Academic literature on the topic 'C3S [Silicate tricalcique]'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'C3S [Silicate tricalcique].'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "C3S [Silicate tricalcique]"

1

Qi, Tianqi, Wei Zhou, Xinghong Liu, Qiao Wang, and Sifan Zhang. "Predictive Hydration Model of Portland Cement and Its Main Minerals Based on Dissolution Theory and Water Diffusion Theory." Materials 14, no. 3 (January 27, 2021): 595. http://dx.doi.org/10.3390/ma14030595.

Full text
Abstract:
Efficient and accurate cement hydration simulation is an important issue for predicting and analyzing concrete’s performance evolution. A large number of models have been proposed to describe cement hydration. Some models can simulate the test results with high accuracy by constructing reasonable functions, but they are based on mathematical regression and lack of physical background and prediction ability. Other models, such as the famous HYMOSTRUC model and CEMHYD3D model, can predict the hydration rate and microstructure evolution of cement based on its initial microstructure. However, this kind of prediction model also has some limitations, such as the inability to fully consider the properties of cement slurry, or being too complicated for use in finite element analysis (FEA). In this study, the hydration mechanisms of the main minerals in Portland cement (PC) are expounded, and the corresponding hydration model is built. Firstly, a modified particle hydration model of tricalcium silicate (C3S) and alite is proposed based on the moisture diffusion theory and the calcium silicate hydrate (C-S-H) barrier layer hypothesis, which can predict the hydration degree of C3S and alite throughout the age. Taking the hydration model of C3S as a reference, the hydration model of dicalcium silicate (C2S) is established, and the synergistic hydration effect of C3S and C2S is calibrated by analyzing the published test results. The hydration model of tricalcium aluminate(C3A)-gypsum system is then designed by combining the theory of dissolution and diffusion. This model can reflect the hydration characteristics of C3A in different stages, and quantify the response of the hydration process of C3A to different gypsum content, water–cement ratio, and particle size distribution. Finally, several correction coefficients are introduced into the hydration model of the main mineral, to consider the synergistic hydration effect among the minerals to some extent and realize the prediction of the hydration of PC.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhao, Yan Ting, Xi Chen, Ling Chao Lu, Yong Bo Huang, and Jie Zhang. "Determination of Tricalcium Silicates Crystal Forms in Belite-Barium Calcium Sulphoaluminate Cement." Applied Mechanics and Materials 541-542 (March 2014): 204–8. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.204.

Full text
Abstract:
Chemical method of extraction was adopted in the study, and aqueous solution of potassium hydroxide and sucrose (KOSH) was used to obtain the clinker rich in silicate phases (alite and belite) in order to get the crystal forms of tricalcium silicates (C3S) in the belite-barium calcium sulphoaluminate cement clinker. The crystal forms of C3S were finally determined by XRD (X-ray diffraction) spectrums through its characteristic windows of the diffraction spectrums. Results shows that, C3S exists in the innovative cement system mainly in the form of M1; C2.75B1.25A3can completely dissolve in KOSH solution while its dissolution is inhibited in the cement system; after KOSH treatment, diffraction peaks of C4AF disappear totally and peaks of C3A has weakened to great extent; for the cement clinker, the clinker ground for 90min has the best extraction rate.
APA, Harvard, Vancouver, ISO, and other styles
3

Qi, Chongchong, Qiusong Chen, and Andy Fourie. "Role of Mg Impurity in the Water Adsorption over Low-Index Surfaces of Calcium Silicates: A DFT-D Study." Minerals 10, no. 8 (July 26, 2020): 665. http://dx.doi.org/10.3390/min10080665.

Full text
Abstract:
Calcium silicates are the most predominant phases in ordinary Portland cement, inside which magnesium is one of the momentous impurities. In this work, using the first-principles density functional theory (DFT), the impurity formation energy (Efor) of Mg substituting Ca was calculated. The adsorption energy (Ead) and configuration of the single water molecule over Mg-doped β-dicalcium silicate (β-C2S) and M3-tricalcium silicate (M3-C3S) surfaces were investigated. The obtained Mg-doped results were compared with the pristine results to reveal the impact of Mg doping. The results show that the Efor was positive for all but one of the calcium silicates surfaces (ranged from −0.02 eV to 1.58 eV), indicating the Mg substituting for Ca was not energetically favorable. The Ead of a water molecule on Mg-doped β-C2S surfaces ranged from –0.598 eV to −1.249 eV with the molecular adsorption being the energetically favorable form. In contrast, the Ead on M3-C3S surfaces ranged from −0.699 eV to −4.008 eV and the more energetically favorable adsorption on M3-C3S surfaces was dissociative adsorption. The influence of Mg doping was important since it affected the reactivity of surface Ca/Mg sites, the Ead of the single water adsorption, as well as the adsorption configuration compared with the water adsorption on pristine surfaces.
APA, Harvard, Vancouver, ISO, and other styles
4

Fa'izzah, Maulidia, Widjijono Widjijono, Yuichi Kamiya, and Nuryono Nuryono. "Synthesis and Characterization of White Mineral Trioxide Aggregate Using Precipitated Calcium Carbonate Extracted from Limestone." Key Engineering Materials 840 (April 2020): 330–35. http://dx.doi.org/10.4028/www.scientific.net/kem.840.330.

Full text
Abstract:
White Mineral Trioxide Aggregate (WMTA) using precipitated CaCO3 (PCC) from limestone has been synthesized. PCC in calcite structure was extracted from limestone by calcination at 900 °C for 3 h, dissolved in 0.8 M nitric acid solution and followed with carbonation for 60 minutes. PCC was used for the synthesis of WMTA by mixing with tetraethoxyorthosilicate, bismuth oxide, aluminum oxide, catalyst of with HNO3 and NH3 solution and thermally treated at 1100 °C for 3 h. The products were characterized with Thermal Gravimetric Analysis-Differential Thermal Analysis (TGA-DTG), X-ray Diffraction (XRD), Frontier-Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM) and X-ray Fluorescence (XRF). The results showed that the PCC dominated calcite structure was obtained with 75.25% in yield and 99.42% in purity. The WMTA has been successfully synthesized by low thermal treatment at 1100 °C using catalysts of HNO3 and NH3 solution, proven by the presence of tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A), and Bi2O3 in WMTA.
APA, Harvard, Vancouver, ISO, and other styles
5

Moon, Ho-Jin, Jung-Hwan Lee, Joong-Hyun Kim, Jonathan C. Knowles, Yong-Bum Cho, Dong-Hoon Shin, Hae-Hyoung Lee, and Hae-Won Kim. "Reformulated mineral trioxide aggregate components and the assessments for use as future dental regenerative cements." Journal of Tissue Engineering 9 (January 2018): 204173141880739. http://dx.doi.org/10.1177/2041731418807396.

Full text
Abstract:
Mineral trioxide aggregate, which comprises three major inorganic components, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A), is promising regenerative cement for dentistry. While mineral trioxide aggregate has been successfully applied in retrograde filling, the exact role of each component in the mineral trioxide aggregate system is largely unexplored. In this study, we individually synthesized the three components, namely, C3S, C2A, and C3A, and then mixed them to achieve various compositions (a total of 14 compositions including those similar to mineral trioxide aggregate). All powders were fabricated to obtain high purity. The setting reaction of all cement compositions was within 40 min, which is shorter than for commercial mineral trioxide aggregate (~150 min). Over time, the pH of the composed cements initially showed an abrupt increase and then plateaued (pH 10–12), which is a typical behavior of mineral trioxide aggregate. The compression and tensile strength of the composed cements increased (2–4 times the initial values) with time for up to 21 days in an aqueous medium, the degree to which largely depended on the composition. The cell viability test with rat mesenchymal stem cells revealed no toxicity for any composition except C3A, which contained aluminum. To confirm the in vivo biological response, cement was retro-filled into an extracted rat tooth and the complex was re-implanted. Four weeks post-operation, histological assessments revealed that C3A caused significant tissue toxicity, while good tissue compatibility was observed with the other compositions. Taken together, these results reveal that of the three major constituents of mineral trioxide aggregate, C3A generated significant toxicity in vitro and in vivo, although it accelerated setting time. This study highlights the need for careful consideration with regard to the composition of mineral trioxide aggregate, and if possible (when other properties are satisfactory), the C3A component should be avoided, which can be achieved by the mixture of individual components.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Yan Jun, and Yong Chao Zheng. "Active Belite Cement Clinker Produced with Mineral Waste." Advanced Materials Research 610-613 (December 2012): 2378–85. http://dx.doi.org/10.4028/www.scientific.net/amr.610-613.2378.

Full text
Abstract:
This paper presents a laboratory study on active belite cement linker using mineral waste as one of the major raw meal components. The main chemical component of mineral waste employed in this study is silica (SiO2), around 70%. The raw meals were soaked in Muffle Furnace at 1350oC for 10 minutes and 20minutes respectively, then, cooled down to room temperature using air blower. Boron Oxide was used to stabilize high temperature phases of C2S. QXRD analysis indicates that active belite cement clinker has major mineral components consisting of Dicalcium Silicate (C2S), Ferrite (C2 (A0.48F1.52) O5) and trace amount of Tricalcium Silicate (C3S). Among them, Dicalcium silicate is over 85 percent, Ferrite around 10 percent and Tricalcium silicate less than 10 percent. Also, significant amount of high temperature polymorphic C2S was stabilized under room temperature. Among polymorphic belite phases, αH-C2S accounts for around 66% of cement clinker, and αL-C2S for about 22% of cement clinker. Scanning Eαlectronic Microscope (SEM) analysis also shows coαnsiderable round grains of C2S. TGA-DSC spectrum indicated there is no significant phase change while cement clinker was cooling down. Also, the mechanical tests on active belite cement show that active belite cement clinker has a slow strength development at early ages, but rapid strength gain over 70Mpa at 28 days. Thus, this active belite cement clinker demonstrates very promising prospect in sustainable cement industry development.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Lin, Xu Wang, Xiao Dong Shen, Su Hua Ma, and Wei Qiang Zhou. "Crystal Structure and Hydration Characteristics of Tricalcium Silicate Doped with Magnesium Oxide." Advanced Materials Research 936 (June 2014): 1336–41. http://dx.doi.org/10.4028/www.scientific.net/amr.936.1336.

Full text
Abstract:
The research investigates various methods to identify magnesium oxide influences on the crystal structure and hydration properties of tricalcium silicate. The f-CaO content of the clinkers were analyzed by chemical analysis. The complex disordered superstructure of the tricalcium silicate has been studied by a joint XRD, NMR and TEM. The results show that MgO exerts a remarkable influence on the polymorphisms of C3S. Mg is not only substitutional atom but also interstitial atom in the crystal lattice of tricalcium silicate. The HRTEM pattern of C3S doped with MgO is covered by the various irregular lattice. The addition of appropriate amount of MgO in raw meal can change the formation kinetic of C3S, slightly perturb the environment of SiO44- tetrahedral, modify the crystal structure of C3S and affect the hydration activity. Doped with MgO in the raw meal can slow down the hydration rate of alite slightly in early stage.
APA, Harvard, Vancouver, ISO, and other styles
8

., Marhaini, Eka Sri Yusmartini, and Kurnia Aini. "The Effect of Tricalcium Silicate (C3S) Percentage in Clinkerson the Cement Quality." International Journal of Engineering & Technology 10, no. 1 (January 13, 2021): 23. http://dx.doi.org/10.14419/ijet.v10i1.31294.

Full text
Abstract:
Composite cement products produced by national cement factories in Indonesia should follow the required quality standards. The quality standard of composite cement refers to the SNI 7064:2014. Some physical parameters of the quality standards set are mortar compressive strength and autoclave expansion. Compressive strength is influenced by C3S and C2S in the clinker. The reaction of the formation of mineralogical compounds occurs when clinkers formed. Whereas the expansion by autoclave is influenced by the levels of free lime in the cement. This research was conducted to determine the effect of the percentage of tricalcium silicate (C3S) on the quality of cement with free lime <2% and free lime > 2% with variations of C3S in clinkers, namely 55%, 57%, 59%, 61%, 63%, 65%, and 67%. Physical parameters tested in this study are compressive strength of mortar, blaine, and autoclave expansion. While the chemical parameters tested in this study are free lime in cement and SO3. Based on the research, it was found that if the same percentage of C3S quality of cement having FCaO <2%, the initial compressive strength results were greater than FCaO> 2%, the ideal condition of the development of compressive strength for FcaO > 2%, 3 to 7 days was at the percentage of C3S clinker of 63,48%. Whereas the development of ideal compressive strength for 7 to 28 days is at the clinker C3S percentage of 64,85%. For FCaO <2% the ideal condition 3 days to 7 days is at the percentage of clinker C3S of 62,79% and the development of compressive strength 7 to 28 days is at the percentage of clinker C3S of 54.77%. The expansion with autoclave experiencing expansion that does not meet the minimum requirements of SNI 7064:2014 are samples with a percentage of C3S 54,86% and 61% with FCaO > 2%.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Yan Jun, and Yong Chao Zheng. "Mineral Waste Coupled with Boron Oxide for Producing Active Belite Cement Clinker." Applied Mechanics and Materials 405-408 (September 2013): 2564–75. http://dx.doi.org/10.4028/www.scientific.net/amm.405-408.2564.

Full text
Abstract:
This paper presents a laboratory study on active belite cement clinker using boron oxide as dopant to stabilize high temperature phases of Dicalcium silicate (C2S), and mineral waste as siliceous materials in complete replacement of clay. The clinker samples were soaked in Muffle Furnace at different burning temperatures and for various time durations, and then, cooled down to room temperature using air blower. Quantitative X-ray Diffraction analysis (QXRD) by Rietveld method indicates that major mineral components are Dicalcium Silicate (C2S), Ferrite (C2 (A0.48F1.52) O5) and trace amount of Tricalcium Silicate (C3S) in the cement clinkers. Among them, Dicalcium silicate is over 85 percent, Ferrite around 10 percent and Tricalcium silicate less than 10 percent. Thermogravimetric and Differential Scanning Calorimetric (TGA-DSC) spectrum shows that there is no significant phase change while cement clinker was cooling down, which means significant amount of high temperature polymorphic C2S was stabilized during cooling process. It is agreeable with the results from QXRD analysis. Specifically, among polymorphic belite phases, αH-C2S accounts for around 66% of cement clinker, and αL-C2S for about 22% of cement clinker. In addition, massive belite phase was identified by Scanning Electronic Microscope (SEM) analysis and Light Microscopy analysis. At last, the mechanical tests on active belite cement show that active belite cement clinker has a slow strength development at early ages, but rapid strength gain at 28 days in comparison with belite clinker without adding boron oxide. Thus, this active belite cement clinker demonstrates very promising prospect in sustainable cement industry development. Keywords: Active Belite Cement Clinker; Doped; Boron Oxide; αH-C2S; αL-C2S; Strength Development
APA, Harvard, Vancouver, ISO, and other styles
10

Ghadafi, Muhamad, Sri Juari Santosa, Yuichi Kamiya, and Nuryono Nuryono. "Free Na and Less Fe Compositions of SiO2 Extracted from Rice Husk Ash as the Silica Source for Synthesis of White Mineral Trioxide Aggregate." Key Engineering Materials 840 (April 2020): 311–17. http://dx.doi.org/10.4028/www.scientific.net/kem.840.311.

Full text
Abstract:
In this research, we report the use of free sodium and less Fe ion silica (SiO2) for preparation of White Mineral Trioxide Aggregate (WMTA). SiO2 was extracted from rice husk ash (RHA) using NaOH 2 M and HCl 37% (v/v) and removal of Na was performed by washing the extracted SiO2 using deionized water with various volumes and techniques. Before extraction, RHA was calcined at a temperature of 700 °C for 3 h. Preparation of WMTA began with mixing the extracted SiO2 20%, CaO 60%, Al2O3 2%, and Bi2O3 18% (w/w). The mixture was calcined at temperatures of 1100 °C for 4 h, grounded to produce WMTA 200 mesh in size and then was characterized using Fourier Transformed Infrared (FTIR) spectrophotometer, X-ray Diffraction (XRD) and Scanning Electron Microscopy-Energy Dispersion X-ray (SEM-EDX). The WMTA characteristics were compared to that of the commercial WMTA ProRoot. The result shows that the silica that was potential as the silica source for WMTA preparation was extracted from RHA involving sonication and washing with 360 mL of deionized water per 10 g of RHA. It contained SiO2 of 94.2%, Fe2O3 of 0.03%, no Na2O, and the particle size of 1.51±0.46 µm. The characterization of WMTA shows that produced WMTA contained tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A) and BiO2, which is comparable to the commercial WMTA ProRoot.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "C3S [Silicate tricalcique]"

1

Girod-Labianca, Caroline. "Modélisation thermodynamique des diagrammes de phases des clinkers de ciments Portland : étude de l'influence des éléments mineurs : cas du phosphore." Paris 6, 2008. http://www.theses.fr/2008PA066158.

Full text
Abstract:
Le clinker, roche synthétique polyphasée, est le constituant principal des ciments Portland. Le silicate tricalcique (C3S) est la phase majoritaire du clinker anhydre et confère l’essentiel des résistances mécaniques du matériau hydraté (béton, mortier). Actuellement, les cimentiers brûlent dans leurs fours des farines animales détruites par les très hautes températures des fours. Toutefois, ces déchets introduisent du phosphore sous forme de cendres qui s’incorporent au clinker en cours de fabrication. Pour comprendre l’effet du phosphore sur les différents états chimiques du matériau, nous avons réalisé des échantillons de C3S dopés avec du P2O5 (0 à 0,9% en poids). L’étude de la structure et la microstructure de ces échantillons anhydres à montré la présence d’une phase supplémentaire de type α’-C2S enrichie en phosphore et localisée aux interfaces des grains de C3S dopés. L’hydratation de ces échantillons, suivie par microcalorimétrie, a monté un effet retardateur du phosphore sur la prise du C3S. Enfin, des essais de résistance mécanique à la compression réalisés sur des éprouvettes de mortier élaborées avec nos échantillons, ont montré que le dopage en phosphore semblait améliorer la résistance en compression du C3S. L’étude thermodynamique vise à comprendre ce qui se passe dans le four lors de la fabrication du clinker. Pour cela, nous avons développé une base de données spécifique aux phases des ciments à partir d’un bilan bibliographique des fonctions thermodynamiques utilisables pour les phases des diagrammes fondamentaux des cimentiers. Ensuite, avec le logiciel Thermo-CALC, nous avons calculé les trois diagrammes de phases pseudo-binaires Al2O3-CaO, Al2O3-SiO2, CaO-SiO2 et le diagramme de phases pseudo-ternaire Al2O3-CaO-SiO2. La comparaison des diagrammes calculés et expérimentaux nous ont permis de montrer la validité de notre base de données dans les domaines de température et de composition de la clinkérisation
APA, Harvard, Vancouver, ISO, and other styles
2

Whitfield, Troy T. "Effect of Tricalcium Silicate Content on Expansion in Internal Sulfate Attack." Scholar Commons, 2006. http://scholarcommons.usf.edu/etd/3802.

Full text
Abstract:
The purpose of this study was to determine the cementitious parameters and placement temperature that impact internal sulfate attack in concrete. Concrete structures make up a large percentage of the infrastructure and multifamily housing. Durability is very important. Cements can be formulated to reduce the impact of external environmental exposure such as high salinity from marine environments or high sulfate levels from soils or surface waters. Concrete is also subject to internal attack such as alkali aggregate reaction, (AAR), and delayed ettringite formation, (DEF). This study focused on some of the cement chemistry issues that determine susceptibility of cement to DEF. Expansion due to DEF can weaken the concrete matrix resulting in microcracks that in some cases may progress to severe matrix cracking. The end result is loss of load carrying capacity and costly repairs. In this study, mortar bars were made with the as received cement chemistry and using additions of sulfate, and alkalis. The bars were then heat cured at various temperatures and stored in a saturated lime solution at room temperature. Measurements were made at predetermined time intervals. The series of mixes were made to determine the effect of varying sulfate levels, heat curing temperature, and alkali content in order to isolate the effect of these constituents. The cements were selected on the basis of tricalcium aluminate, alkali content, sulfate levels, C3S levels and fineness. The results indicate that a relationship exists between the rate and level of expansion experienced by the mortar bars and cementitious parameters, namely, alkali content, sulfate content, C3S levels and heat curing temperature.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography