Academic literature on the topic 'Camera Projector Calibration'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Camera Projector Calibration.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Camera Projector Calibration"
Motta, Thiago, Manuel Loaiza, Alberto Raposo, and Luciano Soares. "Kinect Projection Mapping." Journal on Interactive Systems 5, no. 3 (December 30, 2014): 1. http://dx.doi.org/10.5753/jis.2014.722.
Full textYakno, Marlina, Junita Mohamad-Saleh, Mohd Zamri Ibrahim, and W. N. A. W. Samsudin. "Camera-projector calibration for near infrared imaging system." Bulletin of Electrical Engineering and Informatics 9, no. 1 (February 1, 2020): 160–70. http://dx.doi.org/10.11591/eei.v9i1.1697.
Full textYu, Guang, Bo Yang Yu, Shu Cai Yang, Li Wen, Wen Fei Dong, and Hui Wang. "The Projector Calibration Based on ZHANG’s Self-Calibration Method." Advanced Materials Research 981 (July 2014): 364–67. http://dx.doi.org/10.4028/www.scientific.net/amr.981.364.
Full textZhao, Xue Jin, and Cheng Rui Zhang. "A New Camera and Projector Calibration Method Based on Discrete Computation." Applied Mechanics and Materials 229-231 (November 2012): 1171–75. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.1171.
Full textVan Crombrugge, Izaak, Rudi Penne, and Steve Vanlanduit. "Extrinsic Camera Calibration with Line-Laser Projection." Sensors 21, no. 4 (February 5, 2021): 1091. http://dx.doi.org/10.3390/s21041091.
Full textLi, Wen Guo, and Shao Jun Duan. "Convenient Calibration Procedure for Structured Light Projection System." Advanced Materials Research 662 (February 2013): 777–80. http://dx.doi.org/10.4028/www.scientific.net/amr.662.777.
Full textLiu, Yu Bao, Bin Liu, and Jun Yi Lin. "A Method of Line Structured Light Vision System Calibration Based on Stereo Vision." Applied Mechanics and Materials 397-400 (September 2013): 1453–58. http://dx.doi.org/10.4028/www.scientific.net/amm.397-400.1453.
Full textYu, Xiao Yang, Xiao Liang Meng, Hai Bin Wu, Xiao Ming Sun, and Li Wang. "Coded-Structured Light System Calibration Using Orthogonal Phase Shift Coding Combined with Zhang’s Method." Advanced Materials Research 981 (July 2014): 348–51. http://dx.doi.org/10.4028/www.scientific.net/amr.981.348.
Full textYang, Tao, Yue Liu, and You Lu. "A Rapid Auto-Caliberation Method in Projector-Camera System." Applied Mechanics and Materials 58-60 (June 2011): 2308–13. http://dx.doi.org/10.4028/www.scientific.net/amm.58-60.2308.
Full textPortalés, Cristina, Emilio Ribes-Gómez, Begoña Pastor, and Antonio Gutiérrez. "Calibration of a camera-projector monochromatic system." Photogrammetric Record 30, no. 149 (March 2015): 82–99. http://dx.doi.org/10.1111/phor.12094.
Full textDissertations / Theses on the topic "Camera Projector Calibration"
Hilario, Maria Nadia. "Occlusion detection in front projection environments based on camera-projector calibration." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=83866.
Full textTennander, David. "Automatic Projector Calibration for Curved Surfaces Using an Omnidirectional Camera." Thesis, KTH, Optimeringslära och systemteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209675.
Full textDenna rapport presenterar en metod för att motverka de distorsioner som uppkommer när en bild projeseras på en icke plan yta. Genom att använda en omnidirectional kamera kan en omslutande dome upplyst av flertalet projektorer bli kalibrerad. Kameran modellerades med The Unified Projection Model då modellen går att anpassa för ett stort antal kamerasystem. Projektorernas bild på ytan lästes av genom att använda Gray kod och sedan beräknades den optimala mittpunkten för den kalibrerade bilden genom att numeriskt lösa ett kvadratiskt NLP problem. Till slut skapas en Spline yta som motvärkar projektionsförvrängningen genom FAST-LTS regression. I den experimentella uppställningen användes en RICOH THETA S kamera som kalibrerades men omnidir modulen i openCV. Ett enligt författarna lyckat resultat uppnåddes och vid överlappning av flertalet projektorer så mättes ett maximalt fel på 0.5° upp. Vidare mätningar antyder att delar av detta fel uppkommit på grund av saknad noggrannhet i utrustningen under evalueringsfasen. Resultatet ses som lyckat och den utvecklade applikationen kommer att användas av ÅF Technology AB vid deras calibrering av flygsimulatorer.
Korostelev, Michael. "Performance Evaluation for Full 3D Projector Calibration Methods in Spatial Augmented Reality." Master's thesis, Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/213116.
Full textM.S.E.E.
Spatial Augment Reality (SAR) has presented itself to be an interesting tool for not only interesting ways to visualize information but to develop creative works in performance arts. The main challenge is to determine accurate geometry of a projection space and determine an efficient and effective way to project digital media and information to create an augmented space. In our previous implementation of SAR, we developed a projector-camera calibration approach using infrared markers. However, the projection suffers severe distortion due to the lack of depth information in the projection space. For this research, we propose to develop a RGBD sensor - projector system to replace our current projector-camera SAR system. Proper calibration between the camera or sensor and projector links vision to projection, answering the question of which point in camera space maps to what point in the space of projection. Calibration will resolve the problem of capturing the geometry of the space and allow us to accurately augment the surfaces of volumetric objects and features. In this work three calibration methods are examined for performance and accuracy. Two of these methods are existing adaptations of 2D camera - projector calibrations (calibration using arbitrary planes and ray-plane intersection) with our third proposed novel technique which utilizes point cloud information from the RGBD sensor directly. Through analysis and evaluation using re-projection error, results are presented, identifying the proposed method as practical and robust.
Temple University--Theses
Mosnier, Jérémie. "Etalonnage d'un système de lumière structurée par asservissement visuel." Thesis, Clermont-Ferrand 2, 2011. http://www.theses.fr/2011CLF22194.
Full textThis thesis is part of a national project named SRDViand whose aim was to develop a robotic system for the deboning and cutting of animals meat. To determine the cut paths, a structured light system has been developed. It refers to vision systems that use light projection models for 3D reconstruction tasks. To achieve best results, the definition of a new calibration method for structured light systems was established . Based on a large state of the art and also with a proposed classification of these methods, it has been proposed to calibrate a camera projector pair using visual servoing . The validity and the results of this method were tested on the basis of numerous experimental tests conducted under the SRDViand project. Following the development of this method, a prototype bovine cutting was performed
Walter, Viktor. "Projekce dat do scény." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-240823.
Full textMalík, Dalibor. "Zpracování dat z termokamery." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219683.
Full textYang, Liming. "Recalage robuste à base de motifs de points pseudo aléatoires pour la réalité augmentée." Thesis, Ecole centrale de Nantes, 2016. http://www.theses.fr/2016ECDN0025.
Full textRegistration is a very important task in Augmented Reality (AR). It provides the spatial alignment between the real environment and virtual objects. Unlike tracking (which relies on previous frame information), wide baseline localization finds the correct solution from a wide search space, so as to overcome the initialization or tracking failure problems. Nowadays, various wide baseline localization methods have been applied successfully. But for objects with no or little texture, there is still no promising method. One possible solution is to rely on the geometric information, which sometimes does not vary as much as texture or color. This dissertation focuses on new wide baseline localization methods entirely based on geometric information, and more specifically on points. I propose two novel point pattern matching algorithms, RRDM and LGC. Especially, LGC registers 2D or 3D point patterns under any known transformation type and supports multipattern recognitions. It has a linear behavior with respect to the number of points, which allows for real-time tracking. It is applied to multi targets tracking and augmentation, as well as to 3D model registration. A practical method for projector-camera system calibration based on LGC is also proposed. It can be useful for large scale Spatial Augmented Reality (SAR). Besides, I also developed a method to estimate the rotation axis of surface of revolution quickly and precisely on 3D data. It is integrated in a novel framework to reconstruct the surface of revolution on dense SLAM in real-time
Silva, Roger Correia Pinheiro. "Desenvolvimento e análise de um digitalizador câmera-projetor de alta definição para captura de geometria e fotometria." Universidade Federal de Juiz de Fora (UFJF), 2011. https://repositorio.ufjf.br/jspui/handle/ufjf/3515.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-06T19:52:42Z (GMT) No. of bitstreams: 1 rogercorreiapinheirosilva.pdf: 22838442 bytes, checksum: 0bd115f462fc7572058a542e9ed91fcc (MD5)
Made available in DSpace on 2017-03-06T19:52:42Z (GMT). No. of bitstreams: 1 rogercorreiapinheirosilva.pdf: 22838442 bytes, checksum: 0bd115f462fc7572058a542e9ed91fcc (MD5) Previous issue date: 2011-08-26
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Um sistema câmera-projetor é capaz de capturar informação geométrica tridimensional de objetos e ambientes do mundo real. A captura de geometria em tal sistema baseia-se na projeção de luz estruturada sobre um objeto através do projetor, e na captura da cena modulada através da câmera. Com o sistema previamente calibrado, a deformação da luz projetada causada pelo objeto fornece a informação necessária para reconstruir a geometria do mesmo por meio de triangulação. Este trabalho descreve o desenvolvimento de um digitalizador câmera-projetor de alta definição (com resoluções de até 1920x1080 e 1280x720); são detalhadas as etapas e processos que conduzem à reconstrução de geometria, como calibração câmera-projetor, calibração de cores, processamento da imagem capturada e triangulação. O digitalizador desenvolvido utiliza a codificação de luz estruturada (b; s)-BCSL, que emprega a projeção de uma sequência de faixas verticais coloridas sobre a cena. Este esquema de codificação flexível oferece um número variado de faixas para projeção: quanto maior o número de faixas, mais detalhada a geometria capturada. Um dos objetivos deste trabalho é estimar o número limite de faixas (b,s)-BCSL possível dentro das resoluções atuais de vídeo de alta definição. Este número limite é aquele que provê reconstrução densa da geometria alvo, e ao mesmo tempo possui baixo nível de erro. Para avaliar a geometria reconstruída pelo digitalizador para os diversos números de faixas, é proposto um protocolo para avaliação de erro. O protocolo desenvolvido utiliza planos como objetos para mensurar a qualidade de reconstrução geométrica. A partir da nuvem de pontos gerada pelo digitalizador, a equação do plano para a mesma é estimada por meio de mínimos quadrados. Para um número fixo de faixas, são feitas cinco digitalizações independentes do plano: cada digitalização leva a uma equação; também é computado o plano médio, estimado a partir da união das cinco nuvens de pontos. Uma métrica de distância no espaço projetivo é usada para avaliar a precisão e a acurácia de cada número de faixas projetados. Além da avaliação quantitativa, a geometria de vários objetos é apresentada para uma avaliação qualitativa. Os resultados demonstram que a quantidade de faixas limite para vídeos de alta resolução permite uma grande densidade de pontos mesmo em superfícies com alta variação de cores.
A camera-projector system is capable of capturing three-dimensional geometric information of objects and real-world environments. The capture of geometry in such system is based on the projection of structured light over an object by the projector, and the capture of the modulated scene through the camera. With a calibrated system, the deformation of the projected light caused by the object provides the information needed to reconstruct its geometry through triangulation. The present work describes the development of a high definition camera-projector system (with resolutions up to 1920x1080 and 1280x720). The steps and processes that lead to the reconstruction of geometry, such as camera-projector calibration, color calibration, image processing and triangulation, are detailed. The developed scanner uses the (b; s)-BCSL structured light coding, which employs the projection of a sequence of colored vertical stripes on the scene. This coding scheme offers a flexible number of stripes for projection: the higher the number of stripes, more detailed is the captured geometry. One of the objectives of this work is to estimate the limit number of (b; s)-BCSL stripes possible within the current resolutions of high definition video. This limit number is the one that provides dense geometry reconstruction, and at the same has low error. To evaluate the geometry reconstructed by the scanner for a different number of stripes, we propose a protocol for error measurement. The developed protocol uses planes as objects to measure the quality of geometric reconstruction. From the point cloud generated by the scanner, the equation for the same plane is estimated by least squares. For a fixed number of stripes, five independent scans are made for the plane: each scan leads to one equation; the median plane, estimated from the union of the five clouds of points, is also computed. A distance metric in the projective space is used to evaluate the precision and the accuracy of each number of projected stripes. In addition to the quantitative evaluation, the geometry of many objects are presented for qualitative evaluation. The results show that the limit number of stripes for high resolution video allows high density of points even on surfaces with high color variation.
Zahrádka, Jiří. "Rozšířené uživatelské rozhraní." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2011. http://www.nusl.cz/ntk/nusl-236929.
Full textPINHEIRO, SASHA NICOLAS DA ROCHA. "CAMERA CALIBRATION USING FRONTO PARALLEL PROJECTION AND COLLINEARITY OF CONTROL POINTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=28011@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Imprescindível para quaisquer aplicações de visão computacional ou realidade aumentada, a calibração de câmera é o processo no qual se obtém os parâmetros intrínsecos e extrínsecos da câmera, tais como distância focal, ponto principal e valores que mensuram a distorção ótica da lente. Atualmente o método mais utilizado para calibrar uma câmera envolve o uso de imagens de um padrão planar em diferentes perspectivas, a partir das quais se extrai pontos de controle para montar um sistema de equações lineares cuja solução representa os parâmetros da câmera, que são otimizados com base no erro de reprojeção 2D. Neste trabalho, foi escolhido o padrão de calibração aneliforme por oferecer maior precisão na detecção dos pontos de controle. Ao aplicarmos técnicas como transformação frontal-paralela, refinamento iterativo dos pontos de controle e segmentação adaptativa de elipses, nossa abordagem apresentou melhoria no resultado do processo de calibração. Além disso, propomos estender o modelo de otimização ao redefinir a função objetivo, considerando não somente o erro de reprojeção 2D, mas também o erro de colinearidade 2D.
Crucial for any computer vision or augmented reality application, the camera calibration is the process in which one gets the intrinsics and the extrinsics parameters of a camera, such as focal length, principal point and distortions values. Nowadays, the most used method to deploy the calibration comprises the use of images of a planar pattern in different perspectives, in order to extract control points to set up a system of linear equations whose solution represents the camera parameters, followed by an optimization based on the 2D reprojection error. In this work, the ring calibration pattern was chosen because it offers higher accuracy on the detection of control points. Upon application of techniques such as fronto-parallel transformation, iterative refinement of the control points and adaptative segmentation of ellipses, our approach has reached improvements in the result of the calibration process. Furthermore, we proposed extend the optimization model by modifying the objective function, regarding not only the 2D reprojection error but also the 2D collinearity error.
Book chapters on the topic "Camera Projector Calibration"
Martynov, Ivan, Joni-Kristian Kamarainen, and Lasse Lensu. "Projector Calibration by “Inverse Camera Calibration”." In Image Analysis, 536–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21227-7_50.
Full textAbe, Daisuke, Takayuki Okatani, and Koichiro Deguchi. "Flexible Online Calibration for a Mobile Projector-Camera System." In Computer Vision – ACCV 2010, 565–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19282-1_45.
Full textLang, Jonas, and Thomas Schlegl. "Camera-Projector Calibration - Methods, Influencing Factors and Evaluation Using a Robot and Structured-Light 3D Reconstruction." In Intelligent Robotics and Applications, 413–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43518-3_40.
Full textMozerov, Mikhail, Ariel Amato, Murad Haj, and Jordi Gonzàlez. "A Simple Method of Multiple Camera Calibration for the Joint Top View Projection." In Advances in Soft Computing, 164–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75175-5_21.
Full textLi, D., and J. Kofman. "Error compensated camera-projector calibration in shape measurement." In High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping, 441–46. CRC Press, 2013. http://dx.doi.org/10.1201/b15961-81.
Full textBergamasco, Filippo, Andrea Albarelli, and Andrea Torsello. "A Practical Setup for Projection-Based Augmented Maps." In Advanced Research and Trends in New Technologies, Software, Human-Computer Interaction, and Communicability, 13–22. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4490-8.ch002.
Full textHu, Jwu-Sheng, and Yung-Jung Chang. "Self-Calibration of Eye-to-Hand and Workspace for Mobile Service Robot." In Service Robots and Robotics, 229–46. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-0291-5.ch013.
Full textTroll, Péter, Károly Szipka, and Andreas Archenti. "Indoor Localization of Quadcopters in Industrial Environment." In Advances in Transdisciplinary Engineering. IOS Press, 2020. http://dx.doi.org/10.3233/atde200183.
Full textConference papers on the topic "Camera Projector Calibration"
Fleischmann, Oliver, and Reinhard Koch. "Fast projector-camera calibration for interactive projection mapping." In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7900226.
Full textYang, Liming, Jean-Marie Normand, and Guillaume Moreau. "Practical and Precise Projector-Camera Calibration." In 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2016. http://dx.doi.org/10.1109/ismar.2016.22.
Full textSakaue, Fumihiko, and Jun Sato. "Calibration of projector-camera systems from virtual mutual projection." In 2008 19th International Conference on Pattern Recognition (ICPR). IEEE, 2008. http://dx.doi.org/10.1109/icpr.2008.4761601.
Full textTao, Jun. "Slide projector calibration based on calibration of digital camera." In International Symposium on Multispectral Image Processing and Pattern Recognition, edited by S. J. Maybank, Mingyue Ding, F. Wahl, and Yaoting Zhu. SPIE, 2007. http://dx.doi.org/10.1117/12.774689.
Full textBevilacqua, M., C. Liguori, and A. Paolillo. "Stereo calibration for a camera - projector pair." In 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings. IEEE, 2010. http://dx.doi.org/10.1109/imtc.2010.5488055.
Full textMoreno, Daniel, and Gabriel Taubin. "Simple, Accurate, and Robust Projector-Camera Calibration." In 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT). IEEE, 2012. http://dx.doi.org/10.1109/3dimpvt.2012.77.
Full textHorbach, Jan W., and Thao Dang. "Metric projector camera calibration for measurement applications." In Optics East 2006, edited by Peisen S. Huang. SPIE, 2006. http://dx.doi.org/10.1117/12.686000.
Full textBevilacqua, M., G. Di Leo, M. Landi, and A. Paolillo. "Self-calibration for a camera-projector pair." In SPIE Optical Metrology, edited by Fabio Remondino and Mark R. Shortis. SPIE, 2011. http://dx.doi.org/10.1117/12.889517.
Full textAmano, Toshiyuki. "Projection Center Calibration for a Co-located Projector Camera System." In 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2014. http://dx.doi.org/10.1109/cvprw.2014.72.
Full textGarcia, Ricardo R., and Avideh Zakhor. "Geometric calibration for a multi-camera-projector system." In 2013 IEEE Workshop on Applications of Computer Vision (WACV). IEEE, 2013. http://dx.doi.org/10.1109/wacv.2013.6475056.
Full text