Academic literature on the topic 'Calculus of variations. Multiple integrals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Calculus of variations. Multiple integrals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Calculus of variations. Multiple integrals"
Bousquet, Pierre. "The Euler Equation in the Multiple Integrals Calculus of Variations." SIAM Journal on Control and Optimization 51, no. 2 (January 2013): 1047–62. http://dx.doi.org/10.1137/120882561.
Full textArcoya, David, and Lucio Boccardo. "Critical points for multiple integrals of the calculus of variations." Archive for Rational Mechanics and Analysis 134, no. 3 (1996): 249–74. http://dx.doi.org/10.1007/bf00379536.
Full textBall, J. M., and K. W. Zhang. "Lower semicontinuity of multiple integrals and the Biting Lemma." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 114, no. 3-4 (1990): 367–79. http://dx.doi.org/10.1017/s0308210500024483.
Full textRund, Hanno. "LEGENDRE TRANSFORMATIONS AND CARTAN FORMS IN THE CALCULUS OF VARIATIONS OF MULTIPLE INTEGRALS." Quaestiones Mathematicae 12, no. 2 (January 1989): 205–29. http://dx.doi.org/10.1080/16073606.1989.9632177.
Full textRund, Hanno. "LEGENDRE TRANSFORMATIONS AND CARTAN FORMS IN THE CALCULUS OF VARIATIONS OF MULTIPLE INTEGRALS." Quaestiones Mathematicae 12, no. 3 (January 1989): 315–39. http://dx.doi.org/10.1080/16073606.1989.9632186.
Full textAlmeida, Ricardo, Agnieszka B. Malinowska, and Delfim F. M. Torres. "A fractional calculus of variations for multiple integrals with application to vibrating string." Journal of Mathematical Physics 51, no. 3 (2010): 033503. http://dx.doi.org/10.1063/1.3319559.
Full textCesari, L., P. Brandi, and A. Salvadori. "Existence theorems for multiple integrals of the calculus of variations for discontinuous solutions." Annali di Matematica Pura ed Applicata 152, no. 1 (December 1988): 95–121. http://dx.doi.org/10.1007/bf01766143.
Full textFonseca, Irene, and Giovanni Leoni. "On lower semicontinuity and relaxation." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 131, no. 3 (June 2001): 519–65. http://dx.doi.org/10.1017/s0308210500000998.
Full textFonseca, Irene, and Giovanni Leoni. "On lower semicontinuity and relaxation." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 131, no. 3 (June 2001): 519–65. http://dx.doi.org/10.1017/s0308210501000245.
Full textTaheri, Ali. "Sufficiency theorems for local minimizers of the multiple integrals of the calculus of variations." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 131, no. 1 (February 2001): 155–84. http://dx.doi.org/10.1017/s0308210500000822.
Full textDissertations / Theses on the topic "Calculus of variations. Multiple integrals"
Zhang, Chengdian. "Calculus of variations with multiple integration." Bonn : [s.n.], 1989. http://catalog.hathitrust.org/api/volumes/oclc/20436929.html.
Full textShahrokhi-Dehkordi, Mohammad Sadegh. "Topological methods for strong local minimizers and extremals of multiple integrals in the calculus of variations." Thesis, University of Sussex, 2011. http://sro.sussex.ac.uk/id/eprint/6913/.
Full textSoneji, Parth. "Lower semicontinuity and relaxation in BV of integrals with superlinear growth." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:c7174516-588e-46ae-93dc-56d4a95f1e6f.
Full textCoine, Clément. "Continuous linear and bilinear Schur multipliers and applications to perturbation theory." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD074/document.
Full textIn the first chapter, we define some tensor products and we identify their dual space. Then, we give some properties of Schatten classes. The end of the chapter is dedicated to the study of Bochner spaces valued in the space of operators that can be factorized by a Hilbert space.The second chapter is dedicated to linear Schur multipliers. We characterize bounded multipliers on B(Lp, Lq) when p is less than q and then apply this result to obtain new inclusion relationships among spaces of multipliers.In the third chapter, we characterize, by means of linear Schur multipliers, continuous bilinear Schur multipliers valued in the space of trace class operators. In the fourth chapter, we give several results concerning multiple operator integrals. In particular, we characterize triple operator integrals mapping valued in trace class operators and then we give a necessary and sufficient condition for a triple operator integral to define a completely bounded map on the Haagerup tensor product of compact operators. Finally, the fifth chapter is dedicated to the resolution of Peller's problems. We first study the connection between multiple operator integrals and perturbation theory for functional calculus of selfadjoint operators and we finish with the construction of counter-examples for those problems
Chá, Sílvia Alexandra Carrapato. "Problemas convexos e não-convexos do cálculo das variações." Doctoral thesis, Universidade de Évora, 2014. http://hdl.handle.net/10174/17929.
Full textMoyo, Sibusiso. "Noether's theorem and first integrals of ordinary differential equations." Thesis, 1997. http://hdl.handle.net/10413/5061.
Full textThesis (M.Sc.)-University of Natal, Durban, 1997.
(6368468), Daesung Kim. "Stability for functional and geometric inequalities and a stochastic representation of fractional integrals and nonlocal operators." Thesis, 2019.
Find full textPass, Brendan. "Structural Results on Optimal Transportation Plans." Thesis, 2011. http://hdl.handle.net/1807/31893.
Full textBooks on the topic "Calculus of variations. Multiple integrals"
service), SpringerLink (Online, ed. Multiple Integrals in the Calculus of Variations. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Find full textGiaquinta, Mariano. Cartesian Currents in the Calculus of Variations II: Variational Integrals. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
Find full textSpandagos, Vaggelēs. Oloklērōtikos logismos: Theōria-methodologia, 1600 lymenes askēseis. Athēna: Aithra, 1988.
Find full text1947-, Guzman Alberto. Derivatives and integrals of multivariable functions. Boston, MA: Birkhauser, 2003.
Find full textMuldowney, P. A modern theory of random variation: With applications in stochastic calculus, financial mathematics, and Feynman integration. Hoboken, N.J: Wiley, 2012.
Find full textMuldowney, P. A modern theory of random variation: With applications in stochastic calculus, financial mathematics, and Feynman integration. Hoboken, N.J: Wiley, 2012.
Find full textZhukova, Galina, and Margarita Rushaylo. The mathematical analysis. Volume 2. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1072172.
Full textZhukova, Galina, and Margarita Rushaylo. Mathematical analysis in examples and tasks. Part 2. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1072162.
Full textGiaquinta, Mariano. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105. Princeton University Press, 2016.
Find full textDedecker, Paul. Foundations of the Multiple Integrals Calculus of Variations: The Hamilton-Jacobi-E. Cartan Approach (Hadronic Press Monographs in Mathematics, No 2). Hadronic Press, 1985.
Find full textBook chapters on the topic "Calculus of variations. Multiple integrals"
Brechtken-Manderscheid, U. "Variational problems with multiple integrals." In Introduction to the Calculus of Variations, 145–66. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3172-6_10.
Full textBoccardo, Lucio, and Benedetta Pellacci. "Bounded Positive Critical Points of Some Multiple Integrals of the Calculus of Variations." In Nonlinear Equations: Methods, Models and Applications, 33–51. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8087-9_3.
Full textMorrey, Charles B. "Multiple Integral Peoblems in the Calculus of Variations and Related Topics." In Il principio di minimo e sue applicazioni alle equazioni funzionali, 93–153. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10926-3_3.
Full textBressoud, David M. "Line Integrals, Multiple Integrals." In Second Year Calculus, 111–38. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-0959-1_5.
Full textGilbert, Robert P., Michael Shoushani, and Yvonne Ou. "Multiple Integrals." In Multivariable Calculus with Mathematica, 179–242. Boca Raton : Chapman & Hall/CRC Press, 2020.: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9781315161471-5.
Full textLipsman, Ronald L., and Jonathan M. Rosenberg. "Multiple Integrals." In Multivariable Calculus with MATLAB®, 147–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65070-8_8.
Full textCourant, Richard, and Fritz John. "Multiple Integrals." In Introduction to Calculus and Analysis, 367–542. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8958-3_4.
Full textCoombes, Kevin R., Ronald L. Lipsman, and Jonathan M. Rosenberg. "Multiple Integrals." In Multivariable Calculus and Mattiematica®, 153–83. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1698-8_8.
Full textPao, Karen, and Frederick Soon. "Multiple Integrals." In Student’s Guide to Basic Multivariable Calculus, 89–116. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4757-4300-5_5.
Full textCourant, Richard, and Fritz John. "Multiple Integrals." In Introduction to Calculus and Analysis Volume II/1, 367–542. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57149-7_4.
Full textConference papers on the topic "Calculus of variations. Multiple integrals"
Barhorst, Alan A. "Closed Form Modeling of Continuous Parameter Robotic Systems-Contact/Impact and Wave Propagation." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0142.
Full textTangpong, X. W., and Om P. Agrawal. "Fractional Optimal Control of Distributed Systems." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43046.
Full textAgrawal, Om P. "Fractional Optimal Control of a Distributed System Using Eigenfunctions." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35921.
Full textFinch, William W., and Allen C. Ward. "Quantified Relations: A Class of Predicate Logic Design Constraints Among Sets of Manufacturing, Operating, and Other Variations." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/dtm-1550.
Full text