirhodium(II). Le second chapitre vise le développement d’une méthode d’amination C(sp³)–H benzylique intermoléculaire énantiosélective,en utilisant un nouveau comp
APA, Harvard, Vancouver, ISO, and other styles
8

Parsons, Christopher Mark. "Amination of activated C-H bonds using chloramine-T trihydrate and copper (I) catalysts." Thesis, University of Warwick, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mazurais, Marie. "Nitrènes et amination de liaisons C(sp³)-H : applications en synthèse et développement de nouvelles conditions oxydantes." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112257/document.

Full text
Abstract:
Les transferts de nitrène représentent un outil synthétique très intéressant pour former simplement une liaison C-N à partir d’une liaison C-H. Notre laboratoire a développé des précurseurs de nitrène chiraux : les sulfonimidamides. Leur utilisation a abouti, en présence de catalyseurs de rhodium, à des réactions d’amination C-H hautement diastéréosélectives. Ce projet de thèse s’inscrit dans la continuité de ces travaux. Dans un premier temps, la synthèse totale de la Dibromophakellstatine a été envisagée, impliquant comme étape clé, une étape d’amination C-H en position pseudo benzylique. Le
APA, Harvard, Vancouver, ISO, and other styles
10

Toumieux, Sylvestre. "Amination intramoléculaire catalytique de liaisons C-H nonactivées: Application à la synthèse de C-glycosides originaux et de pipéridines polyfonctionnalisées." Phd thesis, Université d'Orléans, 2007. http://tel.archives-ouvertes.fr/tel-00260894.

Full text
Abstract:
La fonctionnalisation de liaisons C-H non-activées est un défi pour la chimie organique. Dans cette thèse, l'amination intramoléculaire, via l'insertion catalytique de nitrènes sur ces positions réputées inertes, a été effectuée sur des glycomimétiques de type C-glycoside. A l'inverse de leurs analogues 1- carbamoyloxyméthyle, cette réaction s'est montrée fortement stéréo-dépendante de la configuration du carbone pseudo-anomérique dans le cas des dérivés 1-sulfamoyloxyméthyle. L'insertion régiosélective en position pseudo-anomérique conduit à des composés spiraniques dont la fonction N,O-acéta
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "C-H Amination"

1

McDonald, Stacey L. Copper-Catalyzed Electrophilic Amination of sp2 and sp3 C−H Bonds. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-38878-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McDonald, Stacey L. Copper-Catalyzed Electrophilic Amination of sp2 and sp3 C-H Bonds. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

McDonald, Stacey L. Copper-Catalyzed Electrophilic Amination of sp2 and sp3 C−H Bonds. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "C-H Amination"

1

Boudet, Nadège, and Simon B. Blakey. "Enantioselective CH Amination." In Chiral Amine Synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629541.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McDonald, Stacey L. "Copper-Catalyzed Electrophilic Amination of Heteroarenes and Arenes by C–H Zincation." In Springer Theses. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-38878-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lebel, Hélène. "Rhodium-Catalyzed CH Aminations." In Catalyzed Carbon-Heteroatom Bond Formation. Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527633388.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

MacMillan, D. W. C., and A. J. B. Watson. "α-Amination Reactions." In Stereoselective Pericyclic Reactions, Cross Coupling, and C—H and C—X Activation. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-203-00443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MacMillan, D. W. C., and A. J. B. Watson. "α-Amination Reactions Using Azodicarboxylates." In Stereoselective Pericyclic Reactions, Cross Coupling, and C—H and C—X Activation. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-203-00444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

MacMillan, D. W. C., and A. J. B. Watson. "α-Amination Reactions Using Nitrosobenzene." In Stereoselective Pericyclic Reactions, Cross Coupling, and C—H and C—X Activation. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-203-00445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Taber, Douglass F. "C-H Functionalization: The Chen Synthesis of Celogentin C." In Organic Synthesis. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199965724.003.0019.

Full text
Abstract:
Christian R. Goldsmith of Auburn University developed (Synlett 2010, 1377) a method for radical chlorination of 1 using commercial peracetic acid. Noritaka Mizuno of the University of Tokyo devised (Nat. Chem. 2010, 2, 478) a bulky polyoxometalate that mediated the selective hydroxylation of the secondary C-H bonds of 3. Christina White of the University of Illinois showed (Science 2010, 327, 566) that Fe-mediated C-H oxidation is sensitive to the expected electronic effects, so that 5 was selectively oxidized to 6. Irena S. Akhrem of the A. N. Nesmeyanov Institute of Organoelement Compounds established (Tetrahedron Lett. 2010, 51, 259) that a C-H bond of 7 could be efficiently converted to a C-C bond. Melanie S. Sanford of the University of Michigan extended (Organic Lett. 2010, 12, 532) directed palladation to 9, effecting selective acetoxylation of the methyl group. Herman O. Sintim of the University of Maryland observed (Angew. Chem. Int. Ed. 2010, 49, 3964) that the O-linked diazoamide 11 selectively cyclized to 12. The corresponding C-linked diazoamide gave only five-membered ring formation. Yasushi Obora and Yasutaka Ishii of Kansai University devised (Organic Lett. 2010, 12, 1372) conditions for the selective allylic amination of 13. Marvin J. Miller of the University of Notre Dame developed (Tetrahedron Lett. 2010, 51, 328) the nitrosoisoxazole 16 for the allylic amination of 15. David A. Powell of Merck Frosst established (J. Org. Chem. 2010, 75, 2726) a protocol for the selective amination of the aromatic methyl group of 18. Ying-Yeung Yeung of the National University of Singapore effected (Organic Lett. 2010, 12, 2128) selective allylic oxidation of 21 with a hypervalent iodine reagent. Gullapalli Kumaraswamy of the Indian Institute of Chemical Technology, Hyderabad, allylated (J. Org. Chem. 2010, 75, 3916) an amine 23 using commercial aqueous t -BuOOH. Corey R. J. Stephenson of Boston University used (J. Am. Chem. Soc. 2010, 132, 1464) visible light to activate 26 for homologation to 27. In the course of a synthesis of the bicyclic nonribosomal peptide celogentin C, isolated from the seeds of the plumed cockscomb Celosia argentea, Gong Chen of Pennsylvania State University took advantage (Angew. Chem. Int. Ed. 2010, 49, 958) of Pd activation to effect specific coupling of the iodoindole 29 with the leucine derivative 28. On a 4-gram scale, this coupling proceeded in 85% yield.
APA, Harvard, Vancouver, ISO, and other styles
8

Taber, Douglass F. "C–H Functionalization." In Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.003.0021.

Full text
Abstract:
Konstantin P. Bryliakov of the Boreskov Institute of Catalysis devised (Org. Lett. 2012, 14, 4310) a manganese catalyst for the selective tertiary hydroxylation of 1 to give 2. Note that the electron-withdrawing Br deactivates the alternative methine H. Bhisma K. Patel of the Indian Institute of Technology, Guwahati selectively oxidized (Org. Lett. 2012, 14, 3982) a benzylic C–H of 3 to give the corresponding benzoate 4. Dalibor Sames of Columbia University cyclized (J. Org. Chem. 2012, 77, 6689) 5 to 6 by intramolecular hydride abstraction followed by recombination. Thomas Lectka of Johns Hopkins University showed (Angew. Chem. Int. Ed. 2012, 51, 10580) that direct C–H fluorination of 7 occurred predominantly at carbons 3 and 5. John T. Groves of Princeton University reported (Science 2012, 337, 1322) an alternative manganese porphyrin catalyst (not illustrated) for direct fluorination. C–H functionalization can also be mediated by a proximal functional group. John F. Hartwig of the University of California, Berkeley effected (J. Am. Chem. Soc. 2012, 134, 12422) Ir-mediated borylation of an ether 9 in the position β to the oxygen to give 10. Uttam K. Tambar of the UT Southwestern Medical Center devised (J. Am. Chem. Soc. 2012, 134, 18495) a protocol for the net enantioselective amination of 11 to give 12. Conversion of a C–H bond to a C–C bond can be carried out in an intramolecular or an intermolecular sense. Kilian Muñiz of the Catalan Institution for Research and Advanced Studies cyclized (J. Am. Chem. Soc. 2012, 134, 15505) the terminal alkene 13 directly to the cyclopentene 15. Olivier Baudoin of Université Claude Bernard Lyon 1 closed (Angew. Chem. Int. Ed. 2012, 51, 10399) the pyrrolidine ring of 17 by selective activation of a methyl C–H of 16. Jeremy A. May of the University of Houston found (J. Am. Chem. Soc. 2012, 134, 17877) that the Rh carbene derived from 18 inserted into the distal alkyne to give a new Rh carbene 19, which in turn inserted into a C–H bond adjacent to the ether oxygen to give 20.
APA, Harvard, Vancouver, ISO, and other styles
9

Taber, Douglass. "C-H Functionalization to Form C-O, C-N, and C-C Bonds." In Organic Synthesis. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199764549.003.0015.

Full text
Abstract:
A classic example of C-H functionalization is the familiar NBS bromination of a benzylic site. Recent updates of this approach allow for direct alkoxylation (J. Am. Chem. Soc. 2008, 130, 7824) and net amination (Organic Lett. 2008, 10, 1863). For the amination of simple aliphatic H’s, Holger F. Bettinger of Ruhr-Universität Bochum developed (Angew. Chem. Int. Ed. 2008, 47, 4744) the boryl azide 2. The insertion with 1 proceeded to give a statistical mixture of the nitrene insertion products 3 and 4. The tethered C-H functionalization devised (J. Am. Chem. Soc. 2008, 130, 7247) by Phil S. Baran of Scripps-La Jolla is selective, as in the conversion to 5 to 6, but appears to be limited to tertiary and benzylic C-H sites. Michael P. Doyle of the University of Maryland established (J. Org. Chem. 2008, 73, 4317) an elegant protocol for the oxidation of an alkyne such as 7 to the ynone 8. Note that the oxidation did not move the alkyne. Marta Catellani of the Università di Parma reported (Adv. Synth. Cat. 2008, 350, 565) the intriguing Pd-catalyzed conversion of 9 to 10. Under mild conditions, it might likely be possible to hydrolyze the vinyl ether to reveal the phenol 11. Another way of looking at this overall transformation would be to consider the ether 10 to be a protected form of the aldehyde 12. C-H activation can also lead to C-C bond formation. Irena S. Akhrem of the Nesmeyanov Institute, Moscow, described (Tetrahedron Lett. 2008, 49, 1399) a hydride-abstraction protocol for three-component coupling of a hydrocarbon 13 , an amine 14 , and CO, leading to the homologated amide 15. Hua Fu of Tsinghua University, Beijing, showed (J. Org. Chem. 2008 , 73, 3961) that oxidation of an amine 16 led to an intermediate that could be coupled with an alkyne 17 to give the propargylic amine 18. Products 15 and 18 are the result of sp2 and sp coupling, respectively. C-H functionalization leading to sp3 -sp3 coupling is less common. Jin-Quan Yu of Scripps/La Jolla found (J. Am. Chem. Soc. 2008, 130, 7190) that activation of the N-methoxy amide 19 in the presence of the alkyl boronic acid 20 gave smooth coupling, to 21.
APA, Harvard, Vancouver, ISO, and other styles
10

Taber, Douglass F. "C–H Functionalization: The Maimone Synthesis of Podophyllotoxin." In Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0021.

Full text
Abstract:
Matthias Beller of the Universität Rostock developed (Angew. Chem. Int. Ed. 2014, 53, 6477) a Rh catalyst for the acceptorless dehydrogenation of an alkane 1 to the alkene 2. Bhisma K. Patel of the Indian Institute of Technology Guwahati effected (Org. Lett. 2014, 16, 3086) oxidation of cyclohexane 3 and 4 to form the allylic benzoate 5. Justin Du Bois of Stanford University devised (Chem. Sci. 2014, 5, 656) an organocatalyst that mediated the hydroxylation of 6 to 7. Vladimir Gevorgyan of the University of Illinois, Chicago hydrosilylated (Nature Chem. 2014, 6, 122) 8 to give an intermediate that, after Ir-catalyzed intramolecular C–H functionalization followed by oxidation, was converted to the diacetate 9. Sukbok Chang of KAIST used (J. Am. Chem. Soc. 2014, 136, 4141) the methoxime of 10 to direct selective amination of the adjacent methyl group, leading to 11. John F. Hartwig of the University of California, Berkeley effected (J. Am. Chem. Soc. 2014, 136, 2555) diastereoselective Cu-catalyzed amination of 12 with 13 to make 14. David W. C. MacMillan of Princeton University accomplished (J. Am. Chem. Soc. 2014, 136, 6858) β-alkylation of the aldehyde 15 with acrylonitrile 16 to give 17. Yunyang Wei of the Nanjing University of Science and Technology alkenylated (Chem. Sci. 2014, 5, 2379) cyclohexane 3 with the styrene 18, leading to 19. Bin Wu of the Kunming Institute of Botany described (Org. Lett. 2014, 16, 480) the Pd-mediated cyclization of 20 to 21. Similar results using Cu catalysis were reported (Angew. Chem. Int. Ed. 2014, 53, 3496, 3706) by Yoichiro Kuninobu and Motomu Kanai of the University of Tokyo and by Haibo Ge of IUPUI. Jin-Quan Yu of Scripps La Jolla constructed (J. Am. Chem. Soc. 2014, 136, 5267) the lactam 24 by γ-alkenyl­ation of the amide 22 with 23, followed by cyclization. Philippe Dauban of CNRS Gif-sur-Yvette prepared (Eur. J. Org. Chem. 2014, 66) the useful crystalline chiron 27 by asymmetric amination of the enol triflate 26 with 25. Matthew J. Gaunt of the University of Cambridge showed (J. Am. Chem. Soc. 2014, 136, 8851) that the phenylative cyclization of 28 with 29 to 30 proceeded with near-perfect retention of absolute configuration.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!