Academic literature on the topic 'C54-TiSi2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'C54-TiSi2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "C54-TiSi2"

1

Cabral, C., L. A. Clevenger, J. M. E. Harper, et al. "Lowering the formation temperature of the C54-TiSi2 phase using a metallic interfacial layer." Journal of Materials Research 12, no. 2 (1997): 304–7. http://dx.doi.org/10.1557/jmr.1997.0040.

Full text
Abstract:
We demonstrate that the formation temperature of the C54 TiSi2 phase from the bilayer reaction of Ti on Si is lowered by approximately 100 °C by placing an interfacial layer of Mo or W between Ti and Si. Upon annealing above 500 °C, the C49 TiSi2 phase forms first, as in the reaction of Ti directly on Si. However, the temperature range over which the C49 phase is stable is decreased by approximately 100 °C, allowing C54 TiSi2 formation below 700 °C. Patterned submicron lines (0.25−1.0 μm wide) fabricated without the Mo layer contain only the C49 TiSi2 phase after annealing to 700 °C for 30 s.
APA, Harvard, Vancouver, ISO, and other styles
2

Cheng, S. L., J. J. Jou, L. J. Chen, and B. Y. Tsui. "Formation of C54–TiSi2 in titanium on nitrogen-ion-implanted (001)Si with a thin interposing Mo layer." Journal of Materials Research 14, no. 5 (1999): 2061–69. http://dx.doi.org/10.1557/jmr.1999.0278.

Full text
Abstract:
Formation of TiSi2 in titanium on nitrogen-implanted (001)Si with a thin interposing Mo layer has been investigated. The presence of a Mo thin interposing layer was found to decrease the formation temperature of C54–TiSi2 by about 100 °C. A ternary (Ti, Mo)Si2 phase was found to distribute in the silicide layer. The ternary compound is conjectured to provide more heterogeneous nucleation sites to enhance the formation of C54–TiSi2. On the other hand, the effect of grain boundary for decreasing transformation temperature was found to be less crucial. For Ti/Mo bilayer on 30 keV BF2+ or As+ + 20
APA, Harvard, Vancouver, ISO, and other styles
3

Quintero, A., M. Libera, C. Cabral, C. Lavoie, and J. M. Harper. "Templating Effects On C54-Tisi2 Formation In Ternary Reactions." Microscopy and Microanalysis 4, S2 (1998): 666–67. http://dx.doi.org/10.1017/s143192760002345x.

Full text
Abstract:
Titanium disilicide (C54-TiSi2) is a low resistivity silicide (15 - 20 μΩ-cm) and is widely used in the device industry. It is formed at about 750-850 °C when thin layers (∽30- lOOnm) of Ti on poly- or single-crystal Si substrates are subjected to rapid thermal annealing (3 °C/sec) in a controlled atmosphere (N2). During the anneal, other Ti silicides such as Ti5Si3, Ti5Si4 ,TiSi and C49-TiSi2 may form prior to the desirable C54-TiSi2.Some attempts have been made to promote low-temperature C54-TiSi2 formation. Depositing a Mo (l-2nm) interlayer between Ti and Si has been reported to decrease t
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Z.-B., S.-L. Zhang, D.-Z. Zhu, H.-J. Xu, and Y. Chen. "Different routes to the formation of C54 TiSi2 in the presence of surface and interface molybdenum: A transmission electron microscopy study." Journal of Materials Research 17, no. 4 (2002): 784–89. http://dx.doi.org/10.1557/jmr.2002.0115.

Full text
Abstract:
Direct evidence revealing fundamental differences in sequence of phase formation during the growth of TiSi2 in the presence of an ultrathin surface or interface Mo layer is presented. Results of cross-sectional transmission electron microscopy showed that when the Mo layer was present at the interface between Ti films and Si substrates, C40 (Mo,Ti)Si2 formed at the interface, and Ti5Si3 grew on top after annealing at 550 °C. Additionally, both C54 and C40 TiSi2 were found in the close vicinity of the C40 (Mo,Ti)Si2 grains. No C49 grains were detected. Raising the annealing temperature to 600 °
APA, Harvard, Vancouver, ISO, and other styles
5

Quintero, A., M. Libera, C. Cabral, C. Lavoie, and J. M. E. Harper. "Mechanisms for enhanced C54–TiSi2 formation in Ti–Ta alloy films on single-crystal Si." Journal of Materials Research 14, no. 12 (1999): 4690–700. http://dx.doi.org/10.1557/jmr.1999.0635.

Full text
Abstract:
The mechanisms are studied for enhanced formation of C54–TiSi2 at about 700 °C when rapid thermal annealing at 3 °C/s in N2 is performed on 32-nm-thick codeposited Ti–5.9 at.% Ta on Si(100) single-crystal substrates. The enhancement is related to an increased C54–TiSi2 nucleation rate due to the development of a multilayered microstructure. The multilayer microstructure forms at temperatures below 600 °C with the formation of an amorphous disilicide adjacent to the Si substrate and a M5Si3 (M = Ti, Ta) capping layer. This amorphous disilicide crystallizes at higher temperatures to C49–TiSi2. T
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Ming-Jun, Wen-Tai Lin, and F. M. Pan. "Effects of an interposed Cu layer on the enhanced thermal stability of C49 TiSi2." Journal of Materials Research 17, no. 2 (2002): 343–47. http://dx.doi.org/10.1557/jmr.2002.0048.

Full text
Abstract:
The effects of an interposed Cu layer and a surface Cu layer on the C49–C54 TiSi2 transformation temperature were studied. For the Ti/Cu/(100)Si samples the interposed Cu layer significantly enhanced the thermal stability of C49 TiSi2. The temperature for complete C49–C54 TiSi2 transformation was raised from 710 to 735 to 750 °C with the thickness of the interposed Cu layer increasing from 0 to 1.5 to 3.5 nm, correspondingly. Cu was insoluble in C54 TiSi2. For the Cu/Ti/(100)Si samples, the surface Cu layer did not at all enhance the thermal stability of the C49 phase. In the present study, th
APA, Harvard, Vancouver, ISO, and other styles
7

Clevenger, L. A., R. A. Roy, C. Cabral, et al. "A comparison of C54-TiSi2 formation in blanket and submicron gate structures using in situ x-ray diffraction during rapid thermal annealing." Journal of Materials Research 10, no. 9 (1995): 2355–59. http://dx.doi.org/10.1557/jmr.1995.2355.

Full text
Abstract:
We demonstrate the use of a synchrotron radiation source for in situ x-ray diffraction analysis during rapid thermal annealing (RTA) of 0.35 μm Salicide (self-aligned silicide) and 0.4 μm Polycide (silicided polysilicon) TiSi2 Complementary Metal Oxide Semiconductor (CMOS) gate structures. It is shown that the transformation from the C49 to C54 phase of TiSi2 occurs at higher temperatures in submicron gate structures than in unpatterned blanket films. In addition, the C54 that forms in submicron structures is (040) oriented, while the C54 that forms in unpatterned Salicide films is randomly or
APA, Harvard, Vancouver, ISO, and other styles
8

Rajan, Krishna. "Twin boundaries in C54-TiSi2." Metallurgical Transactions A 21, no. 9 (1990): 2317–22. http://dx.doi.org/10.1007/bf02646978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pico, C. A., and M. G. Lagally. "Angular correlation between grains of metastable TiSi2." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 888–89. http://dx.doi.org/10.1017/s0424820100106508.

Full text
Abstract:
TiSi2 is the primary silicide candidate as interconnect material in very largy scale integrated (VLSI) devices because of its low resistivity (15μΩ-cm) and relatively low processing temperature. While formation of TiSi2 from Ti-on-Si reaction couples can be accomplished easily and quickly at anneal temperatures above 550°C, below ∽650°C TiSi2 forms in the metastable C49 (base-centered orthorhombic; a=3.62Å, b=13.76Å, and c=3.605Å) 12-atom-per-unit-cell crystal structure with a characteristic resistivity of 65μΩ-cm. To achieve the low-resistivity C54 (face-centered orthorhombic; a=8.24Å, b=4.78
APA, Harvard, Vancouver, ISO, and other styles
10

Nemanich, R. J., Hyeongtag Jeon, J. W. Honeycutt, C. A. Sukow, and G. A. Rozgonyi. "Interface structure of epitaxial TiSi2 on Si(lll)." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 2 (1992): 1354–55. http://dx.doi.org/10.1017/s0424820100131401.

Full text
Abstract:
Among the transition metal silicides, TiSi2 is considered to be a reasonable choice for VLSI applications because it exhibits low resistivity, high temperature stability and compatibility with current processing steps. Thin film reaction of Ti on Si results in the formation of two different forms of TiSi2 which have been identified as the C49 and the C54 crystal structures. The structures are base centered and face centered orthorhombic, respectively. The C49 phase is metastable (ie. it is not represented in the binary phase diagram), and forms at temperatures of 450 to 600°C. The stable C54 p
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!