Contents
Academic literature on the topic 'C9ORF72 complex'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'C9ORF72 complex.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "C9ORF72 complex"
Tang, Dan, Jingwen Sheng, Liangting Xu, et al. "Cryo-EM structure of C9ORF72–SMCR8–WDR41 reveals the role as a GAP for Rab8a and Rab11a." Proceedings of the National Academy of Sciences 117, no. 18 (2020): 9876–83. http://dx.doi.org/10.1073/pnas.2002110117.
Full textNörpel, Julia, Simone Cavadini, Andreas D. Schenk, et al. "Structure of the human C9orf72-SMCR8 complex reveals a multivalent protein interaction architecture." PLOS Biology 19, no. 7 (2021): e3001344. http://dx.doi.org/10.1371/journal.pbio.3001344.
Full textYang, Mei, Chen Liang, Kunchithapadam Swaminathan, et al. "A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy." Science Advances 2, no. 9 (2016): e1601167. http://dx.doi.org/10.1126/sciadv.1601167.
Full textAmick, Joseph, Arun Kumar Tharkeshwar, Catherine Amaya,, and Shawn M. Ferguson. "WDR41 supports lysosomal response to changes in amino acid availability." Molecular Biology of the Cell 29, no. 18 (2018): 2213–27. http://dx.doi.org/10.1091/mbc.e17-12-0703.
Full textAmick, Joseph, Agnes Roczniak-Ferguson, and Shawn M. Ferguson. "C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling." Molecular Biology of the Cell 27, no. 20 (2016): 3040–51. http://dx.doi.org/10.1091/mbc.e16-01-0003.
Full textChong, Zhao Zhong, and Nizar Souayah. "Targeting Gene C9orf72 Pathogenesis for Amyotrophic Lateral Sclerosis." International Journal of Molecular Sciences 26, no. 9 (2025): 4276. https://doi.org/10.3390/ijms26094276.
Full textChandra, Sunandini, and C. Patrick Lusk. "Emerging Connections between Nuclear Pore Complex Homeostasis and ALS." International Journal of Molecular Sciences 23, no. 3 (2022): 1329. http://dx.doi.org/10.3390/ijms23031329.
Full textAlvarez-Mora, Maria Isabel, Gloria Garrabou, Tamara Barcos, et al. "Bioenergetic and Autophagic Characterization of Skin Fibroblasts from C9orf72 Patients." Antioxidants 11, no. 6 (2022): 1129. http://dx.doi.org/10.3390/antiox11061129.
Full textMcAlpine, William, Lei Sun, Kuan-wen Wang, et al. "Excessive endosomal TLR signaling causes inflammatory disease in mice with defective SMCR8-WDR41-C9ORF72 complex function." Proceedings of the National Academy of Sciences 115, no. 49 (2018): E11523—E11531. http://dx.doi.org/10.1073/pnas.1814753115.
Full textLiang, Chen, Qiang Shao, Wei Zhang, et al. "Smcr8 deficiency disrupts axonal transport-dependent lysosomal function and promotes axonal swellings and gain of toxicity in C9ALS/FTD mouse models." Human Molecular Genetics 28, no. 23 (2019): 3940–53. http://dx.doi.org/10.1093/hmg/ddz230.
Full textDissertations / Theses on the topic "C9ORF72 complex"
Pietri, David. "Structure and function of the C9ORF72-SMCR8-WDR41 complex and its implication for Amyotrophic Lateral Sclerosis (ALS)." Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAJ087.
Full text