Journal articles on the topic 'Cambered wings'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cambered wings.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Harbig, R. R., J. Sheridan, and M. C. Thompson. "Relationship between aerodynamic forces, flow structures and wing camber for rotating insect wing planforms." Journal of Fluid Mechanics 730 (July 30, 2013): 52–75. http://dx.doi.org/10.1017/jfm.2013.335.
Full textWalker, Simon M., Adrian L. R. Thomas, and Graham K. Taylor. "Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke?" Journal of The Royal Society Interface 6, no. 38 (December 16, 2008): 735–47. http://dx.doi.org/10.1098/rsif.2008.0435.
Full textTraub, L. W., R. Waghela, and K. A. Bordignon. "Characterisation of a highly staggered spanwise cambered biplane." Aeronautical Journal 119, no. 1212 (February 2015): 203–28. http://dx.doi.org/10.1017/s0001924000010344.
Full textTraub, Lance W. "Lift Prediction of Spanwise Cambered Delta Wings." Journal of Aircraft 36, no. 3 (May 1999): 515–22. http://dx.doi.org/10.2514/2.2486.
Full textTraub, Lance W. "Aerodynamic Characteristics of Spanwise Cambered Delta Wings." Journal of Aircraft 37, no. 4 (July 2000): 714–24. http://dx.doi.org/10.2514/2.2657.
Full textWootton, R. J., K. E. Evans, R. Herbert, and C. W. Smith. "The hind wing of the desert locust (Schistocerca gregaria Forskal). I. Functional morphology and mode of operation." Journal of Experimental Biology 203, no. 19 (October 1, 2000): 2921–31. http://dx.doi.org/10.1242/jeb.203.19.2921.
Full textForster, K. J., and T. R. White. "Numerical Investigation into Vortex Generators on Heavily Cambered Wings." AIAA Journal 52, no. 5 (May 2014): 1059–71. http://dx.doi.org/10.2514/1.j052529.
Full textWrist, Andrew H., and James P. Hubner. "Aerodynamic comparisons of flexible membrane micro air vehicle wings with cambered and flat frames." International Journal of Micro Air Vehicles 10, no. 1 (May 29, 2017): 12–30. http://dx.doi.org/10.1177/1756829317705327.
Full textENNOS, A. ROLAND, and ROBIN J. WOOTTON. "FUNCTIONAL WING MORPHOLOGY AND AERODYNAMICS OF PANORPA GERMANICA (INSECTA: MECOPTERA)." Journal of Experimental Biology 143, no. 1 (May 1, 1989): 267–84. http://dx.doi.org/10.1242/jeb.143.1.267.
Full textTraub, Lance W. "Analytic Drag Prediction for Cambered Wings with Partial Leading Edge Suction." Journal of Aircraft 46, no. 1 (January 2009): 312–19. http://dx.doi.org/10.2514/1.38558.
Full textKnight, Jason, Simon Fels, Benjamin Beazley, George Haritos, and Andrew Lewis. "Fluid–Structure Interaction of Symmetrical and Cambered Spring-Mounted Wings Using Various Spring Preloads and Pivot Point Locations." Applied Mechanics 2, no. 3 (August 27, 2021): 591–612. http://dx.doi.org/10.3390/applmech2030034.
Full textLambert, Thomas, and Grigorios Dimitriadis. "Induced Drag Calculations with the Unsteady Vortex Lattice Method for Cambered Wings." AIAA Journal 55, no. 2 (February 2017): 668–72. http://dx.doi.org/10.2514/1.j055135.
Full textChu, Julio, and John E. Lamar. "Force and pressure study of thick cambered/twisted 58 deg delta wings." Journal of Aircraft 25, no. 1 (January 1988): 69–75. http://dx.doi.org/10.2514/3.45543.
Full textSenthil Kumar, M., R. Vijayanandh, N. Kaviarasan, R. Dinesh Kumar, I. Adrin Issai Arasu, and R. Kanmaniraja. "Numerical and Experimental Investigation on the Aerodynamic performance of roller Airfoil." International Journal of Engineering & Technology 7, no. 4.10 (October 2, 2018): 637. http://dx.doi.org/10.14419/ijet.v7i4.10.21302.
Full textPelletier, Alain, and Thomas J. Mueller. "Low Reynolds Number Aerodynamics of Low-Aspect-Ratio, Thin/Flat/Cambered-Plate Wings." Journal of Aircraft 37, no. 5 (September 2000): 825–32. http://dx.doi.org/10.2514/2.2676.
Full textRoy, Aritras, R. Vinoth Kumar, and Rinku Mukherjee. "Experimental validation of numerical decambering approach for flow past a rectangular wing." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 234, no. 9 (April 6, 2020): 1564–82. http://dx.doi.org/10.1177/0954410020916311.
Full textEngels, Thomas, Henja-Niniane Wehmann, and Fritz-Olaf Lehmann. "Three-dimensional wing structure attenuates aerodynamic efficiency in flapping fly wings." Journal of The Royal Society Interface 17, no. 164 (March 2020): 20190804. http://dx.doi.org/10.1098/rsif.2019.0804.
Full textShi, Xing, Xianwen Huang, Yao Zheng, and Susu Zhao. "Effects of cambers on gliding and hovering performance of corrugated dragonfly airfoils." International Journal of Numerical Methods for Heat & Fluid Flow 26, no. 3/4 (May 3, 2016): 1092–120. http://dx.doi.org/10.1108/hff-10-2015-0414.
Full textMeresman, Yonatan, and Gal Ribak. "Allometry of wing twist and camber in a flower chafer during free flight: How do wing deformations scale with body size?" Royal Society Open Science 4, no. 10 (October 2017): 171152. http://dx.doi.org/10.1098/rsos.171152.
Full textCheney, Jorn A., Jonathan P. J. Stevenson, Nicholas E. Durston, Masateru Maeda, Jialei Song, David A. Megson-Smith, Shane P. Windsor, James R. Usherwood, and Richard J. Bomphrey. "Raptor wing morphing with flight speed." Journal of The Royal Society Interface 18, no. 180 (July 2021): 20210349. http://dx.doi.org/10.1098/rsif.2021.0349.
Full textHarvey, C., V. B. Baliga, P. Lavoie, and D. L. Altshuler. "Wing morphing allows gulls to modulate static pitch stability during gliding." Journal of The Royal Society Interface 16, no. 150 (January 2019): 20180641. http://dx.doi.org/10.1098/rsif.2018.0641.
Full textENNOS, A. ROLAND. "The Importance of Torsion in the Design of Insect Wings." Journal of Experimental Biology 140, no. 1 (November 1, 1988): 137–60. http://dx.doi.org/10.1242/jeb.140.1.137.
Full textbin Md Shah, Mohd Zarif, Mohd Ridh bin Abu Bakar, and Bambang Basuno. "The Aerodynamics Analysis on Cambered Fuselage Model." Applied Mechanics and Materials 660 (October 2014): 492–97. http://dx.doi.org/10.4028/www.scientific.net/amm.660.492.
Full textCole, Julian D., and Norman D. Malmuth. "Wave drag due to lift for transonic airplanes." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, no. 2054 (February 8, 2005): 541–60. http://dx.doi.org/10.1098/rspa.2004.1376.
Full textBreslin, John P. "Chines-Dry Planing of Slender Hulls: A General Theory Applied to Prismatic Surfaces." Journal of Ship Research 45, no. 01 (March 1, 2001): 59–72. http://dx.doi.org/10.5957/jsr.2001.45.1.59.
Full textWaldrop, Lindsay D., Yanyan He, Tyson L. Hedrick, and Jonathan A. Rader. "Functional Morphology of Gliding Flight I: Modeling Reveals Distinct Performance Landscapes Based on Soaring Strategies." Integrative and Comparative Biology 60, no. 5 (August 7, 2020): 1283–96. http://dx.doi.org/10.1093/icb/icaa114.
Full textA, Mugeshwaran, Guru Prasad Bacha, and Rajkumar S. "Design and experimental analysis of morphing wing based on biomimicry." International Journal of Engineering & Technology 7, no. 3.3 (June 8, 2018): 239. http://dx.doi.org/10.14419/ijet.v7i2.33.14160.
Full textNangia, R. K., and M. E. Palmer. "A comparative study of two UCAV type wing planforms — performance and stability considerations." Aeronautical Journal 110, no. 1112 (October 2006): 641–58. http://dx.doi.org/10.1017/s0001924000001512.
Full textAlsaidi, Bashir, Woong Yeol Joe, and Muhammad Akbar. "Computational Analysis of 3D Lattice Structures for Skin in Real-Scale Camber Morphing Aircraft." Aerospace 6, no. 7 (July 7, 2019): 79. http://dx.doi.org/10.3390/aerospace6070079.
Full textNguyen, Quoc V., Woei L. Chan, and Marco Debiasi. "Experimental investigation of wing flexibility on force generation of a hovering flapping wing micro air vehicle with double wing clap-and-fling effects." International Journal of Micro Air Vehicles 9, no. 3 (March 28, 2017): 187–97. http://dx.doi.org/10.1177/1756829317695565.
Full textOsterberg, N., and R. Albertani. "Investigation of self-deploying high-lift effectors applied to membrane wings." Aeronautical Journal 121, no. 1239 (March 30, 2017): 660–79. http://dx.doi.org/10.1017/aer.2017.10.
Full textOkamoto, M., K. Yasuda, and A. Azuma. "Aerodynamic characteristics of the wings and body of a dragonfly." Journal of Experimental Biology 199, no. 2 (February 1, 1996): 281–94. http://dx.doi.org/10.1242/jeb.199.2.281.
Full textZhang, Yaqing, Wenjie Ge, Ziang Zhang, Xiaojuan Mo, and Yonghong Zhang. "Design of compliant mechanism-based variable camber morphing wing with nonlinear large deformation." International Journal of Advanced Robotic Systems 16, no. 6 (November 1, 2019): 172988141988674. http://dx.doi.org/10.1177/1729881419886740.
Full textKinnas, Spyros A. "A General Theory for the Coupling Between Thickness and Loading for Wings and Propellers." Journal of Ship Research 36, no. 01 (March 1, 1992): 59–68. http://dx.doi.org/10.5957/jsr.1992.36.1.59.
Full textThielicke, William, and Eize J. Stamhuis. "The influence of wing morphology on the three-dimensional flow patterns of a flapping wing at bird scale." Journal of Fluid Mechanics 768 (March 4, 2015): 240–60. http://dx.doi.org/10.1017/jfm.2015.71.
Full textOzel, Cevdet, Emre Ozbek, and Selcuk Ekici. "A Review on Applications and Effects of Morphing Wing Technology on UAVs." International Journal of Aviation Science and Technology vm01, is01 (September 10, 2020): 30–40. http://dx.doi.org/10.23890/ijast.vm01is01.0105.
Full textAlsaidi, Bashir, Woong Yeol Joe, and Muhammad Akbar. "Simplified 2D Skin Lattice Models for Multi-Axial Camber Morphing Wing Aircraft." Aerospace 6, no. 8 (August 13, 2019): 90. http://dx.doi.org/10.3390/aerospace6080090.
Full textRader, Jonathan A., Tyson L. Hedrick, Yanyan He, and Lindsay D. Waldrop. "Functional Morphology of Gliding Flight II. Morphology Follows Predictions of Gliding Performance." Integrative and Comparative Biology 60, no. 5 (September 10, 2020): 1297–308. http://dx.doi.org/10.1093/icb/icaa126.
Full textHeryawan, Yudi, Hoon Cheol Park, Nam Seo Goo, Kwang Joon Yoon, and Yung Hwan Byun. "Structural Design, Manufacturing, and Wind Tunnel Test of a Small Expandable Wing." Key Engineering Materials 306-308 (March 2006): 1157–62. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.1157.
Full textKang, Chang-kwon, and Wei Shyy. "Scaling law and enhancement of lift generation of an insect-size hovering flexible wing." Journal of The Royal Society Interface 10, no. 85 (August 6, 2013): 20130361. http://dx.doi.org/10.1098/rsif.2013.0361.
Full textItem, Cem C., and Oktay Baysal. "Wing Section Optimization for Supersonic Viscous Flow." Journal of Fluids Engineering 120, no. 1 (March 1, 1998): 102–8. http://dx.doi.org/10.1115/1.2819632.
Full textForouzi Feshalami, Behzad, MH Djavareshkian, AH Zaree, Masoud Yousefi, and AA Mehraban. "The role of wing bending deflection in the aerodynamics of flapping micro aerial vehicles in hovering flight." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 10 (October 30, 2018): 3749–61. http://dx.doi.org/10.1177/0954410018806081.
Full textBhayu, Prasetiyo Radius, Quoc-Viet Nguyen, Hoon Cheol Park, Nam Seo Goo, and Doyoung Byun. "Artificial Cambered-Wing for a Beetle-Mimicking Flapper." Journal of Bionic Engineering 7, S4 (December 2010): S130—S136. http://dx.doi.org/10.1016/s1672-6529(09)60226-2.
Full textNaranjo, A. García, I. Cowling, J. A. Green, and N. Qin. "Aerodynamic performance benefits of utilising camber morphing wings for unmanned air vehicles." Aeronautical Journal 117, no. 1189 (March 2013): 315–27. http://dx.doi.org/10.1017/s0001924000008010.
Full textWalker, Simon M., Adrian L. R. Thomas, and Graham K. Taylor. "Photogrammetric reconstruction of high-resolution surface topographies and deformable wing kinematics of tethered locusts and free-flying hoverflies." Journal of The Royal Society Interface 6, no. 33 (August 5, 2008): 351–66. http://dx.doi.org/10.1098/rsif.2008.0245.
Full textOnishi, Minato, and Daisuke Ishihara. "Performance evaluation of the pixel wing model for the insect wing's camber." Journal of Advanced Simulation in Science and Engineering 8, no. 2 (2021): 163–72. http://dx.doi.org/10.15748/jasse.8.163.
Full textWillmott, A., and C. Ellington. "Measuring the angle of attack of beating insect wings: robust three-dimensional reconstruction from two-dimensional images." Journal of Experimental Biology 200, no. 21 (November 1, 1997): 2693–704. http://dx.doi.org/10.1242/jeb.200.21.2693.
Full textKim, Dong Hyun, Hyun Jung Kim, Il Kwon Oh, and Seok Soon Lee. "Nonlinear Aeroelastic Characteristics of a Laminated Composite Wing Considering Compressible Shock Wave Effects." Key Engineering Materials 334-335 (March 2007): 481–84. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.481.
Full textHeitzig, DNWM, BW van Oudheusden, D. Olejnik, and M. Karásek. "Effects of asymmetrical inflow in forward flight on the deformation of interacting flapping wings." International Journal of Micro Air Vehicles 12 (January 2020): 175682932094100. http://dx.doi.org/10.1177/1756829320941002.
Full textManzo, Justin, and Ephrahim Garcia. "Demonstration of anin situmorphing hyperelliptical cambered span wing mechanism." Smart Materials and Structures 19, no. 2 (January 14, 2010): 025012. http://dx.doi.org/10.1088/0964-1726/19/2/025012.
Full text