Academic literature on the topic 'Camera motion estimation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Camera motion estimation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Camera motion estimation"
Guan, Banglei, Xiangyi Sun, Yang Shang, Xiaohu Zhang, and Manuel Hofer. "Multi-camera networks for motion parameter estimation of an aircraft." International Journal of Advanced Robotic Systems 14, no. 1 (January 1, 2017): 172988141769231. http://dx.doi.org/10.1177/1729881417692312.
Full textMansour, Mostafa, Pavel Davidson, Oleg Stepanov, and Robert Piché. "Relative Importance of Binocular Disparity and Motion Parallax for Depth Estimation: A Computer Vision Approach." Remote Sensing 11, no. 17 (August 23, 2019): 1990. http://dx.doi.org/10.3390/rs11171990.
Full textHolešovský, Ondřej, Radoslav Škoviera, Václav Hlaváč, and Roman Vítek. "Experimental Comparison between Event and Global Shutter Cameras." Sensors 21, no. 4 (February 6, 2021): 1137. http://dx.doi.org/10.3390/s21041137.
Full textOgawa, Shota, Kenichi Asami, and Mochimitsu Komori. "Design and Evaluation of Compact Real-time Descriptor for Camera Motion Estimation." Journal of the Institute of Industrial Applications Engineers 5, no. 2 (April 25, 2017): 90–99. http://dx.doi.org/10.12792/jiiae.5.90.
Full textKwon, Soon-Kak, and Seong-Woo Kim. "Motion Estimation Method by Using Depth Camera." Journal of Broadcast Engineering 17, no. 4 (July 30, 2012): 676–83. http://dx.doi.org/10.5909/jbe.2012.17.4.676.
Full textLv Yao-wen, 吕耀文, 王建立 WANG Jian-li, 王昊京 WANG Hao-jing, 刘维 LIU Wei, 吴量 WU Liang, and 曹景太 CAO Jing-tai. "Estimation of camera poses by parabolic motion." Optics and Precision Engineering 22, no. 4 (2014): 1078–85. http://dx.doi.org/10.3788/ope.20142204.1078.
Full textNilsson, Emil, Christian Lundquist, Thomas B. Schön, David Forslund, and Jacob Roll. "Vehicle Motion Estimation Using an Infrared Camera." IFAC Proceedings Volumes 44, no. 1 (January 2011): 12952–57. http://dx.doi.org/10.3182/20110828-6-it-1002.03037.
Full textTang, Jiexiong, John Folkesson, and Patric Jensfelt. "Geometric Correspondence Network for Camera Motion Estimation." IEEE Robotics and Automation Letters 3, no. 2 (April 2018): 1010–17. http://dx.doi.org/10.1109/lra.2018.2794624.
Full textÖzyeşil, Onur, Amit Singer, and Ronen Basri. "Stable Camera Motion Estimation Using Convex Programming." SIAM Journal on Imaging Sciences 8, no. 2 (January 2015): 1220–62. http://dx.doi.org/10.1137/140977576.
Full textJonchery, C., F. Dibos, and G. Koepfler. "Camera Motion Estimation Through Planar Deformation Determination." Journal of Mathematical Imaging and Vision 32, no. 1 (April 12, 2008): 73–87. http://dx.doi.org/10.1007/s10851-008-0086-1.
Full textDissertations / Theses on the topic "Camera motion estimation"
Kim, Jae-Hak, and Jae-Hak Kim@anu edu au. "Camera Motion Estimation for Multi-Camera Systems." The Australian National University. Research School of Information Sciences and Engineering, 2008. http://thesis.anu.edu.au./public/adt-ANU20081211.011120.
Full textKim, Jae-Hak. "Camera motion estimation for multi-camera systems /." View thesis entry in Australian Digital Theses Program, 2008. http://thesis.anu.edu.au/public/adt-ANU20081211.011120/index.html.
Full textSrestasathiern, Panu. "Line Based Estimation of Object Space Geometry and Camera Motion." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345401748.
Full textHannuksela, J. (Jari). "Camera based motion estimation and recognition for human-computer interaction." Doctoral thesis, University of Oulu, 2008. http://urn.fi/urn:isbn:9789514289781.
Full textKurz, Christian [Verfasser], and Hans-Peter [Akademischer Betreuer] Seidel. "Constrained camera motion estimation and 3D reconstruction / Christian Kurz. Betreuer: Hans-Peter Seidel." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2014. http://d-nb.info/1063330734/34.
Full textHughes, Lloyd Haydn. "Enhancing mobile camera pose estimation through the inclusion of sensors." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95917.
Full textENGLISH ABSTRACT: Monocular structure from motion (SfM) is a widely researched problem, however many of the existing approaches prove to be too computationally expensive for use on mobile devices. In this thesis we investigate how inertial sensors can be used to increase the performance of SfM algorithms on mobile devices. Making use of the low cost inertial sensors found on most mobile devices we design and implement an extended Kalman filter (EKF) to exploit their complementary nature, in order to produce an accurate estimate of the attitude of the device. We make use of a quaternion based system model in order to linearise the measurement stage of the EKF, thus reducing its computational complexity. We use this attitude estimate to enhance the feature tracking and camera localisation stages in our SfM pipeline. In order to perform feature tracking we implement a hybrid tracking algorithm which makes use of Harris corners and an approximate nearest neighbour search to reduce the search space for possible correspondences. We increase the robustness of this approach by using inertial information to compensate for inter-frame camera rotation. We further develop an efficient bundle adjustment algorithm which only optimises the pose of the previous three key frames and the 3D map points common between at least two of these frames. We implement an optimisation based localisation algorithm which makes use of our EKF attitude estimate and the tracked features, in order to estimate the pose of the device relative to the 3D map points. This optimisation is performed in two steps, the first of which optimises only the translation and the second optimises the full pose. We integrate the aforementioned three sub-systems into an inertial assisted pose estimation pipeline. We evaluate our algorithms with the use of datasets captured on the iPhone 5 in the presence of a Vicon motion capture system for ground truth data. We find that our EKF can estimate the device’s attitude with an average dynamic accuracy of ±5°. Furthermore, we find that the inclusion of sensors into the visual pose estimation pipeline can lead to improvements in terms of robustness and computational efficiency of the algorithms and are unlikely to negatively affect the accuracy of such a system. Even though we managed to reduce execution time dramatically, compared to typical existing techniques, our full system is found to still be too computationally expensive for real-time performance and currently runs at 3 frames per second, however the ever improving computational power of mobile devices and our described future work will lead to improved performance. From this study we conclude that inertial sensors make a valuable addition into a visual pose estimation pipeline implemented on a mobile device.
AFRIKAANSE OPSOMMING: Enkel-kamera struktuur-vanaf-beweging (structure from motion, SfM) is ’n bekende navorsingsprobleem, maar baie van die bestaande benaderings is te berekeningsintensief vir gebruik op mobiele toestelle. In hierdie tesis ondersoek ons hoe traagheidsensors gebruik kan word om die prestasie van SfM algoritmes op mobiele toestelle te verbeter. Om van die lae-koste traagheidsensors wat op meeste mobiele toestelle gevind word gebruik te maak, ontwerp en implementeer ons ’n uitgebreide Kalman filter (extended Kalman filter, EKF) om hul komplementêre geaardhede te ontgin, en sodoende ’n akkurate skatting van die toestel se postuur te verkry. Ons maak van ’n kwaternioon-gebaseerde stelselmodel gebruik om die meetstadium van die EKF te lineariseer, en so die berekeningskompleksiteit te verminder. Hierdie afskatting van die toestel se postuur word gebruik om die fases van kenmerkvolging en kameralokalisering in ons SfM proses te verbeter. Vir kenmerkvolging implementeer ons ’n hibriede volgingsalgoritme wat gebruik maak van Harris-hoekpunte en ’n benaderde naaste-buurpunt-soektog om die soekruimte vir moontlike ooreenstemmings te verklein. Ons verhoog die robuustheid van hierdie benadering, deur traagheidsinligting te gebruik om vir kamerarotasies tussen raampies te kompenseer. Verder ontwikkel ons ’n doeltreffende bondelaanpassingsalgoritme wat slegs optimeer oor die vorige drie sleutelraampies, en die 3D punte gemeenskaplik tussen minstens twee van hierdie raampies. Ons implementeer ’n optimeringsgebaseerde lokaliseringsalgoritme, wat gebruik maak van ons EKF se postuurafskatting en die gevolgde kenmerke, om die posisie en oriëntasie van die toestel relatief tot die 3D punte in die kaart af te skat. Die optimering word in twee stappe uitgevoer: eerstens net oor die kamera se translasie, en tweedens oor beide die translasie en rotasie. Ons integreer die bogenoemde drie sub-stelsels in ’n pyplyn vir postuurafskatting met behulp van traagheidsensors. Ons evalueer ons algoritmes met die gebruik van datastelle wat met ’n iPhone 5 opgeneem is, terwyl dit in die teenwoordigheid van ’n Vicon bewegingsvasleggingstelsel was (vir die gelyktydige opneming van korrekte postuurdata). Ons vind dat die EKF die toestel se postuur kan afskat met ’n gemiddelde dinamiese akkuraatheid van ±5°. Verder vind ons dat die insluiting van sensors in die visuele postuurafskattingspyplyn kan lei tot verbeterings in terme van die robuustheid en berekeningsdoeltreffendheid van die algoritmes, en dat dit waarskynlik nie die akkuraatheid van so ’n stelsel negatief beïnvloed nie. Al het ons die uitvoertyd drasties verminder (in vergelyking met tipiese bestaande tegnieke) is ons volledige stelsel steeds te berekeningsintensief vir intydse verwerking op ’n mobiele toestel en hardloop tans teen 3 raampies per sekonde. Die voortdurende verbetering van mobiele toestelle se berekeningskrag en die toekomstige werk wat ons beskryf sal egter lei tot ’n verbetering in prestasie. Uit hierdie studie kan ons aflei dat traagheidsensors ’n waardevolle toevoeging tot ’n visuele postuurafskattingspyplyn kan maak.
Fathollahi, Ghezelghieh Mona. "Estimation of Human Poses Categories and Physical Object Properties from Motion Trajectories." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6835.
Full textAlmatrafi, Mohammed Mutlaq. "Optical Flow for Event Detection Camera." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1576188397203882.
Full textLee, Hong Yun. "Deep Learning for Visual-Inertial Odometry: Estimation of Monocular Camera Ego-Motion and its Uncertainty." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu156331321922759.
Full textEkström, Marcus. "Road Surface Preview Estimation Using a Monocular Camera." Thesis, Linköpings universitet, Datorseende, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151873.
Full textBooks on the topic "Camera motion estimation"
Schoepflin, Todd Nelson. Algorithms for estimating mean vehicle speed using uncalibrated traffic management cameras. [Olympia, Wash.]: Washington State Dept. of Transportation, 2003.
Find full textBook chapters on the topic "Camera motion estimation"
Utsumi, Akira, Hiroki Mori, Jun Ohya, and Masahiko Yachida. "Multiple camera based human motion estimation." In Computer Vision — ACCV'98, 655–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63931-4_274.
Full textPeng, Xin, Yifu Wang, Ling Gao, and Laurent Kneip. "Globally-Optimal Event Camera Motion Estimation." In Computer Vision – ECCV 2020, 51–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58574-7_4.
Full textDani, Ashwin P., and Warren E. Dixon. "Single Camera Structure and Motion Estimation." In Visual Servoing via Advanced Numerical Methods, 209–29. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-089-2_12.
Full textKurz, Christian, Thorsten Thormählen, Bodo Rosenhahn, and Hans-Peter Seidel. "Exploiting Mutual Camera Visibility in Multi-camera Motion Estimation." In Advances in Visual Computing, 391–402. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10331-5_37.
Full textLertrusdachakul, Thitiporn, Terumasa Aoki, and Hiroshi Yasuda. "Camera Motion Estimation by Image Feature Analysis." In Pattern Recognition and Image Analysis, 618–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11552499_68.
Full textAlyousefi, Khaled, and Jonathan Ventura. "Multi-camera Motion Estimation with Affine Correspondences." In Lecture Notes in Computer Science, 417–31. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50347-5_36.
Full textLiang, Xuefeng, Cuicui Zhang, and Takashi Matsuyama. "Inlier Estimation for Moving Camera Motion Segmentation." In Computer Vision -- ACCV 2014, 352–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16817-3_23.
Full textAlmeida, Jurandy, Rodrigo Minetto, Tiago A. Almeida, Ricardo da S. Torres, and Neucimar J. Leite. "Robust Estimation of Camera Motion Using Optical Flow Models." In Advances in Visual Computing, 435–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10331-5_41.
Full textVentura, Jonathan, Clemens Arth, and Vincent Lepetit. "Approximated Relative Pose Solvers for Efficient Camera Motion Estimation." In Computer Vision - ECCV 2014 Workshops, 180–93. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16178-5_12.
Full textShimada, N., Y. Shirai, and Y. Kuno. "Model Adaptation and Posture Estimation of Moving Articulated Object Using Monocular Camera." In Articulated Motion and Deformable Objects, 159–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/10722604_14.
Full textConference papers on the topic "Camera motion estimation"
"OMNIDIRECTIONAL CAMERA MOTION ESTIMATION." In International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2008. http://dx.doi.org/10.5220/0001084505770584.
Full textRatshidaho, Terence, Jules Raymond Tapamo, Jonathan Claassens, and Natasha Govender. "ToF camera ego-motion estimation." In 2012 5th Robotics and Mechatronics Conference of South Africa (ROBMECH). IEEE, 2012. http://dx.doi.org/10.1109/robomech.2012.6558458.
Full textMa, Lili, Chengyu Cao, Amanda Young, and Naira Hovakimyan. "Motion Estimation via a Zoom Camera." In AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-7446.
Full textMahyari, Mohsen Yaghobi, and Mohammad Ghanbari. "Robust estimation of camera motion parameters." In 2014 22nd Iranian Conference on Electrical Engineering (ICEE). IEEE, 2014. http://dx.doi.org/10.1109/iraniancee.2014.6999655.
Full textMeng, Zelin, Xiangbo Kong, Lin Meng, and Hiroyuki Tomiyama. "Camera Motion Estimation and optimization Approach." In 2019 International Conference on Advanced Mechatronic Systems (ICAMechS). IEEE, 2019. http://dx.doi.org/10.1109/icamechs.2019.8861680.
Full text"CAMERA MOTION ESTIMATION USING PARTICLE FILTERS." In International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2008. http://dx.doi.org/10.5220/0001086906700673.
Full textYuan, Ding, Miao Liu, and Hong Zhang. "Camera motion estimation using normal flows." In 2012 International Conference on Graphic and Image Processing, edited by Zeng Zhu. SPIE, 2013. http://dx.doi.org/10.1117/12.2010851.
Full textFarin, Dirk, and Peter H. N. de With. "Estimating physical camera parameters based on multisprite motion estimation." In Electronic Imaging 2005, edited by Amir Said and John G. Apostolopoulos. SPIE, 2005. http://dx.doi.org/10.1117/12.587557.
Full text"ROBUST CAMERA MOTION ESTIMATION IN VIDEO SEQUENCES." In International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2006. http://dx.doi.org/10.5220/0001361702940302.
Full textZou, Xiao-chun, Ming-yi He, Xin-bo Zhao, and Yan Feng. "A Robust Feature-Based Camera Motion Estimation Method." In 2010 International Conference on Innovative Computing & Communication and 2010 Asia-Pacific Conference on Information Technology & Ocean Engineering, (CICC-ITOE). IEEE, 2010. http://dx.doi.org/10.1109/cicc-itoe.2010.20.
Full text