Academic literature on the topic 'Calorimetric sensor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Calorimetric sensor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Calorimetric sensor"
Ghouila-Houri, Cécile, Célestin Ott, Romain Viard, Quentin Gallas, Eric Garnier, Abdelkrim Talbi, and Philippe Pernod. "Robust Calorimetric Micro-Sensor for Aerodynamic Applications." Proceedings 2, no. 13 (November 27, 2018): 794. http://dx.doi.org/10.3390/proceedings2130794.
Full textReynard-Carette, C., G. Kohse, J. Brun, M. Carette, A. Volte, and A. Lyoussi. "Review of Nuclear Heating Measurement by Calorimetry in France and USA." EPJ Web of Conferences 170 (2018): 04019. http://dx.doi.org/10.1051/epjconf/201817004019.
Full textWU, M., and A. MICHELI. "Calorimetric hydrocarbon sensor for automotive exhaust applications." Sensors and Actuators B: Chemical 100, no. 3 (May 15, 2004): 291–97. http://dx.doi.org/10.1016/j.snb.2003.11.010.
Full textMuramatsu, H., J. M. Dicks, and I. Karube. "Integrated-circuit bio-calorimetric sensor for glucose." Analytica Chimica Acta 197 (1987): 347–52. http://dx.doi.org/10.1016/s0003-2670(00)84749-2.
Full textKitsos, Vasileios, Andreas Demosthenous, and Xiao Liu. "A Smart Dual-Mode Calorimetric Flow Sensor." IEEE Sensors Journal 20, no. 3 (February 1, 2020): 1499–508. http://dx.doi.org/10.1109/jsen.2019.2946759.
Full textGAO, DONG-HUI, MING QIN, and HAI-YANG CHENG. "DESIGN AND FABRICATION OF A ONE-DIMENSIONAL SILICON FLOW SENSOR." International Journal of Information Acquisition 01, no. 04 (December 2004): 321–26. http://dx.doi.org/10.1142/s0219878904000318.
Full textJones, Rhys, Julian William Gardner, Andrea deLuca, Giorgia Longobardi, and Florin Udrea. "GaN-on-Si Calorimetric Thermal Conductivity Gas Sensor." ECS Meeting Abstracts MA2020-01, no. 30 (May 1, 2020): 2261. http://dx.doi.org/10.1149/ma2020-01302261mtgabs.
Full textSocorro, F., A. Mariano, and M. Rodríguez de Rivera. "Model of a calorimetric sensor for medical application." Journal of Thermal Analysis and Calorimetry 92, no. 1 (April 2008): 83–86. http://dx.doi.org/10.1007/s10973-007-8740-1.
Full textSocorro, F., and M. Rodríguez de Rivera. "Development of a calorimetric sensor for medical application." Journal of Thermal Analysis and Calorimetry 99, no. 3 (November 5, 2009): 799–802. http://dx.doi.org/10.1007/s10973-009-0568-4.
Full textJesús, Ch, F. Socorro, and M. Rodriguez de Rivera. "Development of a calorimetric sensor for medical application." Journal of Thermal Analysis and Calorimetry 113, no. 3 (October 10, 2012): 1003–7. http://dx.doi.org/10.1007/s10973-012-2701-z.
Full textDissertations / Theses on the topic "Calorimetric sensor"
Drexler, Petr. "METODY MĚŘENÍ ULTRAKRÁTKÝCH NEPERIODICKÝCH ELEKTROMAGNETICKÝCH IMPULSŮ." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2007. http://www.nusl.cz/ntk/nusl-233412.
Full textMoreno, W. A. "The development of a new temperature sensor for analytical solution calorimetry." Thesis, University of Salford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372130.
Full textGalvão, José Rodolfo. "Sensor a fibra ótica encapsulado em resina polimérica com reforço de fibra de vidro para aplicação em gerador de alta potência." Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1299.
Full textNeste trabalho é apresentada uma aplicação de sensores à fibra ótica baseados em redes de Bragg encapsulados em compósito de resina polimérica com reforço de fibra de vidro. Foram avaliadas três resinas epóxi comerciais. O objetivo do trabalho é caracterizar os compósitos e investigar a viabilidade de embeber sensores a fibra ótica, baseados em redes de Bragg em fibras óticas em compósito epóxi. Na caracterização das amostras, foram realizados: Ensaios para avaliar a tensão residual após a cura das amostras. Nos ensaios, foram utilizados sensores FBGs incrustados no compósito. Ensaios para avaliar a temperatura de transição vítrea através da técnica Calorimetria Exploratória Diferencial (DSC). Ensaios de tração axial e flexão simples utilizando máquina de teste universal e ensaios para avaliar o comportamento do compósito quando sujeito a uma carga fixa e temperatura variando de 20 °C até a temperatura limite da transição vítrea do compósito. Os resultados mostram um elevado grau de integração das FBGs no compósito epóxi. Um dos resultados é promissor para aplicações em um gerador de alta potência e em ambientes hostis com temperatura de trabalho até 127 °C.
This work presents an application of optical fiber sensors based on Bragg gratings encapsulated in polymeric composite resin with glass fiber reinforcement. Three commercial epoxy resins were evaluated. The main objective of the study is to characterize the composites and investigate the feasibility of embedding the optical fiber sensors based on Bragg gratings in epoxy composite. In the characterization of the samples tensile tests were performed to evaluate the residual stress after the curing process. The residual stress was investigated by mains of a FBG sensor embedded in the composite. Additionally, tests were conducted to evaluate the glass transition temperature by DSC technique. The values of the axial tensile and simple flexural stress were investigated using a universal testing machine. In addition, tests were performed for evaluating the composite behavior when subjected to a fixed load and variable temperature ranging from 20 °C to the temperature limit of the glass transition of the composite. The results show a high level of integration of the FBGs with the epoxy composite. One of the results is promising for applications in a high power generator and in hostile environments working at temperatures up to 127 °C.
5000
Kirchner, Patrick [Verfasser], and Michael [Akademischer Betreuer] Keusgen. "Thin-film calorimetric gas sensors for hydrogen peroxide monitoring in aseptic food processes / Patrick Kirchner. Betreuer: Michael Keusgen." Marburg : Philipps-Universität Marburg, 2013. http://d-nb.info/1038786169/34.
Full textBANADOS, PEREZ HOMERO E. "Desenvolvimento de um sistema calorimetrico para dosimetria de feixes de eletrons em processos por radiacao." reponame:Repositório Institucional do IPEN, 1994. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10356.
Full textMade available in DSpace on 2014-10-09T14:00:17Z (GMT). No. of bitstreams: 1 05382.pdf: 3611357 bytes, checksum: aeefc0f052bf6399692f11e4b2ff1e2b (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Juřík, Vladimír. "Metodiky a metody snímání jednorázových dějů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217469.
Full textRajkumar, Rajagopal. "Development of a thermometric sensor for fructosyl valine and fructose using molecularly imprinted polymers as a recognition element." Phd thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1727/.
Full textIn dem Bestreben, ihr eigenes Leben zu verbessern, haben die Menschen stets die Natur nachgeahmt und sich von ihr inspirieren lassen. Die Natur hat Forscher zur Erzeugung smarter biomimetischer Stoffe mit molekularen Erkennungseigenschaften nach dem Vorbild der Evolution inspiriert. Eine der Methoden zur Herstellung solcher Substanzen ist das molekulare Prägen. Smarte Materialien mit neuen Eigenschaften stehen an der Spitze der Entwicklung potentieller Anwendungen vom Verbraucher bis hin zur Raumfahrtindustrie. Durch Nachahmung von natürlichen Enzymen oder Antikörpern wurden molekular geprägte Polymere (MIPs) entwickelt, die der Bindung von Zielmolekülen dienen. Diese geprägten Polymere (imprints) wurden anstelle von Biomolekülen als Erkennungselemente in Biosensoren eingesetzt. Das Konzept, das dem molekularen Prägen zugrunde liegt, besteht in der Formung eines Polymers (mit den entsprechenden chemischen Eigenschaften) um einzelne Zielmoleküle herum. Nach Entfernen dieser molekularen Template bleiben Abdrücke im Polymer übrig, die der Form der Templatmoleküle entsprechen. Mit Hilfe des molekularen Prägens kann man also Stoffe herstellen, die sich selektiv an bestimmte Moleküle binden können. Geprägte Polymere finden breite Anwendung, etwa in chemischen Aufreinigungsprozessen und der Bioanalytik. Hauptanliegen der vorliegenden Arbeit war es, thermometrische Sensoren auf der Basis molekular geprägter Polymere zu entwickeln. Die Anstrengungen richteten sich vor allem auf die Entwicklung eines kovalent geprägten Polymers, das in der Lage ist, selektiv Fruktosyl-Valin (Fru-Val), den N-terminalen Bereich von Hämoglobin A1c, zu binden. Aufgrund der bekannten Vorzüge geprägter Polymere – z. B. Robustheit und thermische und chemische Stabilität – wurden geprägte Polymere erfolgreich als Erkennungselement im Sensor angewendet. Eine der größten Herausforderungen bei der Entwicklung von MIP-Sensoren, das Fehlen eines generischen Verfahrens zur Umwandlung der Bindungsreaktion in ein nachweisbares Signal, wurde mit der Entwicklung der thermometrischen Methode in Angriff genommen. Diese Methode führt allgemein zu neuen Einsichten in die Interaktionen zwischen MIP und Analyt.
Avala, Usha Kranthi. "Ionic Conductivity in Non-Ionic Compounds." TopSCHOLAR®, 2013. http://digitalcommons.wku.edu/theses/1279.
Full textLee, Horng Jye, and s3048063@student rmit edu au. "The isolation and characterisation of starches from legume grains and their application in food formulations." RMIT University. Applied Sciences, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080806.123415.
Full textVolte, Adrien. "Calorimètre miniaturisé innovant pour la mesure de l'énergie déposée par les interactions rayonnements nucléaires/matière en réacteur de recherche : de sa conception à son étude en laboratoire." Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0522.
Full textIrradiation reactors are large supporting research facilities for conducting studies on existing or innovative nuclear materials and fuels. Increasingly instrumented experimental devices are needed to measure, understand and control phenomena occurring under strong nuclear radiation. The construction of the Jules Horowitz reactor has thus stimulated new research programs focused, among other things, on the measurement of absorbed dose rate online. Aix-Marseille University (IM2NP UMR 7334 Micro-sensors-Instrumentation Team) and the CEA (DEN and DER) are conducting studies dedicated to measurements over a wide range of absorbed dose rates and miniaturization in order to propose new innovative devices within the framework of the joint laboratory for Instrumentation and Measurements in Extreme Environments and its Instrumentation for Nuclear Radiations and Calorimetry online in REactor program
Books on the topic "Calorimetric sensor"
Moreno, William A. The development of a new temperature sensor for analytical solution calorimetry. Salford: University of Salford, 1986.
Find full textBook chapters on the topic "Calorimetric sensor"
Walsh, Peter T., and T. A. Jones†. "Calorimetric Chemical Sensors." In Sensors, 529–72. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008. http://dx.doi.org/10.1002/9783527620135.ch11.
Full textKorotcenkov, Ghenadii. "Catalysts Used in Calorimetric (Combustion-Type) Gas Sensors." In Integrated Analytical Systems, 287–92. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7165-3_11.
Full textKirchner, Patrick, Steffen Reisert, and Michael J. Schöning. "Calorimetric Gas Sensors for Hydrogen Peroxide Monitoring in Aseptic Food Processes." In Springer Series on Chemical Sensors and Biosensors, 279–309. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/5346_2013_51.
Full textSATOH, IKUO. "Biosensing Using Calorimetric Devices." In Chemical Sensor Technology, 269–82. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-444-98784-6.50022-2.
Full textMartinho Simões, José A., and Manuel Minas da Piedade. "Isoperibol Reaction-Solution Calorimetry." In Molecular Energetics. Oxford University Press, 2008. http://dx.doi.org/10.1093/oso/9780195133196.003.0012.
Full textDanielsson, B. "SENSORS | Calorimetric/Enthalpimetric." In Encyclopedia of Analytical Science, 237–45. Elsevier, 2005. http://dx.doi.org/10.1016/b0-12-369397-7/00557-4.
Full text"Calorimetry Measurement." In Measurement, Instrumentation, and Sensors Handbook, 1299–314. CRC Press, 2018. http://dx.doi.org/10.1201/9781315217109-94.
Full textvan Herwaarden, Sander, and Elina Iervolino. "Calorimetry Measurement." In Measurement, Instrumentation, and Sensors Handbook, Second Edition, 1–16. CRC Press, 2014. http://dx.doi.org/10.1201/b15474-87.
Full textvan Herwaarden, Sander. "Calorimetry Measurement." In The Measurement, Instrumentation and Sensors Handbook on CD-ROM. CRC Press, 1999. http://dx.doi.org/10.1201/9780415876179.ch36.
Full textKowalski, Gregory, Mehmet Sen, and Dale Larson. "Next Generation Calorimetry Based on Nanohole Array Sensing." In Series in Sensors, 777–800. Taylor & Francis, 2012. http://dx.doi.org/10.1201/b12138-56.
Full textConference papers on the topic "Calorimetric sensor"
Wolterink, Gerjan, Ameya Umrani, Martijn Schouten, Remco Sanders, and Gijs Krijnen. "3D-Printed Calorimetric Flow Sensor." In 2020 IEEE SENSORS. IEEE, 2020. http://dx.doi.org/10.1109/sensors47125.2020.9278640.
Full textDrexler, P., and P. Fiala. "Calorimetric sensor measurement of ultrashort electromagnetic pulse." In 2006 International Waveform Diversity & Design Conference. IEEE, 2006. http://dx.doi.org/10.1109/wdd.2006.8321432.
Full textDuan, Xuanyi, Xin Fu, Haibo Xie, and Huayong Yang. "Non-Silicon MEMS Calorimetric Gas Flow Sensor." In 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2006. http://dx.doi.org/10.1109/nems.2006.334867.
Full textSauter, Thilo, Samir Cerimovic, Harald Steiner, Thomas Glatzl, Marlies Schlauf, and Franz Kohl. "Characterization of a thermopile-based calorimetric flow sensor." In 2016 IEEE SENSORS. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808516.
Full textSerry, Mohamed, Ioana Voiculcscu, and Ahmed Kobtan. "Catalytic Hafnium Oxide Calorimetric MEMS Gas and Chemical Sensor." In 2018 IEEE Sensors. IEEE, 2018. http://dx.doi.org/10.1109/icsens.2018.8589851.
Full textOlsen, Jesper K., Anders Greve, N. Privorotskaya, L. Senesac, T. Thundat, W. P. King, and A. Boisen. "Micro-calorimetric sensor for trace explosive particle detection." In SPIE Defense, Security, and Sensing, edited by Thomas George, M. Saif Islam, and Achyut K. Dutta. SPIE, 2010. http://dx.doi.org/10.1117/12.850492.
Full textChamard, Leo, Alain Giani, Philippe Combette, and Julien Weiss. "MEMS calorimetric shear-stress sensor based on flexible substrate." In 2019 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP). IEEE, 2019. http://dx.doi.org/10.1109/dtip.2019.8752856.
Full textKunstmann, Thomas, Stefan Paulus, Ing-Shin Chen, Horst Auer, Lin Feng, Richard Chism, and Jeffrey F. Roeder. "SACVD clean investigation with a new calorimetric probe sensor." In 2009 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2009. http://dx.doi.org/10.1109/asmc.2009.5155974.
Full textBarreto Neto, A. G. S., A. M. N. Lima, C. S. Moreira, and H. Neff. "Design and theoretical analysis of a bidirectional calorimetric flow sensor." In 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2014. http://dx.doi.org/10.1109/i2mtc.2014.6860803.
Full textLai, Zongsheng, Xinjun Wan, Pingsong Zhou, and Yunzhen Wang. "Application of porous Si micromachining technology in the calorimetric sensor." In Micromachining and Microfabrication '96, edited by Stella W. Pang and Shih-Chia Chang. SPIE, 1996. http://dx.doi.org/10.1117/12.251225.
Full text