Books on the topic 'Calculus of variations. Multiple integrals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 20 books for your research on the topic 'Calculus of variations. Multiple integrals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
service), SpringerLink (Online, ed. Multiple Integrals in the Calculus of Variations. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Find full textGiaquinta, Mariano. Cartesian Currents in the Calculus of Variations II: Variational Integrals. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
Find full textSpandagos, Vaggelēs. Oloklērōtikos logismos: Theōria-methodologia, 1600 lymenes askēseis. Athēna: Aithra, 1988.
Find full text1947-, Guzman Alberto. Derivatives and integrals of multivariable functions. Boston, MA: Birkhauser, 2003.
Find full textMuldowney, P. A modern theory of random variation: With applications in stochastic calculus, financial mathematics, and Feynman integration. Hoboken, N.J: Wiley, 2012.
Find full textMuldowney, P. A modern theory of random variation: With applications in stochastic calculus, financial mathematics, and Feynman integration. Hoboken, N.J: Wiley, 2012.
Find full textZhukova, Galina, and Margarita Rushaylo. The mathematical analysis. Volume 2. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1072172.
Full textZhukova, Galina, and Margarita Rushaylo. Mathematical analysis in examples and tasks. Part 2. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1072162.
Full textGiaquinta, Mariano. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105. Princeton University Press, 2016.
Find full textDedecker, Paul. Foundations of the Multiple Integrals Calculus of Variations: The Hamilton-Jacobi-E. Cartan Approach (Hadronic Press Monographs in Mathematics, No 2). Hadronic Press, 1985.
Find full textChapter 13: Multiple Integrals From Multivariable Calculus 3rd Edition. I.T.P. Custom Publishing, 1997.
Find full textMorse, Marston. Global Variational Analysis: Weierstrass Integrals on a Riemannian Manifold. Princeton University Press, 2015.
Find full textGlobal Variational Analysis: Weierstrass Integrals on a Riemannian Manifold. Princeton University Press, 2016.
Find full textMorse, Marston. Global Variational Analysis: Weierstrass Integrals on a Riemannian Manifold. Princeton University Press, 2015.
Find full textMorse, Marston. Global Variational Analysis: Weierstrass Integrals on a Riemannian Manifold. Princeton University Press, 2015.
Find full textMuldowney, Patrick. Modern Theory of Random Variation: With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration. Wiley & Sons, Incorporated, John, 2013.
Find full textMuldowney, Patrick. Modern Theory of Random Variation: With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration. Wiley & Sons, Incorporated, John, 2012.
Find full textMuldowney, Patrick. Modern Theory of Random Variation: With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration. Wiley & Sons, Incorporated, John, 2013.
Find full textJohnson, Claes, Donald Estep, and Kenneth Eriksson. Applied Mathematics Body and Soul, Volume 2: Integrals and Geometry in Rn. Springer, 2003.
Find full textMann, Peter. Differential Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0035.
Full text