Journal articles on the topic 'Calorimetric sensor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Calorimetric sensor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ghouila-Houri, Cécile, Célestin Ott, Romain Viard, Quentin Gallas, Eric Garnier, Abdelkrim Talbi, and Philippe Pernod. "Robust Calorimetric Micro-Sensor for Aerodynamic Applications." Proceedings 2, no. 13 (November 27, 2018): 794. http://dx.doi.org/10.3390/proceedings2130794.
Full textReynard-Carette, C., G. Kohse, J. Brun, M. Carette, A. Volte, and A. Lyoussi. "Review of Nuclear Heating Measurement by Calorimetry in France and USA." EPJ Web of Conferences 170 (2018): 04019. http://dx.doi.org/10.1051/epjconf/201817004019.
Full textWU, M., and A. MICHELI. "Calorimetric hydrocarbon sensor for automotive exhaust applications." Sensors and Actuators B: Chemical 100, no. 3 (May 15, 2004): 291–97. http://dx.doi.org/10.1016/j.snb.2003.11.010.
Full textMuramatsu, H., J. M. Dicks, and I. Karube. "Integrated-circuit bio-calorimetric sensor for glucose." Analytica Chimica Acta 197 (1987): 347–52. http://dx.doi.org/10.1016/s0003-2670(00)84749-2.
Full textKitsos, Vasileios, Andreas Demosthenous, and Xiao Liu. "A Smart Dual-Mode Calorimetric Flow Sensor." IEEE Sensors Journal 20, no. 3 (February 1, 2020): 1499–508. http://dx.doi.org/10.1109/jsen.2019.2946759.
Full textGAO, DONG-HUI, MING QIN, and HAI-YANG CHENG. "DESIGN AND FABRICATION OF A ONE-DIMENSIONAL SILICON FLOW SENSOR." International Journal of Information Acquisition 01, no. 04 (December 2004): 321–26. http://dx.doi.org/10.1142/s0219878904000318.
Full textJones, Rhys, Julian William Gardner, Andrea deLuca, Giorgia Longobardi, and Florin Udrea. "GaN-on-Si Calorimetric Thermal Conductivity Gas Sensor." ECS Meeting Abstracts MA2020-01, no. 30 (May 1, 2020): 2261. http://dx.doi.org/10.1149/ma2020-01302261mtgabs.
Full textSocorro, F., A. Mariano, and M. Rodríguez de Rivera. "Model of a calorimetric sensor for medical application." Journal of Thermal Analysis and Calorimetry 92, no. 1 (April 2008): 83–86. http://dx.doi.org/10.1007/s10973-007-8740-1.
Full textSocorro, F., and M. Rodríguez de Rivera. "Development of a calorimetric sensor for medical application." Journal of Thermal Analysis and Calorimetry 99, no. 3 (November 5, 2009): 799–802. http://dx.doi.org/10.1007/s10973-009-0568-4.
Full textJesús, Ch, F. Socorro, and M. Rodriguez de Rivera. "Development of a calorimetric sensor for medical application." Journal of Thermal Analysis and Calorimetry 113, no. 3 (October 10, 2012): 1003–7. http://dx.doi.org/10.1007/s10973-012-2701-z.
Full textJesús, Ch, F. Socorro, and M. Rodríguez de Rivera. "Development of a calorimetric sensor for medical application." Journal of Thermal Analysis and Calorimetry 113, no. 3 (October 17, 2012): 1009–13. http://dx.doi.org/10.1007/s10973-012-2702-y.
Full textJesús, Ch, F. Socorro, H. J. Rodriguez de Rivera, and M. Rodriguez de Rivera. "Development of a calorimetric sensor for medical application." Journal of Thermal Analysis and Calorimetry 116, no. 1 (December 13, 2013): 151–55. http://dx.doi.org/10.1007/s10973-013-3571-8.
Full textVolte, A., C. Reynard-Carette, J. Brun, C. De Vita, M. Carette, T. Fiorido, A. Lyoussi, D. Fourmentel, J.-F. Villard, and P. Guimbal. "Study of the Flow Temperature and Ring Design Influence on the Response of a New Reduced-Size Calorimetric Cell for Nuclear Heating Quantification." EPJ Web of Conferences 170 (2018): 04026. http://dx.doi.org/10.1051/epjconf/201817004026.
Full textPorkovich, A. J., M. D. Arnold, G. Kouzmina, B. Hingley, A. Dowd, and M. B. Cortie. "Calorimetric Sensor for Use in Hydrogen Peroxide Aqueous Solutions." Sensor Letters 9, no. 2 (April 1, 2011): 695–97. http://dx.doi.org/10.1166/sl.2011.1594.
Full textRodríguez de Rivera, P. J., Mi Rodríguez de Rivera, F. Socorro, M. Rodríguez de Rivera, and G. M. Callicó. "Human skin thermal properties determination using a calorimetric sensor." Journal of Thermal Analysis and Calorimetry 142, no. 1 (April 9, 2020): 461–71. http://dx.doi.org/10.1007/s10973-020-09627-6.
Full textNebhen, Jamel, Khaled Alnowaiser, and Sofiene Mansouri. "Constant Temperature Anemometer with Self-Calibration Closed Loop Circuit." Applied Sciences 10, no. 10 (May 14, 2020): 3405. http://dx.doi.org/10.3390/app10103405.
Full textGELDERBLOM, H., A. VAN DER HORST, J. R. HAARTSEN, M. C. M. RUTTEN, A. A. F. VAN DE VEN, and F. N. VAN DE VOSSE. "Analytical and experimental characterization of a miniature calorimetric sensor in a pulsatile flow." Journal of Fluid Mechanics 666 (November 10, 2010): 428–44. http://dx.doi.org/10.1017/s0022112010004234.
Full textGlatzl, Thomas, Samir Cerimovic, Harald Steiner, Almir Talic, Roman Beigelbeck, Artur Jachimowicz, Thilo Sauter, and Franz Keplinger. "Hot-film and calorimetric thermal air flow sensors realized with printed board technology." Journal of Sensors and Sensor Systems 5, no. 2 (July 19, 2016): 283–91. http://dx.doi.org/10.5194/jsss-5-283-2016.
Full textZhang, Xing, Zhijian Feng, Jianing Wang, and Shaolin Yu. "An Optimized Temperature Sensor Calorimetric Power Device Loss Measurement Method." Energies 12, no. 7 (April 8, 2019): 1333. http://dx.doi.org/10.3390/en12071333.
Full textWeiss, Julien, Quentin Schwaab, Yacine Boucetta, Alain Giani, Céline Guigue, Philippe Combette, and Benoît Charlot. "Simulation and testing of a MEMS calorimetric shear-stress sensor." Sensors and Actuators A: Physical 253 (January 2017): 210–17. http://dx.doi.org/10.1016/j.sna.2016.11.018.
Full textErck, R. A., and R. Paitich. "Measurements of ion-beam dose rate with a calorimetric sensor." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 47, no. 4 (June 1990): 462–65. http://dx.doi.org/10.1016/0168-583x(90)90627-7.
Full textEnoki, Toshiaki, Keishi Matsuo, Joji Ohshita, and Yousuke Ooyama. "Synthesis and optical and electrochemical properties of julolidine-structured pyrido[3,4-b]indole dye." Physical Chemistry Chemical Physics 19, no. 5 (2017): 3565–74. http://dx.doi.org/10.1039/c6cp08573c.
Full textRodríguez de Rivera, Pedro Jesús, Miriam Rodríguez de Rivera, Fabiola Socorro, Manuel Rodríguez de Rivera, and Gustavo Marrero Callicó. "A Method to Determine Human Skin Heat Capacity Using a Non-Invasive Calorimetric Sensor." Sensors 20, no. 12 (June 17, 2020): 3431. http://dx.doi.org/10.3390/s20123431.
Full textde Rivera, Pedro Jesús Rodríguez, Miriam Rodríguez de Rivera, Fabiola Socorro, and Manuel Rodríguez de Rivera. "Measurement of human body surface heat flux using a calorimetric sensor." Journal of Thermal Biology 81 (April 2019): 178–84. http://dx.doi.org/10.1016/j.jtherbio.2019.02.022.
Full textWeiss, Julien, Emmanuel Jondeau, Alain Giani, Benoît Charlot, and Philippe Combette. "Static and dynamic calibration of a MEMS calorimetric shear-stress sensor." Sensors and Actuators A: Physical 265 (October 2017): 211–16. http://dx.doi.org/10.1016/j.sna.2017.08.048.
Full textLee, Dongkyu, Kyo Seon Hwang, Seonghwan Kim, and Thomas Thundat. "Rapid discrimination of DNA strands using an opto-calorimetric microcantilever sensor." Lab Chip 14, no. 24 (September 23, 2014): 4659–64. http://dx.doi.org/10.1039/c4lc01000k.
Full textPersson, A., V. Lekholm, G. Thornell, and L. Klintberg. "A high-temperature calorimetric flow sensor employing ion conduction in zirconia." Applied Physics Letters 106, no. 19 (May 11, 2015): 194103. http://dx.doi.org/10.1063/1.4921051.
Full textWang, Bin, and Qiao Lin. "A MEMS Differential-Scanning-Calorimetric Sensor for Thermodynamic Characterization of Biomolecules." Journal of Microelectromechanical Systems 21, no. 5 (October 2012): 1165–71. http://dx.doi.org/10.1109/jmems.2012.2203788.
Full textXu, Wei, Shenhui Ma, Xiaoyi Wang, Yi Chiu, and Yi-Kuen Lee. "A CMOS-MEMS Thermoresistive Micro Calorimetric Flow Sensor With Temperature Compensation." Journal of Microelectromechanical Systems 28, no. 5 (October 2019): 841–49. http://dx.doi.org/10.1109/jmems.2019.2928317.
Full textRodriguez de Rivera, Pedro Jesús, Miriam Rodriguez de Rivera, Fabiola Socorro, and Manuel Rodriguez de Rivera. "Calibration and operation improvements of a calorimetric sensor for medical applications." Measurement 186 (December 2021): 110134. http://dx.doi.org/10.1016/j.measurement.2021.110134.
Full textDjuzhev, Nikolay A., Dmitry Novikov, and Vladimir Ryabov. "Application of the Streamlined Body for Properties Amplification of Thermoresistive MEMS Gas Flow Sensor." Solid State Phenomena 245 (October 2015): 247–52. http://dx.doi.org/10.4028/www.scientific.net/ssp.245.247.
Full textFreire, R. C. S., G. S. Deep, P. C. Lobo, A. M. N. Lima, J. S. Rocha Neto, and A. Oliveira. "Dynamic Response of a Feedback Thermoresistive Electrical Substitution Pyranometer." Journal of Solar Energy Engineering 120, no. 2 (May 1, 1998): 126–30. http://dx.doi.org/10.1115/1.2888055.
Full textZverev, A. V., M. Andronik, V. V. Echeistov, Z. H. Issabayeva, O. S. Sorokina, T. Konstantinova, E. S. Lotkov, I. A. Ryzhikov, and I. A. Rodionov. "Integrated Microfluidic Flow Sensor for LAB-oN-CHIP and PoINT-oF-CARE Applications." Biotekhnologiya 36, no. 4 (2020): 112–20. http://dx.doi.org/10.21519/0234-2758-2020-36-4-112-120.
Full textIllyaskutty, Navas, Onur Kansizoglu, Oguzhan Akdag, Binayak Ojha, Jens Knoblauch, and Heinz Kohler. "Miniaturized Single Chip Arrangement of a Wheatstone Bridge Based Calorimetric Gas Sensor." Chemosensors 6, no. 2 (May 19, 2018): 22. http://dx.doi.org/10.3390/chemosensors6020022.
Full textGreve, A., J. Olsen, N. Privorotskaya, L. Senesac, T. Thundat, W. P. King, and A. Boisen. "Micro-calorimetric sensor for vapor phase explosive detection with optimized heat profile." Microelectronic Engineering 87, no. 5-8 (May 2010): 696–98. http://dx.doi.org/10.1016/j.mee.2009.12.069.
Full textEdgar, A. "Calorimetric measurements of capacitance and inductance using an integrated circuit temperature sensor." American Journal of Physics 61, no. 10 (October 1993): 949–51. http://dx.doi.org/10.1119/1.17375.
Full textSun, Zhongsheng, Yongxi Shen, Changrong Yuan, and Xiaoning Li. "Influence of contamination on measurement accuracy of the calorimetric air flow sensor." Measurement 145 (October 2019): 108–17. http://dx.doi.org/10.1016/j.measurement.2019.05.073.
Full textJildeh, Zaid B., Patrick Kirchner, Jan Oberländer, Alexander Kremers, Torsten Wagner, Patrick H. Wagner, and Michael J. Schöning. "FEM-based modeling of a calorimetric gas sensor for hydrogen peroxide monitoring." physica status solidi (a) 214, no. 9 (May 22, 2017): 1600912. http://dx.doi.org/10.1002/pssa.201600912.
Full textXu, Wei, Bo Wang, Mingzheng Duan, Moaaz Ahmed, Amine Bermak, and Yi-Kuen Lee. "A Three-Dimensional Integrated Micro Calorimetric Flow Sensor in CMOS MEMS Technology." IEEE Sensors Letters 3, no. 2 (February 2019): 1–4. http://dx.doi.org/10.1109/lsens.2019.2893151.
Full textGlatzl, Thomas, Roman Beigelbeck, Samir Cerimovic, Harald Steiner, Florian Wenig, Thilo Sauter, Albert Treytl, and Franz Keplinger. "A Thermal Flow Sensor Based on Printed Circuit Technology in Constant Temperature Mode for Various Fluids." Sensors 19, no. 5 (March 2, 2019): 1065. http://dx.doi.org/10.3390/s19051065.
Full textToda, Masaya, Ning Xia, Naoki Inomata, and Takahito Ono. "Microchanneled Calorimetric Concentration Sensor for Picoliter Liquid Samples of Cytochrome c." IEEJ Transactions on Sensors and Micromachines 137, no. 1 (2017): 28–31. http://dx.doi.org/10.1541/ieejsmas.137.28.
Full textDhahbi, Hakim, Olivier Gallot-Lavallee, Afef Kedous-Lebouc, Patrick Mas, Olivier Geoffroy, and Sebastien Buffat. "Calorimetric measurement and modelling of iron losses in a Silicon Iron current sensor." International Journal of Applied Electromagnetics and Mechanics 59, no. 2 (March 21, 2019): 473–82. http://dx.doi.org/10.3233/jae-171022.
Full textReyes Romero, Diego F., K. Kogan, Ali S. Cubukcu, and Gerald A. Urban. "Simultaneous flow and thermal conductivity measurement of gases utilizing a calorimetric flow sensor." Sensors and Actuators A: Physical 203 (December 2013): 225–33. http://dx.doi.org/10.1016/j.sna.2013.08.025.
Full textGhouila-Houri, Cécile, Quentin Gallas, Eric Garnier, Alain Merlen, Romain Viard, Abdelkrim Talbi, and Philippe Pernod. "High temperature gradient calorimetric wall shear stress micro-sensor for flow separation detection." Sensors and Actuators A: Physical 266 (October 2017): 232–41. http://dx.doi.org/10.1016/j.sna.2017.09.030.
Full textPark, Nam-Hee, Takafumi Akamatsu, Toshio Itoh, Noriya Izu, and Woosuck Shin. "Calorimetric Thermoelectric Gas Sensor for the Detection of Hydrogen, Methane and Mixed Gases." Sensors 14, no. 5 (May 9, 2014): 8350–62. http://dx.doi.org/10.3390/s140508350.
Full textRodríguez de Rivera, P. J., Mi Rodríguez de Rivera, F. Socorro, M. Rodríguez de Rivera, and G. M. Callicó. "Modelling and simulation of the operation of a calorimetric sensor for medical application." Journal of Thermal Analysis and Calorimetry 142, no. 1 (March 27, 2020): 483–92. http://dx.doi.org/10.1007/s10973-020-09554-6.
Full textSun, Zhongsheng, Yang Wang, and Changrong Yuan. "Influence of oil deposition on the measurement accuracy of a calorimetric flow sensor." Measurement 185 (November 2021): 110052. http://dx.doi.org/10.1016/j.measurement.2021.110052.
Full textGrigoriev, Boris V. "Development of a calorimetric method for measuring the content of unfrozen water in soil at a negative temperature." Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy 6, no. 1 (2020): 87–99. http://dx.doi.org/10.21684/2411-7978-2020-6-1-87-99.
Full textLi, YongJin. "Calorimetric Sensor for Ethanol Using Ni2+-nitrilotriacetic Acid (NTA) Resin Immobilized Alcohol Dehydrogenase (ADH)." Current Analytical Chemistry 16, no. 6 (August 13, 2020): 795–99. http://dx.doi.org/10.2174/1573411015666190617110233.
Full textKoehler, K. E., M. A. Famiano, C. J. Fontes, T. W. Gorczyca, M. W. Rabin, D. R. Schmidt, J. N. Ullom, and M. P. Croce. "First Calorimetric Measurement of Electron Capture in $${}^{193}$$Pt with a Transition-Edge Sensor." Journal of Low Temperature Physics 193, no. 5-6 (June 1, 2018): 1151–59. http://dx.doi.org/10.1007/s10909-018-1984-2.
Full text