To see the other types of publications on this topic, follow the link: C-H Amination.

Journal articles on the topic 'C-H Amination'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'C-H Amination.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhao, Yingsheng, Chao Wang, and Jian Han. "Recent Development in N-Auxilixary-Assisted Intramolecular Amination for Amine Substrates." Synlett 26, no. 08 (2015): 997–1002. http://dx.doi.org/10.1055/s-0034-1380167.

Full text
Abstract:
Direct coupling of N–H with C–H has aroused great attention in the last decades; during which the directing-group-assisted intramolecular C–N bond formation via transition metal has been achieved significant progress. Herein, we highlight the recent development in the directing-group-assisted intramolecular amination for amine substrates to build the important N-containing heterocyclic compounds.1 Introduction2 Triflamide-Promoted Intramolecular Amination3 Picolinamide-Assisted Intramolecular Amination4 Palladium-Catalyzed Intramolecular Amination under Assistance of Oxalyl Amide5 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
2

Yeston, Jake. "Double C–H amination." Science 371, no. 6529 (2021): 580.4–580. http://dx.doi.org/10.1126/science.371.6529.580-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Fen, Yuan-Yuan Song, Wen-Jing Zhu, Chun-Sen Liu, Ya-Zhou Lu, and Miao Du. "Rhodium-catalyzed multiple C–H activation/highly meta-selective C–H amination between amidines and alkynes." Chemical Communications 56, no. 76 (2020): 11227–30. http://dx.doi.org/10.1039/d0cc04885b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bandara, H. M. D., D. Jin, M. A. Mantell, et al. "Non-directed aromatic C–H amination: catalytic and mechanistic studies enabled by Pd catalyst and reagent design." Catalysis Science & Technology 6, no. 14 (2016): 5304–10. http://dx.doi.org/10.1039/c6cy00457a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Louillat, Marie-Laure, and Frederic W. Patureau. "Oxidative C–H amination reactions." Chem. Soc. Rev. 43, no. 3 (2014): 901–10. http://dx.doi.org/10.1039/c3cs60318k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Ritesh, and Anirban Mukherjee. "Metalloporphyrin Catalyzed C–H Amination." ACS Catalysis 9, no. 4 (2019): 3604–17. http://dx.doi.org/10.1021/acscatal.9b00009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jeffrey, Jenna L., and Richmond Sarpong. "Intramolecular C(sp3)–H amination." Chemical Science 4, no. 11 (2013): 4092. http://dx.doi.org/10.1039/c3sc51420j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bach, T., A. Nörder, P. Herrmann, and E. Herdtweck. "Diastereoselective Catalytic C-H Amination." Synfacts 2010, no. 10 (2010): 1141. http://dx.doi.org/10.1055/s-0030-1258647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Lei, Laurent Liardet, Jingshan Luo, Dan Ren, Michael Grätzel, and Xile Hu. "Photoelectrocatalytic arene C–H amination." Nature Catalysis 2, no. 4 (2019): 366–73. http://dx.doi.org/10.1038/s41929-019-0231-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Juping, Kangcheng Zheng, Ting Li, and Xiaojing Zhan. "Mechanism and Chemoselectivity of Mn-Catalyzed Intramolecular Nitrene Transfer Reaction: C–H Amination vs. C=C Aziridination." Catalysts 10, no. 3 (2020): 292. http://dx.doi.org/10.3390/catal10030292.

Full text
Abstract:
The reactivity, mechanism and chemoselectivity of the Mn-catalyzed intramolecular C–H amination versus C=C aziridination of allylic substrate cis-4-hexenylsulfamate are investigated by BP86 density functional theory computations. Emphasis is placed on the origins of high reactivity and high chemoselectivity of Mn catalysis. The N p orbital character of frontier orbitals, a strong electron-withdrawing porphyrazine ligand and a poor π backbonding of high-valent MnIII metal to N atom lead to high electrophilic reactivity of Mn-nitrene. The calculated energy barrier of C–H amination is 9.9 kcal/mo
APA, Harvard, Vancouver, ISO, and other styles
11

D'Amato, Erica M., Jonas Börgel, and Tobias Ritter. "Aromatic C–H amination in hexafluoroisopropanol." Chemical Science 10, no. 8 (2019): 2424–28. http://dx.doi.org/10.1039/c8sc04966a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hilinski, Michael, Shea Johnson, and Logan Combee. "Organocatalytic Atom-Transfer C(sp3)–H Oxidation." Synlett 29, no. 18 (2018): 2331–36. http://dx.doi.org/10.1055/s-0037-1610432.

Full text
Abstract:
Predictably site-selective catalytic methods for intermolecular C(sp3)–H hydroxylation and amination hold great promise for the synthesis and late-stage modification of complex molecules. Transition-metal catalysis has been the most common approach for early investigations of this type of reaction. In comparison, there are far fewer ­reports of organocatalytic methods for direct oxygen or nitrogen insertion into C–H bonds. Herein, we provide an overview of early efforts in this area, with particular emphasis on our own recent development of an iminium salt that catalyzes both oxygen and nitrog
APA, Harvard, Vancouver, ISO, and other styles
13

Sabat, Nazarii, Martin Klečka, Lenka Slavětínská, Blanka Klepetářová, and Michal Hocek. "Direct C–H amination and C–H chloroamination of 7-deazapurines." RSC Adv. 4, no. 107 (2014): 62140–43. http://dx.doi.org/10.1039/c4ra13143f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jin, Li-Mei, Pan Xu, Jingjing Xie, and X. Peter Zhang. "Enantioselective Intermolecular Radical C–H Amination." Journal of the American Chemical Society 142, no. 49 (2020): 20828–36. http://dx.doi.org/10.1021/jacs.0c10415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Barman, Dipti N., and Kenneth M. Nicholas. "Copper-Catalyzed Intramolecular C-H Amination." European Journal of Organic Chemistry 2011, no. 5 (2010): 908–11. http://dx.doi.org/10.1002/ejoc.201001160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Boudet, Nadege, and Simon B. Blakey. "ChemInform Abstract: Enantioselective C-H Amination." ChemInform 42, no. 45 (2011): no. http://dx.doi.org/10.1002/chin.201145231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lebel, Hélène, Carl Trudel, and Cédric Spitz. "Stereoselective intermolecular C–H amination reactions." Chemical Communications 48, no. 63 (2012): 7799. http://dx.doi.org/10.1039/c2cc33689h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sun, Chunrui, Jingwei Li, Daesung Lee, Genping Huang, and Yuanzhi Xia. "Formal C–H amination of cyclopropenes." Chemical Communications 48, no. 89 (2012): 10990. http://dx.doi.org/10.1039/c2cc35329f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gephart, Raymond T., and Timothy H. Warren. "Copper-Catalyzed sp3 C–H Amination." Organometallics 31, no. 22 (2012): 7728–52. http://dx.doi.org/10.1021/om300840z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yu, Yang, Gen Luo, Jimin Yang, and Yi Luo. "Cobalt-catalysed unactivated C(sp3)–H amination: two-state reactivity and multi-reference electronic character." Catalysis Science & Technology 9, no. 8 (2019): 1879–90. http://dx.doi.org/10.1039/c9cy00239a.

Full text
Abstract:
A remarkable two-state reactivity scenario and an unusual multi-reference character have been computationally found in Co-catalysed C(sp<sup>3</sup>)–H amination. In addition, the investigation on the additive, aminating reagent, metal center, and auxiliary ligand provides implications for development of new catalytic C–H functionalization systems.
APA, Harvard, Vancouver, ISO, and other styles
21

Scamp, Ryan J., Jared W. Rigoli, and Jennifer M. Schomaker. "Chemoselective silver-catalyzed nitrene insertion reactions." Pure and Applied Chemistry 86, no. 3 (2014): 381–93. http://dx.doi.org/10.1515/pac-2014-5040.

Full text
Abstract:
AbstractA review of recent developments in silver(I)-catalyzed nitrene insertions into olefin and C–H bonds is presented, with a particular emphasis on reactions where the chemoselectivity can be tuned to promote either aziridination or C–H amination. The scope and synthetic utility of various silver catalysts are described, as well as preliminary investigations into the mechanisms of silver-catalyzed aminations.
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Xiaobin, Chengxi Zhang, Chenchen Wang, et al. "Modular synthesis of (C-10 to C-13)-substituted-9,14-diaryl-9,14-dihydrodibenzo[a,c]phenazines via a subsequent Buchwald–Hartwig amination and C–H amination strategy." Chemical Communications 56, no. 15 (2020): 2260–63. http://dx.doi.org/10.1039/c9cc09997b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Collet, Florence, Camille Lescot, Chungen Liang, and Philippe Dauban. "Studies in catalytic C–H amination involving nitrene C–H insertion." Dalton Transactions 39, no. 43 (2010): 10401. http://dx.doi.org/10.1039/c0dt00283f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kantak, Abhishek A., Louis Marchetti, and Brenton DeBoef. "Regioselective C–H bond amination by aminoiodanes." Chemical Communications 51, no. 17 (2015): 3574–77. http://dx.doi.org/10.1039/c4cc10246k.

Full text
Abstract:
A new approach for the direct amination of 2-phenylpyridine derivatives using a diphthalimide-iodane and copper triflate has been developed. A series of different 2-phenylpyridine derivatives were aminated with yields up to 88%. Mechanistic investigations indicate that the reaction proceeds via a copper-mediated single electron transfer.
APA, Harvard, Vancouver, ISO, and other styles
25

Lapuh, María Ivana, Alejandro Dana, Pablo H. Di Chenna, Benjamin Darses, Fernando J. Durán, and Philippe Dauban. "Late-stage C–H amination of abietane diterpenoids." Organic & Biomolecular Chemistry 17, no. 19 (2019): 4736–46. http://dx.doi.org/10.1039/c9ob00272c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hou, Zhong-Wei, Laiqiang Li, and Lei Wang. "Organocatalytic electrochemical amination of benzylic C–H bonds." Organic Chemistry Frontiers 8, no. 17 (2021): 4700–4705. http://dx.doi.org/10.1039/d1qo00746g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Zhen, Yan Ding, and Jin Liu. "Study on Primary Reaction Kinetics of Melamine Aminated Monomethoxylpoly (ethylene Glycol)." Advanced Materials Research 450-451 (January 2012): 374–78. http://dx.doi.org/10.4028/www.scientific.net/amr.450-451.374.

Full text
Abstract:
The reaction kinetics of amination of monomethoxylpoly (ethylene glycol) (mPEG) with melamine (MA) at the molar ratio of 1:1 was studied by FTIR. This amination reaction was carried out with potassium hydroxide as reaction catalyst under high-pressure conditions at different temperature (160 °C, 170 °C, 180 °C, and 190°C) for different time (2 h, 3 h, 4 h, 5 h and 6 h). A series of melamine aminated monomethoxylpoly (ethylene glycol) (MA-mPEG) were synthesized, and the long chain of polyethylene glycol ether was grafted on the amino groups of melamine by amination. The amination kinetics param
APA, Harvard, Vancouver, ISO, and other styles
28

Sun, Yiming, Qifeng Ding, Yang Yu, Yide He, and Fei Huang. "Progress in Co-Catalyzed C-H Amination." Chinese Journal of Organic Chemistry 39, no. 12 (2019): 3363. http://dx.doi.org/10.6023/cjoc201906026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

See, Yi Yang, and Melanie S. Sanford. "C–H Amination of Arenes with Hydroxylamine." Organic Letters 22, no. 8 (2020): 2931–34. http://dx.doi.org/10.1021/acs.orglett.0c00598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Peng, Gen-Cheng Li, Pankaj Jain, et al. "Ligand-Promotedmeta-C–H Amination and Alkynylation." Journal of the American Chemical Society 138, no. 42 (2016): 14092–99. http://dx.doi.org/10.1021/jacs.6b08942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Collet, Florence, Camille Lescot, and Philippe Dauban. "Catalytic C–H amination: the stereoselectivity issue." Chemical Society Reviews 40, no. 4 (2011): 1926. http://dx.doi.org/10.1039/c0cs00095g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kohmura, Yoshinori, and Tsutomu Katsuki. "Mn(salen)-catalyzed enantioselective CH amination." Tetrahedron Letters 42, no. 19 (2001): 3339–42. http://dx.doi.org/10.1016/s0040-4039(01)00427-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Juliá, Fabio, Alessandro Ruffoni, and Daniele Leonori. "Aromatic C–H Amination Using Alkyl Amines." Trends in Chemistry 2, no. 5 (2020): 480–81. http://dx.doi.org/10.1016/j.trechm.2020.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Müller, P., R. Dodd, P. Dauban, C. Liang, F. Robert-Peillard, and C. Fruit. "Rhodium-Catalyzed Diastereoselective Intermolecular C-H Amination." Synfacts 2006, no. 9 (2006): 0912. http://dx.doi.org/10.1055/s-2006-942060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Alt, Isabel T., and Bernd Plietker. "Iron-Catalyzed Intramolecular C(sp2 )−H Amination." Angewandte Chemie International Edition 55, no. 4 (2015): 1519–22. http://dx.doi.org/10.1002/anie.201510045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jeffrey, Jenna L., and Richmond Sarpong. "ChemInform Abstract: Intramolecular C(sp3)-H Amination." ChemInform 45, no. 1 (2013): no. http://dx.doi.org/10.1002/chin.201401254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Louillat, Marie-Laure, and Frederic W. Patureau. "ChemInform Abstract: Oxidative C-H Amination Reactions." ChemInform 45, no. 17 (2014): no. http://dx.doi.org/10.1002/chin.201417273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gephart, Raymond T., Daria L. Huang, Mae Joanne B. Aguila, Graham Schmidt, Andi Shahu, and Timothy H. Warren. "Catalytic CH Amination with Aromatic Amines." Angewandte Chemie 124, no. 26 (2012): 6594–98. http://dx.doi.org/10.1002/ange.201201921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gephart, Raymond T., Daria L. Huang, Mae Joanne B. Aguila, Graham Schmidt, Andi Shahu, and Timothy H. Warren. "Catalytic CH Amination with Aromatic Amines." Angewandte Chemie International Edition 51, no. 26 (2012): 6488–92. http://dx.doi.org/10.1002/anie.201201921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Paradine, Shauna M., and M. Christina White. "Iron-Catalyzed Intramolecular Allylic C–H Amination." Journal of the American Chemical Society 134, no. 4 (2012): 2036–39. http://dx.doi.org/10.1021/ja211600g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Völler, Jan-Stefan. "Primary amination of C(sp3)–H bonds." Nature Catalysis 3, no. 6 (2020): 473. http://dx.doi.org/10.1038/s41929-020-0477-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Puthanveedu, Mahesh, Vladislav Khamraev, Lukas Brieger, Carsten Strohmann, and Andrey P. Antonchick. "Electrochemical Dehydrogenative C(sp 2 )−H Amination." Chemistry – A European Journal 27, no. 30 (2021): 8008–12. http://dx.doi.org/10.1002/chem.202100960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Evoniuk, Christopher J., Sean P. Hill, Kenneth Hanson, and Igor V. Alabugin. "Double C–H amination by consecutive SET oxidations." Chemical Communications 52, no. 44 (2016): 7138–41. http://dx.doi.org/10.1039/c6cc03106d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhu, Xu, and Shunsuke Chiba. "TEMPO-mediated allylic C–H amination with hydrazones." Org. Biomol. Chem. 12, no. 26 (2014): 4567–70. http://dx.doi.org/10.1039/c4ob00839a.

Full text
Abstract:
TEMPO-mediated reactions of alkenyl hydrazones afforded azaheterocycles via sp<sup>3</sup> C–H allylic amination. The transformation is featured by a sequence of remote allylic H-radical shift and allylic homolytic substitution with hydrazone radicals.
APA, Harvard, Vancouver, ISO, and other styles
45

Song, Liangliang, Guilong Tian, Johan Van der Eycken, and Erik V. Van der Eycken. "Intramolecular cascade annulation triggered by rhodium(III)-catalyzed sequential C(sp2)–H activation and C(sp3)–H amination." Beilstein Journal of Organic Chemistry 15 (February 27, 2019): 571–76. http://dx.doi.org/10.3762/bjoc.15.52.

Full text
Abstract:
A rhodium(III)-catalyzed intramolecular oxidative annulation of O-substituted N-hydroxyacrylamides for the construction of indolizinones via sequential C(sp2)–H activation and C(sp3)–H amination has been developed. This approach shows excellent functional-group tolerance. The synthesized scaffold forms the core of many natural products with pharmacological relevance.
APA, Harvard, Vancouver, ISO, and other styles
46

Shi, Jianxue, Jingjing Li, Wenjing Zhao, et al. "Regioselective intramolecular sp2 C–H amination: direct vs. mediated electrooxidation." Organic Chemistry Frontiers 8, no. 7 (2021): 1581–86. http://dx.doi.org/10.1039/d0qo01584a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Villanueva, Omar, Nina Mace Weldy, Simon B. Blakey, and Cora E. MacBeth. "Cobalt catalyzed sp3 C–H amination utilizing aryl azides." Chemical Science 6, no. 11 (2015): 6672–75. http://dx.doi.org/10.1039/c5sc01162k.

Full text
Abstract:
A dinuclear Co(ii) complex supported by a modular, tunable redox-active ligand system is capable of selective C–H amination to form indolines from aryl azides in good yields at low (1 mol%) catalyst loading.
APA, Harvard, Vancouver, ISO, and other styles
48

Zhang, Xuelin, Ruizhi Guo, and Xiaodan Zhao. "Organoselenium-catalyzed synthesis of indoles through intramolecular C–H amination." Organic Chemistry Frontiers 2, no. 10 (2015): 1334–37. http://dx.doi.org/10.1039/c5qo00179j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lang, Kai, Chaoqun Li, Isaac Kim, and X. Peter Zhang. "Enantioconvergent Amination of Racemic Tertiary C–H Bonds." Journal of the American Chemical Society 142, no. 49 (2020): 20902–11. http://dx.doi.org/10.1021/jacs.0c11103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Paudyal, M. P., A. M. Adebesin, S. R. Burt, et al. "Dirhodium-catalyzed C-H arene amination using hydroxylamines." Science 353, no. 6304 (2016): 1144–47. http://dx.doi.org/10.1126/science.aaf8713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!