To see the other types of publications on this topic, follow the link: C-H silylation.

Journal articles on the topic 'C-H silylation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'C-H silylation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wang, Hong, Guanghui Wang, and Pengfei Li. "Iridium-catalyzed intermolecular directed dehydrogenative ortho C–H silylation." Organic Chemistry Frontiers 4, no. 10 (2017): 1943–46. http://dx.doi.org/10.1039/c7qo00340d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Yanghui, Bo Zhou, and Ailan Lu. "Pd-Catalyzed C–H Silylation Reactions with Disilanes." Synlett 30, no. 06 (2018): 685–93. http://dx.doi.org/10.1055/s-0037-1610339.

Full text
Abstract:
Pd-catalyzed C–H silylation reactions remain underdeveloped. General strategies usually rely on the use of complex bidentate directing groups. C,C-Palladacycles exhibit extremely high reactivity towards hexamethyldisilane and can be disilylated very efficiently. The C,C-palladacycles are prepared through halide-directed C–H activation. This account introduces Pd-catalyzed C–H silylation reactions with di­silanes as the silyl source, and is focused on studies on the silylation of C,C-palladacycles.1 Introduction and Background2 Allylic C–H Silylation Reaction3 Coordinating-Ligand-Directed C–H S
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Shun, Qiao Lin, Chunshu Liao, et al. "Ruthenium(ii)/acetate catalyzed intermolecular dehydrogenative ortho C–H silylation of 2-aryl N-containing heterocycles." Organic & Biomolecular Chemistry 17, no. 16 (2019): 4115–20. http://dx.doi.org/10.1039/c9ob00609e.

Full text
Abstract:
The application of a RuHCl(CO)(PPh<sub>3</sub>)<sub>3</sub>–OAc catalytic system for the selective intermolecular mono C–H silylation of 2-aryl heterocycles using HSiEt<sub>3</sub> as the silylating reagent is described for the first time.
APA, Harvard, Vancouver, ISO, and other styles
4

Miyake, Yoshihiro, Shuhei Akahori, Tetsuaki Fujihara, Yasushi Tsuji, and Hiroshi Shinokubo. "Synthesis of Tetrasilatetrathia[8]circulenes through C–I and C–H Silylation." Synthesis 53, no. 17 (2021): 2995–3000. http://dx.doi.org/10.1055/a-1437-9917.

Full text
Abstract:
AbstractWe have succeeded in the synthesis of various tetrasilatetrathia[8]circulenes with alkyl and aryl groups on the silicon atoms. We also disclosed the effect of phosphine ligands on palladium-catalyzed silylation of tetraiodotetrathienylene and rhodium-catalyzed intramolecular silylation of tetrasilyltetrathienylenes. Experimental and theoretical analysis revealed the effect of the substituents on the silicon atoms on their electronic property.
APA, Harvard, Vancouver, ISO, and other styles
5

Richter, Sven C., and Martin Oestreich. "Emerging Strategies for C–H Silylation." Trends in Chemistry 2, no. 1 (2020): 13–27. http://dx.doi.org/10.1016/j.trechm.2019.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Zheng, Huaquan Fang, Qiaoxing He, and Guixia Liu. "Pincer Ruthenium Catalyzed Intramolecular Silylation of C(sp2)–H Bonds." Synlett 28, no. 18 (2017): 2468–72. http://dx.doi.org/10.1055/s-0036-1590982.

Full text
Abstract:
Reported herein is a highly efficient intramolecular silylation of aromatic C–H bonds catalyzed by a pincer ruthenium complex, giving benzoxasiloles under relatively mild reaction conditions with broad substrate scope and low catalyst loadings. The silylation product can be further converted into a biaryl product by Pd-catalyzed Hiyama–­Denmark cross-coupling reactions.
APA, Harvard, Vancouver, ISO, and other styles
7

Bähr, Susanne, and Martin Oestreich. "The electrophilic aromatic substitution approach to C–H silylation and C–H borylation." Pure and Applied Chemistry 90, no. 4 (2018): 723–31. http://dx.doi.org/10.1515/pac-2017-0902.

Full text
Abstract:
AbstractSeveral approaches toward electrophilic C–H silylation of electron-rich arenes are discussed, comprising transition-metal-catalyzed processes as well as Lewis-acid- and Brønsted-acid-induced protocols. These methods differ in the catalytic generation of the silicon electrophile but share proton removal in form of dihydrogen. With slight modifications, these methods are often also applicable to the related electrophilic C–H borylation.
APA, Harvard, Vancouver, ISO, and other styles
8

Cheng, Chen, and John F. Hartwig. "Catalytic Silylation of Unactivated C–H Bonds." Chemical Reviews 115, no. 17 (2015): 8946–75. http://dx.doi.org/10.1021/cr5006414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Larsson, Johanna M., Tony S. N. Zhao, and Kálmán J. Szabó. "Palladium-Catalyzed Oxidative Allylic C−H Silylation." Organic Letters 13, no. 7 (2011): 1888–91. http://dx.doi.org/10.1021/ol200445b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Shihui, Peng Pan, Huaqiang Fan, Hao Li, Wei Wang, and Yongqiang Zhang. "Photocatalytic C–H silylation of heteroarenes by using trialkylhydrosilanes." Chemical Science 10, no. 13 (2019): 3817–25. http://dx.doi.org/10.1039/c9sc00046a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hartwig, John F., and Erik A. Romero. "Iridium-catalyzed silylation of unactivated C–H bonds." Tetrahedron 75, no. 31 (2019): 4059–70. http://dx.doi.org/10.1016/j.tet.2019.05.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yurino, Taiga. "Undirected Dehydrogenative Silylation of Aromatic C-H Bond." Journal of Synthetic Organic Chemistry, Japan 75, no. 1 (2017): 64–65. http://dx.doi.org/10.5059/yukigoseikyokaishi.75.64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Cheng, Chen, and John F. Hartwig. "Iridium-Catalyzed Silylation of Aryl C–H Bonds." Journal of the American Chemical Society 137, no. 2 (2015): 592–95. http://dx.doi.org/10.1021/ja511352u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhang, Qing-Wei, Kun An, Li-Chuan Liu, et al. "Rhodium-Catalyzed Intramolecular C−H Silylation by Silacyclobutanes." Angewandte Chemie International Edition 55, no. 21 (2016): 6319–23. http://dx.doi.org/10.1002/anie.201602376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhang, Qing-Wei, Kun An, Li-Chuan Liu, et al. "Rhodium-Catalyzed Intramolecular C−H Silylation by Silacyclobutanes." Angewandte Chemie 128, no. 21 (2016): 6427–31. http://dx.doi.org/10.1002/ange.201602376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Oyamada, Juzo, Masayoshi Nishiura, and Zhaomin Hou. "Scandium-Catalyzed Silylation of Aromatic CH Bonds." Angewandte Chemie 123, no. 45 (2011): 10908–11. http://dx.doi.org/10.1002/ange.201105636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Oyamada, Juzo, Masayoshi Nishiura, and Zhaomin Hou. "Scandium-Catalyzed Silylation of Aromatic CH Bonds." Angewandte Chemie International Edition 50, no. 45 (2011): 10720–23. http://dx.doi.org/10.1002/anie.201105636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Knochel, Paul, and Nadja Barl. "Scandium-Catalyzed Silylation of Aromatic C–H Bonds." Synfacts 8, no. 01 (2011): 0083. http://dx.doi.org/10.1055/s-0031-1289468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Toutov, Anton A., Wen-Bo Liu, Kerry N. Betz, Brian M. Stoltz, and Robert H. Grubbs. "Catalytic C–H bond silylation of aromatic heterocycles." Nature Protocols 10, no. 12 (2015): 1897–903. http://dx.doi.org/10.1038/nprot.2015.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Devaraj, K., C. Sollert, C. Juds, P. J. Gates, and L. T. Pilarski. "Ru-catalysed C–H silylation of unprotected gramines, tryptamines and their congeners." Chemical Communications 52, no. 34 (2016): 5868–71. http://dx.doi.org/10.1039/c6cc00803h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Liu, Pei, Na Hao, Dong Yang, et al. "Iron-catalyzed para-selective C–H silylation of benzamide derivatives with chlorosilanes." Organic Chemistry Frontiers 8, no. 11 (2021): 2442–48. http://dx.doi.org/10.1039/d1qo00243k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Xu, Wengang, Jie Hui Pek, and Naohiko Yoshikai. "Iron-Catalyzed Directed C−H Silylation of Pivalophenone N−H Imines." Asian Journal of Organic Chemistry 7, no. 7 (2018): 1351–54. http://dx.doi.org/10.1002/ajoc.201800171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lee, Taegyo, and John F. Hartwig. "Rhodium-Catalyzed Enantioselective Silylation of Cyclopropyl C−H Bonds." Angewandte Chemie 128, no. 30 (2016): 8865–69. http://dx.doi.org/10.1002/ange.201603153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Toutov, Anton A., Kerry N. Betz, David P. Schuman, et al. "Alkali Metal-Hydroxide-Catalyzed C(sp)–H Bond silylation." Journal of the American Chemical Society 139, no. 4 (2017): 1668–74. http://dx.doi.org/10.1021/jacs.6b12114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lee, Taegyo, and John F. Hartwig. "Rhodium-Catalyzed Enantioselective Silylation of Cyclopropyl C−H Bonds." Angewandte Chemie International Edition 55, no. 30 (2016): 8723–27. http://dx.doi.org/10.1002/anie.201603153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lu, Biao, and John R Falck. "Efficient Iridium-Catalyzed CH Functionalization/Silylation of Heteroarenes." Angewandte Chemie 120, no. 39 (2008): 7618–20. http://dx.doi.org/10.1002/ange.200802456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lu, Biao, and John R Falck. "Efficient Iridium-Catalyzed CH Functionalization/Silylation of Heteroarenes." Angewandte Chemie International Edition 47, no. 39 (2008): 7508–10. http://dx.doi.org/10.1002/anie.200802456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ma, Yuanhong, Baoli Wang, Liang Zhang, and Zhaomin Hou. "Boron-Catalyzed Aromatic C–H Bond Silylation with Hydrosilanes." Journal of the American Chemical Society 138, no. 11 (2016): 3663–66. http://dx.doi.org/10.1021/jacs.6b01349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ji, Xiaoming, Feng Wei, Bin Wan, Cang Cheng, and Yanghui Zhang. "Palladium-catalyzed intermolecular C–H silylation initiated by aminopalladation." Chemical Communications 56, no. 56 (2020): 7801–4. http://dx.doi.org/10.1039/d0cc00872a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Cheng, Chen, and John F. Hartwig. "ChemInform Abstract: Catalytic Silylation of Unactivated C-H Bonds." ChemInform 46, no. 45 (2015): no. http://dx.doi.org/10.1002/chin.201545254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Larsson, Johanna M., Tony S. N. Zhao, and Kalman J. Szabo. "ChemInform Abstract: Palladium-Catalyzed Oxidative Allylic C-H Silylation." ChemInform 42, no. 27 (2011): no. http://dx.doi.org/10.1002/chin.201127186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Pan, Jin-Long, Quan-Zhe Li, Ting-Yu Zhang, Si-Hua Hou, Jun-Cheng Kang, and Shu-Yu Zhang. "Palladium-catalyzed direct intermolecular silylation of remote unactivated C(sp3)–H bonds." Chemical Communications 52, no. 89 (2016): 13151–54. http://dx.doi.org/10.1039/c6cc07885k.

Full text
Abstract:
An efficient and convenient method has been developed to achieve direct silylation of unactivated remote primary or secondary C(sp<sup>3</sup>)–H bonds to form C–Si bonds with hexamethyldisilane (HMDS).
APA, Harvard, Vancouver, ISO, and other styles
33

Areerob, Thanita, Nurak Grisdanurak, and Siriluk Chiarakorn. "Improvement of BTEX Adsorption Using Silylated RH-MCM-41 Synthesized from Rice Husk Silica." Materials Science Forum 700 (September 2011): 231–35. http://dx.doi.org/10.4028/www.scientific.net/msf.700.231.

Full text
Abstract:
RH-MCM-41, a mesoporous molecular sieve, was successfully synthesized from silica extracted from rice husk. The presence of silanol functional group (Si-OH) on its surface causes adverse effects on the adsorption of some non-polar compounds, especially benzene, toluene, ethylbenzene and xylene (BTEX). Thus, this work aims to enhance the adsorbability of RH-MCM-41 on BTEX adsorption by in-situ and ex-situ silylation. Trimethylchlorosilane (TMCS) was used as a silylating reagent to reduce silanol groups. The ex-situ silylation was carried out by adding as-synthesized RH-MCM-41 into 5% v/v of TMC
APA, Harvard, Vancouver, ISO, and other styles
34

Liu, Pei, Na Hao, Dong Yang, et al. "Correction: Iron-catalyzed para-selective C–H silylation of benzamide derivatives with chlorosilanes." Organic Chemistry Frontiers 8, no. 11 (2021): 2863. http://dx.doi.org/10.1039/d1qo90032c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Bin, and Pierre H. Dixneuf. "Metal-catalyzed silylation of sp3C–H bonds." Chemical Society Reviews 50, no. 8 (2021): 5062–85. http://dx.doi.org/10.1039/d0cs01392g.

Full text
Abstract:
Metal-catalyzed activations of inert sp<sup>3</sup>C–H bonds have recently brought a revolution in the synthesis of useful molecules and molecular materials, due to the interest of the formed sp<sup>3</sup>C–SiR<sub>3</sub> silanes, stable organometallic species, and for further functionalizations that sp<sup>3</sup>C–H bonds cannot reach directly.
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Jian-Chih, Chih-Hua Chen, Kai-Chi Chang, et al. "Evaluation of the Grafting Efficacy of Active Biomolecules of Phosphatidylcholine and Type I Collagen on Polyether Ether Ketone: In Vitro and In Vivo." Polymers 13, no. 13 (2021): 2081. http://dx.doi.org/10.3390/polym13132081.

Full text
Abstract:
Biomolecule grafting on polyether ether ketone (PEEK) was used to improve cell affinity caused by surface inertness. This study demonstrated the sequence-polished (P) and sulfonated (SA) PEEK modification to make a 3D structure, active biomolecule graftings through PEEK silylation (SA/SI) and then processed with phosphatidylcholine (with silylation of SA/SI/PC; without SA/PC) and type I collagen (COL I, with silylation of SA/SI/C; without SA/C). Different modified PEEKs were implanted for 4, 8, and 12 weeks for histology. Sulfonated PEEK of SA showed the surface roughness was significantly inc
APA, Harvard, Vancouver, ISO, and other styles
37

Hartwig, John F. "Borylation and Silylation of C–H Bonds: A Platform for Diverse C–H Bond Functionalizations." Accounts of Chemical Research 45, no. 6 (2011): 864–73. http://dx.doi.org/10.1021/ar200206a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, Ming, Shan Gao, Juan Tang, et al. "Asymmetric synthesis of chiral organosilicon compounds via transition metal-catalyzed stereoselective C–H activation and silylation." Chemical Communications 57, no. 67 (2021): 8250–63. http://dx.doi.org/10.1039/d1cc02839a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Murata, Miki, and Yuna Maeda. "Ruthenium-Catalyzed Functional-Group-Directed C-H Silylation and Borylation." Journal of Synthetic Organic Chemistry, Japan 77, no. 9 (2019): 876–82. http://dx.doi.org/10.5059/yukigoseikyokaishi.77.876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Su, Bo, and John F. Hartwig. "Ir-Catalyzed Enantioselective, Intramolecular Silylation of Methyl C–H Bonds." Journal of the American Chemical Society 139, no. 35 (2017): 12137–40. http://dx.doi.org/10.1021/jacs.7b06679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Minami, Yasunori, Takeshi Komiyama, and Tamejiro Hiyama. "Straightforward Synthesis of HOMSi Reagents via sp2 C–H Silylation." Chemistry Letters 44, no. 8 (2015): 1065–67. http://dx.doi.org/10.1246/cl.150359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Oyamada, Juzo, Masayoshi Nishiura, and Zhaomin Hou. "ChemInform Abstract: Scandium-Catalyzed Silylation of Aromatic C-H Bonds." ChemInform 43, no. 13 (2012): no. http://dx.doi.org/10.1002/chin.201213200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kuninobu, Yoichiro, Takahiro Nakahara, Hirotaka Takeshima, and Kazuhiko Takai. "Rhodium-Catalyzed Intramolecular Silylation of Unactivated C(sp3)–H Bonds." Organic Letters 15, no. 2 (2013): 426–28. http://dx.doi.org/10.1021/ol303353m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Cheng, Chen, and John F. Hartwig. "ChemInform Abstract: Iridium-Catalyzed Silylation of Aryl C-H Bonds." ChemInform 46, no. 27 (2015): no. http://dx.doi.org/10.1002/chin.201527237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

He, Tao, Bin Li, Lichuan Liu, Wenpeng Ma, and Wei He. "Rhodium‐Catalyzed Intermolecular Silylation of C sp −H by Silacyclobutanes." Chemistry – A European Journal 27, no. 18 (2021): 5648–52. http://dx.doi.org/10.1002/chem.202100084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Du, Pan, and Jiyang Zhao. "Comparative DFT study of metal-free Lewis acid-catalyzed C–H and N–H silylation of (hetero)arenes: mechanistic studies and expansion of catalyst and substrate scope." RSC Advances 9, no. 64 (2019): 37675–85. http://dx.doi.org/10.1039/c9ra07985h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Rubio-Pérez, Laura, Manuel Iglesias, Julen Munárriz, et al. "A well-defined NHC–Ir(iii) catalyst for the silylation of aromatic C–H bonds: substrate survey and mechanistic insights." Chemical Science 8, no. 7 (2017): 4811–22. http://dx.doi.org/10.1039/c6sc04899d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yan, Zhi-Bo, Meng Peng, Qi-Long Chen, et al. "An effective and versatile strategy for the synthesis of structurally diverse heteroarylsilanes via Ir(iii)-catalyzed C–H silylation." Chemical Science 12, no. 28 (2021): 9748–53. http://dx.doi.org/10.1039/d1sc02344f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Huang, Hongtai, Tao Li, Jiazhuang Wang, Guiping Qin, and Tiebo Xiao. "Recent Advance in Transition-Metal-Catalyzed Silylation of C-H Bonds." Chinese Journal of Organic Chemistry 39, no. 6 (2019): 1511. http://dx.doi.org/10.6023/cjoc201903078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Li, Wei, Xiaolei Huang, and Jingsong You. "Ruthenium-Catalyzed Intermolecular Direct Silylation of Unreactive C(sp3)–H Bonds." Organic Letters 18, no. 4 (2016): 666–68. http://dx.doi.org/10.1021/acs.orglett.5b03593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!