Journal articles on the topic 'Calcium activated chlorine channels'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Calcium activated chlorine channels.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hartzell, Criss, Ilva Putzier, and Jorge Arreola. "CALCIUM-ACTIVATED CHLORIDE CHANNELS." Annual Review of Physiology 67, no. 1 (2005): 719–58. http://dx.doi.org/10.1146/annurev.physiol.67.032003.154341.
Full textHao, Feng, Zhong Hai Yuan, Zhi Xin Wang, et al. "Plasmid Construction of TMEM16A-pcDNA3.1 and its Application to Transient and Stable Transfection of FRT Cells." Advanced Materials Research 554-556 (July 2012): 1734–37. http://dx.doi.org/10.4028/www.scientific.net/amr.554-556.1734.
Full textHussy, N. "Calcium-activated chloride channels in cultured embryonic Xenopus spinal neurons." Journal of Neurophysiology 68, no. 6 (1992): 2042–50. http://dx.doi.org/10.1152/jn.1992.68.6.2042.
Full textThomas, Miracle, Mark Simms, and Prosper N’Gouemo. "Activation of Calcium-Activated Chloride Channels Suppresses Inherited Seizure Susceptibility in Genetically Epilepsy-Prone Rats." Biomedicines 10, no. 2 (2022): 449. http://dx.doi.org/10.3390/biomedicines10020449.
Full textYamamura, Hisao. "TMEM16 as calcium-activated chloride channels." Folia Pharmacologica Japonica 142, no. 3 (2013): 144. http://dx.doi.org/10.1254/fpj.142.144.
Full textLi, Weiyan, Christopher Thaler, and Paul Brehm. "Calcium Channels in Xenopus Spinal Neurons Differ in Somas and Presynaptic Terminals." Journal of Neurophysiology 86, no. 1 (2001): 269–79. http://dx.doi.org/10.1152/jn.2001.86.1.269.
Full textDibattista, Michele, Asma Amjad, Devendra Kumar Maurya, et al. "Calcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons." Journal of General Physiology 140, no. 1 (2012): 3–15. http://dx.doi.org/10.1085/jgp.201210780.
Full textPozdnyakov, Ilya, Olga Matantseva, and Sergei Skarlato. "Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology." Algae 36, no. 4 (2021): 315–26. http://dx.doi.org/10.4490/algae.2021.36.12.2.
Full textKaneko, Hiroshi, Frank Möhrlen, and Stephan Frings. "Calmodulin Contributes to Gating Control in Olfactory Calcium-activated Chloride Channels." Journal of General Physiology 127, no. 6 (2006): 737–48. http://dx.doi.org/10.1085/jgp.200609497.
Full textLalonde, Melanie, Melanie Kelly, and Steven Barnes. "Calcium-activated chloride channels in the retina." Channels 2, no. 4 (2008): 252–60. http://dx.doi.org/10.4161/chan.2.4.6704.
Full textKolesnikov, Dmitrii, Anastasiia Perevoznikova, Konstantin Gusev, Lyubov Glushankova, Elena Kaznacheyeva, and Alexey Shalygin. "Electrophysiological Properties of Endogenous Single Ca2+ Activated Cl− Channels Induced by Local Ca2+ Entry in HEK293." International Journal of Molecular Sciences 22, no. 9 (2021): 4767. http://dx.doi.org/10.3390/ijms22094767.
Full textGomez-Hernandez, Juan-Manuel, Walter Stühmer, and Anant B. Parekh. "Calcium dependence and distribution of calcium-activated chloride channels inXenopusoocytes." Journal of Physiology 502, no. 3 (1997): 569–74. http://dx.doi.org/10.1111/j.1469-7793.1997.569bj.x.
Full textKourie, J. I., D. R. Laver, G. P. Ahern, and A. F. Dulhunty. "A calcium-activated chloride channel in sarcoplasmic reticulum vesicles from rabbit skeletal muscle." American Journal of Physiology-Cell Physiology 270, no. 6 (1996): C1675—C1686. http://dx.doi.org/10.1152/ajpcell.1996.270.6.c1675.
Full textTang, Xiang D., Heather Daggett, Markus Hanner, et al. "Oxidative Regulation of Large Conductance Calcium-Activated Potassium Channels." Journal of General Physiology 117, no. 3 (2001): 253–74. http://dx.doi.org/10.1085/jgp.117.3.253.
Full textEggermont, J. "Calcium-activated Chloride Channels: (Un)known, (Un)loved?" Proceedings of the American Thoracic Society 1, no. 1 (2004): 22–27. http://dx.doi.org/10.1513/pats.2306010.
Full textKurtz, A. "Do Calcium-Activated Chloride Channels Control Renin Secretion?" Physiology 5, no. 2 (1990): 43–46. http://dx.doi.org/10.1152/physiologyonline.1990.5.2.43.
Full textKuan, Ai-Seon, Yu-Li Ni, and Tsung-Yu Chen. "Electrophysiological Properties of TMEM16A Calcium-Activated Chloride Channels." Biophysical Journal 106, no. 2 (2014): 145a. http://dx.doi.org/10.1016/j.bpj.2013.11.838.
Full textMercer, A. J., K. Rabl, G. E. Riccardi, N. C. Brecha, S. L. Stella, and W. B. Thoreson. "Location of Release Sites and Calcium-Activated Chloride Channels Relative to Calcium Channels at the Photoreceptor Ribbon Synapse." Journal of Neurophysiology 105, no. 1 (2011): 321–35. http://dx.doi.org/10.1152/jn.00332.2010.
Full textAckerman, M. J., K. D. Wickman, and D. E. Clapham. "Hypotonicity activates a native chloride current in Xenopus oocytes." Journal of General Physiology 103, no. 2 (1994): 153–79. http://dx.doi.org/10.1085/jgp.103.2.153.
Full textMangel, A. W., L. Scott, and R. A. Liddle. "Depolarization-stimulated cholecystokinin secretion is mediated by L-type calcium channels in STC-1 cells." American Journal of Physiology-Gastrointestinal and Liver Physiology 270, no. 2 (1996): G287—G290. http://dx.doi.org/10.1152/ajpgi.1996.270.2.g287.
Full textJensen, B. L., P. Ellekvist, and O. Skott. "Chloride is essential for contraction of afferent arterioles after agonists and potassium." American Journal of Physiology-Renal Physiology 272, no. 3 (1997): F389—F396. http://dx.doi.org/10.1152/ajprenal.1997.272.3.f389.
Full textElorza-Vidal, Xabier, Héctor Gaitán-Peñas, and Raúl Estévez. "Chloride Channels in Astrocytes: Structure, Roles in Brain Homeostasis and Implications in Disease." International Journal of Molecular Sciences 20, no. 5 (2019): 1034. http://dx.doi.org/10.3390/ijms20051034.
Full textZamoyski, V. L., E. V. Bovina, and V. V. Grigoriev. "Properties of Calcium-Activated Chloride Currents in Rat Purkinje Cerebellum Neurons." Biomedical Chemistry: Research and Methods 1, no. 3 (2018): e00034. http://dx.doi.org/10.18097/bmcrm00034.
Full textForrest, Abigail S., Talia C. Joyce, Marissa L. Huebner, et al. "Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension." American Journal of Physiology-Cell Physiology 303, no. 12 (2012): C1229—C1243. http://dx.doi.org/10.1152/ajpcell.00044.2012.
Full textFlores, C. A., L. P. Cid, F. V. Sepúlveda, and M. I. Niemeyer. "TMEM16 proteins: the long awaited calcium-activated chloride channels?" Brazilian Journal of Medical and Biological Research 42, no. 11 (2009): 993–1001. http://dx.doi.org/10.1590/s0100-879x2009005000028.
Full textPifferi, Simone. "Permeation Mechanisms in the TMEM16B Calcium-Activated Chloride Channels." PLOS ONE 12, no. 1 (2017): e0169572. http://dx.doi.org/10.1371/journal.pone.0169572.
Full textNi, Yu-Li, Ai-Seon Kuan, and Tsung-Yu Chen. "Activation and Inhibition of TMEM16A Calcium-Activated Chloride Channels." PLoS ONE 9, no. 1 (2014): e86734. http://dx.doi.org/10.1371/journal.pone.0086734.
Full textSalzer, Isabella, and Stefan Boehm. "Calcium-activated chloride channels: Potential targets for antinociceptive therapy." International Journal of Biochemistry & Cell Biology 111 (June 2019): 37–41. http://dx.doi.org/10.1016/j.biocel.2019.04.006.
Full textHoffmann, Else Kay, Niels Bjerre Holm, and Ian Henry Lambert. "Functions of volume-sensitive and calcium-activated chloride channels." IUBMB Life 66, no. 4 (2014): 257–67. http://dx.doi.org/10.1002/iub.1266.
Full textJeng, Grace, Muskaan Aggarwal, Wei-Ping Yu, and Tsung-Yu Chen. "Activating Individual Subunits of TMEM16A Calcium-Activated Chloride Channels." Biophysical Journal 110, no. 3 (2016): 290a—291a. http://dx.doi.org/10.1016/j.bpj.2015.11.1571.
Full textKuruma, Akinori, and H. Criss Hartzell. "Dynamics of calcium regulation of chloride currents inXenopus oocytes." American Journal of Physiology-Cell Physiology 276, no. 1 (1999): C161—C175. http://dx.doi.org/10.1152/ajpcell.1999.276.1.c161.
Full textJan, Lily. "Contribution of Potassium Channels and Calcium-Activated Chloride Channels to Neuronal Signaling." Biophysical Journal 104, no. 2 (2013): 196a. http://dx.doi.org/10.1016/j.bpj.2012.11.1104.
Full textHao, Feng, Yi Ju Hou, Chen Zhao, et al. "Expression Clone of TMEM16A as a Calcium-Activated Chloride Channels in CHO Cells." Advanced Materials Research 709 (June 2013): 832–35. http://dx.doi.org/10.4028/www.scientific.net/amr.709.832.
Full textKOTLIKOFF, MICHAEL I, and YONG-XIAO WANG. "Calcium Release and Calcium-Activated Chloride Channels in Airway Smooth Muscle Cells." American Journal of Respiratory and Critical Care Medicine 158, supplement_2 (1998): S109—S114. http://dx.doi.org/10.1164/ajrccm.158.supplement_2.13tac600.
Full textVocke, Kerstin, Kristin Dauner, Anne Hahn, et al. "Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels." Journal of General Physiology 142, no. 4 (2013): 381–404. http://dx.doi.org/10.1085/jgp.201311015.
Full textXu, Yanfang, Pei Hong Dong, Zhao Zhang, Gias Uddin Ahmmed, and Nipavan Chiamvimonvat. "Presence of a calcium-activated chloride current in mouse ventricular myocytes." American Journal of Physiology-Heart and Circulatory Physiology 283, no. 1 (2002): H302—H314. http://dx.doi.org/10.1152/ajpheart.00044.2002.
Full textRichards, N. W., R. J. Lowy, S. A. Ernst, and D. C. Dawson. "Two K+ channel types, muscarinic agonist-activated and inwardly rectifying, in a Cl- secretory epithelium: the avian salt gland." Journal of General Physiology 93, no. 6 (1989): 1171–94. http://dx.doi.org/10.1085/jgp.93.6.1171.
Full textAmjad, Asma, Andres Hernandez-Clavijo, Simone Pifferi, et al. "Conditional knockout of TMEM16A/anoctamin1 abolishes the calcium-activated chloride current in mouse vomeronasal sensory neurons." Journal of General Physiology 145, no. 4 (2015): 285–301. http://dx.doi.org/10.1085/jgp.201411348.
Full textKoumi, S., R. Sato, and T. Aramaki. "Characterization of the calcium-activated chloride channel in isolated guinea-pig hepatocytes." Journal of General Physiology 104, no. 2 (1994): 357–73. http://dx.doi.org/10.1085/jgp.104.2.357.
Full textLeblanc, Normand, Jonathan Ledoux, Sohag Saleh, et al. "Regulation of calcium-activated chloride channels in smooth muscle cells: a complex picture is emerging." Canadian Journal of Physiology and Pharmacology 83, no. 7 (2005): 541–56. http://dx.doi.org/10.1139/y05-040.
Full textMorel, Jean-Luc, Nathalie Mokrzycki, Guy Lippens, Hervé Drobecq, Pierre Sautière, and Michel Hugues. "Characterization of a Family of Scorpion Toxins Modulating Ca2+-Activated Cl− Current in Vascular Myocytes." Toxins 14, no. 11 (2022): 780. http://dx.doi.org/10.3390/toxins14110780.
Full textLoewen, Matthew E., Sherif E. Gabriel, and George W. Forsyth. "The calcium-dependent chloride conductance mediator pCLCA1." American Journal of Physiology-Cell Physiology 283, no. 2 (2002): C412—C421. http://dx.doi.org/10.1152/ajpcell.00477.2001.
Full textO'Driscoll, Kate E., William J. Hatton, Heather R. Burkin, Normand Leblanc, and Fiona C. Britton. "Expression, localization, and functional properties of Bestrophin 3 channel isolated from mouse heart." American Journal of Physiology-Cell Physiology 295, no. 6 (2008): C1610—C1624. http://dx.doi.org/10.1152/ajpcell.00461.2008.
Full textKeating, N., and L. R. Quinlan. "Small conductance potassium channels drive ATP-activated chloride secretion in the oviduct." American Journal of Physiology-Cell Physiology 302, no. 1 (2012): C100—C109. http://dx.doi.org/10.1152/ajpcell.00503.2010.
Full textArreola, J., J. E. Melvin, and T. Begenisich. "Activation of calcium-dependent chloride channels in rat parotid acinar cells." Journal of General Physiology 108, no. 1 (1996): 35–47. http://dx.doi.org/10.1085/jgp.108.1.35.
Full textNilius, B., J. Prenen, G. Szücs, et al. "Calcium-activated chloride channels in bovine pulmonary artery endothelial cells." Journal of Physiology 498, no. 2 (1997): 381–96. http://dx.doi.org/10.1113/jphysiol.1997.sp021865.
Full textCruz-Rangel, Silvia, José J. De Jesús-Pérez, Juan A. Contreras-Vite, Patricia Pérez-Cornejo, H. Criss Hartzell, and Jorge Arreola. "Gating modes of calcium-activated chloride channels TMEM16A and TMEM16B." Journal of Physiology 593, no. 24 (2015): 5283–98. http://dx.doi.org/10.1113/jp271256.
Full textDalati, S., and M. L. Day. "124. THE ROLE OF CALCIUM ACTIVATED CHLORIDE CHANNELS AT FERTILISATION." Reproduction, Fertility and Development 22, no. 9 (2010): 42. http://dx.doi.org/10.1071/srb10abs124.
Full textSun, Yuyang, Lutz Birnbaumer, and Brij B. Singh. "TRPC1 regulates calcium‐activated chloride channels in salivary gland cells." Journal of Cellular Physiology 230, no. 11 (2015): 2848–56. http://dx.doi.org/10.1002/jcp.25017.
Full textKamaleddin, Mohammad Amin. "Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels." Journal of Cellular Physiology 233, no. 2 (2017): 787–98. http://dx.doi.org/10.1002/jcp.25823.
Full text