Academic literature on the topic 'Cancer – Radioimmunotherapy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cancer – Radioimmunotherapy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cancer – Radioimmunotherapy"

1

Sharkey, Robert M., and David M. Goldenberg. "Cancer radioimmunotherapy." Immunotherapy 3, no. 3 (March 2011): 349–70. http://dx.doi.org/10.2217/imt.10.114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Buraggi, G. L., and E. Seregni. "Radioimmunotherapy of cancer." Biomedicine & Pharmacotherapy 47, no. 6-7 (November 1993): 277. http://dx.doi.org/10.1016/0753-3322(93)90207-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

&NA;. "Radioimmunotherapy in ovarian cancer." Inpharma Weekly &NA;, no. 996 (July 1995): 8. http://dx.doi.org/10.2165/00128413-199509960-00016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

SYRIGOS, K. N., and A. A. EPENETOS. "Radioimmunotherapy of Ovarian Cancer." Hybridoma 14, no. 2 (April 1995): 121–24. http://dx.doi.org/10.1089/hyb.1995.14.121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Crippa, F. "Radioimmunotherapy of Ovarian Cancer." International Journal of Biological Markers 8, no. 3 (July 1993): 187–91. http://dx.doi.org/10.1177/172460089300800309.

Full text
Abstract:
Radioimmunotherapy (RIT) is a new therapeutical approach where radiolabeled monoclonal antibodies (MAb) against tumor-associated antigens are administered to treat tumor lesions. Ovarian cancer is one of the most promising fields for RIT. This paper gives an overview of some biodistribution studies in animal models and in patients with radiolabeled anti-ovarian cancer MAbs, and defines the main criteria which should be considered to plan a clinical trial of RIT in ovarian cancer. As regards the clinical results, the published outcome of various trials and the experience of the National Cancer Institute of Milan are summarized. Even if the number of patients involved in these clinical studies of RIT is too small to provide conclusive indications about its role in the management of ovarian cancer, the preliminary results from qualified groups show its potential in this disease despite the current problems that limit clinical application (above all, the instability of the radiolabeled linkage, the immunogenicity of murine antibodies, the poor absolute tumor radiolabel uptake and the bone marrow toxicity).
APA, Harvard, Vancouver, ISO, and other styles
6

Bertagnolli, M. M. "Radioimmunotherapy for Colorectal Cancer." Clinical Cancer Research 11, no. 13 (July 1, 2005): 4637–38. http://dx.doi.org/10.1158/1078-0432.ccr-05-0485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Koppe, M. J., R. P. Bleichrodt, W. J. G. Oyen, and O. C. Boerman. "Radioimmunotherapy and colorectal cancer." British Journal of Surgery 92, no. 3 (2005): 264–76. http://dx.doi.org/10.1002/bjs.4936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hull, Ashleigh, Yanrui Li, Dylan Bartholomeusz, William Hsieh, Barry Allen, and Eva Bezak. "Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma: A Review of the Current Status of Literature." Cancers 12, no. 2 (February 19, 2020): 481. http://dx.doi.org/10.3390/cancers12020481.

Full text
Abstract:
Pancreatic ductal adenocarcinoma (PDAC) has long been associated with low survival rates. A lack of accurate diagnostic tests and limited treatment options contribute to the poor prognosis of PDAC. Radioimmunotherapy using α- or β-emitting radionuclides has been identified as a potential treatment for PDAC. By harnessing the cytotoxicity of α or β particles, radioimmunotherapy may overcome the anatomic and physiological factors which traditionally make PDAC resistant to most conventional treatments. Appropriate selection of target receptors and the development of selective and cytotoxic radioimmunoconjugates are needed to achieve the desired results of radioimmunotherapy. The aim of this review is to examine the growing preclinical and clinical trial evidence regarding the application of α and β radioimmunotherapy for the treatment of PDAC. A systematic search of MEDLINE® and Scopus databases was performed to identify 34 relevant studies conducted on α or β radioimmunotherapy of PDAC. Preclinical results demonstrated α and β radioimmunotherapy provided effective tumour control. Clinical studies were limited to investigating β radioimmunotherapy only. Phase I and II trials observed disease control rates of 11.2%–57.9%, with synergistic effects noted for combination therapies. Further developments and optimisation of treatment regimens are needed to improve the clinical relevance of α and β radioimmunotherapy in PDAC.
APA, Harvard, Vancouver, ISO, and other styles
9

STEWART, J. S. W., V. HIRD, M. SULLIVAN, D. SNOOK, and A. A. EPENETOS. "Intraperitoneal radioimmunotherapy for ovarian cancer." BJOG: An International Journal of Obstetrics and Gynaecology 96, no. 5 (May 1989): 529–36. http://dx.doi.org/10.1111/j.1471-0528.1989.tb03251.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stewart, JSW, V. Hird, M. Sullivan, D. Snook, and AA Epenetos. "Intraperitoneal radioimmunotherapy for ovarian cancer." International Journal of Gynecology & Obstetrics 31, no. 1 (January 1990): 96. http://dx.doi.org/10.1016/0020-7292(90)90223-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Cancer – Radioimmunotherapy"

1

Norman, Timothy John. "Radioimmunotherapy with yttrium macrocycles." Thesis, Durham University, 1994. http://etheses.dur.ac.uk/5529/.

Full text
Abstract:
Monoclonal antibody fragments (Fab') which recognise tumour-associated antigens provide an ingenious means of selectively targeting a therapeutic radionuclide to a tumour for radioimmunotherapy. The radionuclide yttrium-90, a long range β(^-) emitter, was chosen to deliver a sterilising dose of radiation to the tumour. A selection of novel functionalised macrocyclic ligands based on a 1,4,7,10-tetraazacyclododecane skeleton have been synthesised, and the stabilities of their yttrium (III) and gadolinium (III) complexes studied in vitro through association and dissociation measurements, and in vivo through animal biodistribution studies. The radiolabelled complexes do not dissociate in vivo. Maleimides are compounds which are capable of selectively reacting with a thiol of an antibody fragment. Selective functionalisation of one of the yttrium binding macrocyclic ligands with either one or three maleimides has been carried out, and the resulting compounds conjugated to tumour seeking humanised antibody fragments. Subsequent radiolabelling with (^90)Y, gave the desired tumour targeting drug for use in radioimmunotherapy. Acridines are a class of intercalating agents which are capable of reversibly binding to DNA. A maleimide functionalised ligand derivatised with acridine was formed. Conjugation of this compound to antibody fragments capable of entering a tumour cell, may permit drug binding to tumour cell DNA, and thus enhance the targeting efficacy of the radiolabelled conjugate.
APA, Harvard, Vancouver, ISO, and other styles
2

Zajic, Stefan C. "Improved mehtods and reagents for pretargeted radioimmunotherapy of cancer." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38971.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, February 2007.
Vita.
Includes bibliographical references.
Pretargeted radioimmunotherapy (PRIT) of cancer improves upon conventional radioimmunotherapy (RIT) by decoupling the pharmacokinetics of the targeting agent and the radioisotope. In order to improve upon PRIT, we have considered variables such as treatment setting and methodology, the transport and clearance characteristics of targeting agents, and the radionuclides used for therapy. PRIT has been modeled with the aim of examining the theoretical potential of PRIT under optimal conditions to kill every cell in malignant, avascular micrometastases. A mathematical model of PRIT was developed that combined a two-compartment pharmacokinetic model, antibody binding kinetics, diffusion and catabolism in tumor spheroids, and radiation dosimetry models for alpha- and beta-emitting radionuclides. This model demonstrated that it is theoretically possible to kill every cell in 100 tm radius micrometastases using 9Y- or 213Bi-based PRIT with acceptable toxicity as described. The therapeutic window for dosing radionuclide-carrying hapten was found to be strongly dependent on cell-specific parameters such as antigen concentration, void fraction, and the radiosensitivity parameter a, as well as on targeting agent molecular parameters such as the diffusivity and antigen-binding association rate.
(cont.) Surprisingly, the therapeutic window was insensitive to the radiosensitivity metric a/I, the targeting agent antigen-binding dissociation rate, and all pharmacokinetic parameters. Overall, 213Bi-based PRIT significantly outperformed 9Y-based PRIT in terms of the safe therapeutic time window for radiometal dosing and the degree of cell overkill that could be achieved. An attempt was made to isolate high-affinity scFv or linear peptide binders against the loaded metal chelate Ga-DOTA-biotin. Unfortunately, several different approaches led only to scFvs and linear peptides with at best micromolar affinity for Ga-DOTA-biotin. It is possible that Ga-DOTA-biotin is a difficult target against which to engineer high affinity binders due to the chelate's six-coordinate binding of the gallium ion, which may result in rapid exchange of the carboxyl arms of the chelate in solution. As an alternative approach to targeting agent design, an anti-CEA, anti-fluorescein single-chain bispecific diabody was designed, produced in S. cerevisiae and characterized. The full-length diabody (55 kDa) binds CEA expressed on the surface of colorectal cancer-derived SW1222 cells with a KI of 4.3 ± 2.5 nM, and also binds fluorescein while bound to CEA on the cell surface.
(cont.) Lastly, in order to assist in protein engineering via directed evolution, asymptotically optimal probability estimation was combined with numerical bootstrapping and non-linear curve fitting to make accurate predictions of the actual underlying diversities of populations based on small samples of data.
by Stefan C. Zajic.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
3

Bryan, Jeffrey N. "Copper-64-labelled antibodies for the radioimmunotherapy of colon cancer in a mouse model /." Free to MU Campus, others may purchase, 2005. http://wwwlib.umi.com/cr/mo/fullcit?p1426051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rondon, Aurelie. "Radioimmunothérapie préciblée de la carcinose péritonéale par chimie bioorthogonale." Thesis, Université Clermont Auvergne‎ (2017-2020), 2018. http://www.theses.fr/2018CLFAS009/document.

Full text
Abstract:
La radioimmunothérapie (RIT) est une stratégie théranostique associant la spécificité de reconnaissance d’anticorps monoclonaux (AcMs) (ou de formes dérivées) vis-à-vis des antigènes tumoraux et les propriétés des radionucléides (imagerie/thérapie). L’efficacité de la RIT est cependant limitée sur les tumeurs solides à cause de la lente diffusion des AcMs et de leur longue demi-vie plasmatique. Les approches de radioimmunothérapie préciblée (PRIT), qui dissocient l’injection des AcMs de celle des radioligands constituent des alternatives pertinentes envisagées pour diminuer l’hématotoxicité et améliorer l’efficacité thérapeutique de la RIT classique. Nous avons ainsi travaillé sur une stratégie de PRIT utilisant la chimie bioorthogonale par interaction entre un trans-cyclooctène (TCO) et une tétrazine (TZ), à la fois pour l’imagerie et pour la thérapie de la carcinose péritonéale (CP) d’origine colorectale (modèle A431-CEA-Luc/ AcM 35A7). Dans un premier temps nous avons évalué à la fois in vitro et in vivo dans le modèle de CP ainsi que dans un modèle sous-cutané de cancer colorectal (modèle HT29/ AcM Ts29.2) l’effet des modifications apportées aux AcMs. Nous avons ainsi montré que les modifications d’AcMs influencent l’interaction entre les TCO et la TZ, sans pour autant altérer leur immunoréactivité. L’ajout d’espaceurs PEGylés (polyéthylène glycol) entre les AcMs et les TCO induit une diminution significative de l’interaction TCO/TZ. De plus, nous avons montré que les TCO sont sujets à l’isomérisation en cis-cyclooctènes, inactifs vis-à-vis de la TZ, et que la PEGylation aggrave ce phénomène. Ces études ont ainsi montré à la fois que les AcMs-TCO ne contenant pas d’espaceur PEGylé étaient les plus favorables pour le préciblage mais également, qu’il était primordial de contrôler le taux d’isomérisation des TCO avant greffage aux AcMs pour ne pas altérer l’interaction vis-à-vis des TZ. Dans un second temps nous avons effectué avec succès la preuve de concept de l’imagerie SPECT de la CP par préciblage entre l’AcM 35A7-TCO et la TZ-PEG4-DOTA-177Lu (i.e. TZ-1). Un ciblage spécifique des tumeurs péritonéales a ainsi été obtenu, avec un très bon contraste. L’étude de PRIT effectuée avec cette même sonde TZ-1 a cependant échoué à mettre en évidence une amélioration des médianes de survie ou un ralentissement de la croissance tumorale, nous amenant ainsi à reconsidérer la structure de la TZ-1. Trois autres TZ (i.e. TZ-2-4) ont donc été évaluées par la suite, en biodistribution, afin de déterminer la meilleure pour la PRIT de la CP. Ainsi, la TZ-3, qui comporte un espaceur PEGylé plus long que la TZ-1, s’est avérée être la plus favorable dans ce type de stratégie et sera prochainement utilisée pour une nouvelle étude de thérapie. En conclusion, ces travaux de thèse ont permis de démontrer la faisabilité du concept de préciblage par chimie bioorthogonale utilisant l’interaction TCO/TZ pour l’imagerie de tumeurs disséminées dans la cavité péritonéale. Cette stratégie reste néanmoins compliquée à mettre en place du fait de l’instabilité des TCO et des problèmes de réactivité de certaines sondes TZ et nécessite encore de nombreuses optimisations avant de pouvoir envisager une application thérapeutique
Radioimmunotherapy (RIT) consists to combine the specificity of monoclonal antibodies (mAbs), or mAbs derived structures, towards tumor antigens with the imaging/therapy properties of radionuclides, representing thus a theranostic strategy. RIT efficiency in solid tumors is limited due to both mAbs slow diffusion and long blood clearance. Pretargeted radioimmunotherapy (PRIT) appears as an alternative to circumvent hematotoxicity and improve therapeutic efficacy. We have thus worked on PRIT based on bioorthogonal click chemistry relying on the interaction between trans-cyclooctene (TCO) and tetrazine (TZ). Application of this strategy was made for imaging and therapy of peritoneal carcinomatosis (PC) from colorectal origin (A431-CEA-Luc model/ 35A7 mAb). We have first assessed the influence of mAbs modifications, in vitro and in vivo experiments made on both PC model and subcutaneous colorectal cancer (HT29 model/ Ts29.2 mAb). We thus demonstrated that mAbs modifications influence the interaction between TCO and TZ without decreasing their antigen binding capacities. Indeed, addition of PEGylated (polyethylene glycol) linkers between mAbs and TCO induced a significant decrease of TCO/TZ interaction. In addition, we also demonstrated that TCO moieties undergo severe isomerization to cis-cyclooctene (CCO) moieties which are unreactive towards TZ. Addition of PEG linkers also increased the isomerization rate of TCO to CCO. Our results highlighted that a non PEGylated mAb should represent the best structure for PRIT to avoid isomerization and consequently to control the ratio of CCO before mAbs coupling to maximize TCO/TZ interaction. In disseminated PC, we have made for the first time the proof of concept of SPECT imaging between 35A7-TCO and TZ-PEG4-DOTA-177Lu (i.e. TZ-1). We indeed obtained a specific signal corresponding to PC tumors with a very good contrast. However, a PRIT experiment using TZ-1 did not allow observing neither improvement of median survivals nor tumor growth slow down. Those disappointing results led to reconsider the TZ-1 structure and evaluate three new TZ (i.e. TZ-2-4). The TZ-3, bearing a longer PEG linker than TZ-1, appears as the most appropriate for PRIT studies and will soon be considered for a new therapy experiment. In conclusion, we demonstrated the possibility to do pretargeted imaging of peritoneal disseminated tumors using bioorthogonal click chemistry with TCO/TZ interaction. Nevertheless, this strategy is quite complicated to do due to both TCO isomerization and reactivity of radiolabelled TZ probes. Further optimizations will be mandatory before therapy can be transferred to clinic
APA, Harvard, Vancouver, ISO, and other styles
5

Deshayes, Emmanuel. "Développement d’une approche théragnostique du cancer de l’ovaire à l’aide d’anticorps anti-AMHR2 radiomarqués." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTT078.

Full text
Abstract:
Le cancer de l’ovaire est la première cause de décès par cancer gynécologique en France et il présente un fort taux de récidive justifiant la recherche de nouvelles thérapeutiques. Notre projet consiste à développer et à explorer sur des modèles expérimentaux précliniques de carcinose péritonéale de nouveaux agents thérapeutiques radiopharmaceutiques et des voies d’administration innovantes ciblant plus particulièrement la maladie résiduelle micro-métastatique présente après chirurgie de cytoréduction. Nous utilisons des anticorps monoclonaux internalisants spécifiques d’un récepteur membranaire surexprimé dans le cancer de l’ovaire et d’autres cancers gynécologiques, le récepteur de type 2 de l’hormone anti-müllerienne (AMHR2). Ces anticorps sont couplés à des radionucléides aux propriétés thérapeutiques : le Lutecium-177 (un émetteur de particules beta moins) et le Bismuth-213 (un émetteur de particules alpha) réalisant un traitement de radioimmunothérapie. Ils sont évalués après injection intrapéritonéale mais également en utilisant la technique RadioImmunoThérapie Intrapéritonéale Brève (BIP-RIT) consistant à instiller de fortes activités d’anticorps radiomarqués dans le péritoine avant d’en réaliser un rinçage abondant, à l’image de la chimiothérapie hyperthermique intrapéritonéale (CHIP). Sont étudiés sur différents modèles la biodistribution, la dosimétrie, la toxicité et l’efficacité thérapeutique des différentes combinaisons de radionucléides et de voies d’administration. La BIP-RIT présente un profil de biodistribution et de dosimétrie toujours favorable, quel que soit le radionucléide utilisé même si l’utilisation du Bismuth-213 apparait plus particulièrement adaptée à cette technique (bonne efficacité thérapeutique avec absence de toxicité). L’imagerie PET/CT de la biodistribution in-vivo de ces anticorps a été réalisée à l’aide de l’émetteur de positrons Zirconium-89 ouvrant la voie à une approche théragnostique du traitement des cancers gynécologiques AMHR2+ par (radio)immunothérapie. Les mécanismes d’action thérapeutique d’une version humanisée de l’anticorps anti-AMHR2 sont également étudiés. Ce travail ouvre des perspectives cliniques intéressantes dans la prise en charge du cancer de l’ovaire
Ovarian cancer is the first cause of cancer death from gynaecologic malignancy in France and it has high rate of recurrence justifying the development of new therapeutic tools. Our project aims at developing new radiopharmaceuticals and innovative route of administration to target the small volume residual disease after complete cytoreductive surgery of peritoneal carcinomatosis on preclinical models. We use internalising monoclonal antibodies specific of the anti-müllerian hormone type 2 receptor (AMHR2), overexpressed in ovarian cancer and gynaecologic malignancies. Antibodies are radiolabelled with Lutecium-177, a beta minus emitter, and Bismuth-213, an alpha emitter, to perform radioimmunotherapy. Radiolabelled antibodies are injected intraperitoneally but also after Brief IntraPeritoneal RadioImmunoTherapy (BIP-RIT), a technique delivering high activities in the peritoneal cavity for a short time before washing, like Hyperthermic IntraPEritoneal Chemotherapy (HIPEC). We studied biodistribution, dosimetry, toxicity and therapeutic efficacy on various models and combinaison of radionuclides and route of administration. BIP-RIT appears to be always favourable in term of biodistribution and dosimetry (especially for the tumour-over-blood ratio) whatever the radionuclide used. Bismuth-213 is particularly adapted for radioimmunotherapy of small residual tumours, showing therapeutic efficacy with no toxicity. PET/CT imaging of radiolabelled antibodies with Zirconium-89 was performed and may be used as a theranostic tool for (radio)immunotherapy with anti-AMHR2 antibodies. The anti-tumour efficacy mechanisms of a humanized version of anti-AMHR2 antibody are also presented. This work may lead to realistic theranostic options in ovarian cancer in clinic
APA, Harvard, Vancouver, ISO, and other styles
6

Leconte, Agnès. "Antigènes associés aux tumeurs solides." Montpellier 1, 1999. http://www.theses.fr/1999MON1T023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

BIDON, NATHALIE. "Optimisation de la radioimmunotherapie metabolique des cancers bronchiques humains : systeme aes, structure et expression du gene lgals8 codant pour po66-cbp." Rennes 1, 2001. http://www.theses.fr/2001REN10012.

Full text
Abstract:
L'anticorps monoclonal po66 reconnait un antigene intracytoplasmique, po66-cbp, une galectine-8 exprimee par les carcinomes epidermoides bronchiques humains et qui possede deux isoformes. Chez des souris greffees avec des cellules de cancer bronchique, une chimiotherapie associee a une radioimmunotherapie avec l'anticorps po66 a permis une regression notable des tumeurs. Cependant, la toxicite liee a la forte quantite d'anticorps po66 radiomarque circulant etait trop importante. Afin d'optimiser ce traitement, nous avons synthetise un anticorps monoclonal bispecifique (anti-dtpa-in x po66) pour realiser une radioimmunotherapie en deux temps utilisant un haptene bivalent radiomarque (systeme aes). Puis nous avons etudie l'expression de la galectine-8, ainsi que la structure du gene lgals8. Une etude preliminaire de la biodistribution de l'anticorps bispecifique et du haptene bivalent, a permis de determiner les conditions optimales a utiliser lors de la radioimmunotherapie en deux temps : trois injections successives d'anticorps bispecifique en association avec une chimiotherapie et une injection de haptene bivalent radiomarque trois jours plus tard. De plus, nous avons mis en evidence qu'un traitement au butyrate de sodium pouvait augmenter in vitro la quantite d'antigene po66-cbp exprime par les cellules tumorales, ce qui semble etre confirme in vivo, sur des souris ou nous observons une fixation accrue de l'anticorps bispecifique. Nous avons egalement mis en evidence non pas trois isoformes de la galectine-8, mais cinq, codees par un unique gene lgals8 par le biais d'un epissage alternatif complexe. Ce gene est localise en position lq42. Les cinq proteines appartiennent a deux groupes de galectines : prototype et repetee
APA, Harvard, Vancouver, ISO, and other styles
8

Gestin, Jean-François. "Synthese de nouveaux chelates et etudes de leur pouvoir complexant, pour le marquage des anticorps monoclonaux par des radionucleides metalliques, en vue de l'immunoscintigraphie et de la radioimmunotherapie des cancers." Nantes, 1990. http://www.theses.fr/1990NANT2052.

Full text
Abstract:
Les anticorps monoclonaux marques par des elements radioactifs sont utilises en immunoscintigraphie ou en radioimmunotherapie, pour le diagnostic ou le traitement des cancers. Il existe differentes methodes pour marquer, par un radionucleide, un anticorps, qui va reconnaitre un antigene exprime par la tumeur et qui va permettre de visualiser cette tumeur ou de la detruire selon la nature du radionucleide utilise. En particulier, l'element radioactif peut etre chelate par des acides polyaminocarboxyliques qui sont greffes sur la surface de l'anticorps. Dans ce travail, apres avoir rappele les travaux effectues sur l'edta (acide ethylenediamine tetracetique), le dtpa (acide diethylenetriamine pentacetique), ou leurs derives, nous avons etudie la possibilite d'utiliser les derives du cdta (acide trans-1,2-diaminocyclohexane-n,n,n,n-tetracetique). Des travaux recents ont montre qu'il peut etre interessant pour l'immunoscintigraphie ou la radioimmunotherapie, d'introduire, entre la structure destinee a recevoir le metal, et l'anticorps, un agent de liaison ou linker potentiellement metabolisable, qui puisse etre la cible d'enzymes hepatiques specifiques, avec liberation du radioelement, rapidement excrete par voie urinaire. Ceci a pour objet de diminuer l'intensite du bruit de fond en particulier hepatique et d'optimiser ainsi les performances de l'immunoscintigraphie et de la radioimmunotherapie des tumeurs situees dans, ou, au voisinage du foie. Nous avons propose la synthese de differents linkers qui ont ensuite ete couples aux derives du cdta. L'ensemble ligand-linker a ete, par la suite, greffe a l'anticorps. Apres marquage par de l'111 in, les etudes de biodistribution ont ete effectuees sur des souris saines ou porteuses de tumeurs. Ce travail a permis de montrer, d'une part, que le cdta est un excellent ligand pour ce type d'approche, et, d'autre part, de definir un certain
APA, Harvard, Vancouver, ISO, and other styles
9

Al-Hussan, Khalid A. I. Eleissa. "Radiation dosimetry of radioimmunotherapy antibodies conjugated with ������Y." Thesis, 1997. http://hdl.handle.net/1957/33830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Costantini, Danny. "Targeted Auger Electron Radiotherapy of HER2-amplified Breast Cancer." Thesis, 2009. http://hdl.handle.net/1807/17745.

Full text
Abstract:
Monoclonal antibodies (mAbs) conjugated to nuclear localization sequences (NLS) and labeled with Auger electron-emitters have great potential for targeted radiotherapy of cancer. This approach may be especially appropriate for the 25-30% of patients with breast cancer whose tumors display overexpression of HER2. Trastuzumab (Herceptin) is a humanized anti-HER2 mAb approved for immunotherapy of HER2-amplified breast cancer. The goal of this research was to radiolabel trastuzumab with [111]In, and to modify it with peptides harboring the NLS (CGYGPKKKRKVGG) of the simian virus 40 large-T antigen for targeted radiotherapy of breast cancer. It was hypothesized that the NLS-peptides would mediate the translocation of covalently linked [111]In-trastuzumab molecules into the nuclei of HER2-overexpressing breast cancer cells where subcellular-range Auger electrons are most damaging to DNA and lethal to cells. Trastuzumab was derivatized with sulfosuccinimidyl-4-(N-maleimidomethyl)-cyclohexane-1-carboxylate for reaction with NLS-peptides and labeled with [111]In using diethylenetriaminepentaacetic acid. The dissociation constant for binding of [111]In-NLS-trastuzumab to HER2-overexpressing SK-BR-3 human breast cancer cells was reduced < 3-fold compared to [111]In-trastuzumab, demonstrating relatively preserved receptor-binding affinity. The NLS-peptides did not affect the biodistribution of [111]In-trastuzumab, but promoted its nuclear uptake in HER2-overexpressing MDA-MB-361 xenografts. The cytotoxicity of [111]In-NLS-trastuzumab on breast cancer cells correlated with their HER2 expression. Moreover, [111]In-NLS-trastuzumab was 2-fold and 5-fold more potent at killing MDA-MB-361 and SK-BR-3 cells compared to [111]In-trastuzumab, and nearly 3-fold and 6-fold more effective than unlabeled trastuzumab, respectively. Methotrexate is a known radiosensitizer that can amplify the lethal effects of ionizing radiation on tumor cells. Non-cytotoxic, but radiosensitizing doses of methotrexate were therefore combined with [111]In-NLS-trastuzumab; this enhanced the sensitivity of HER2-overexpressing breast cancer cells to [111]In-NLS-trastuzumab. The blood t1/2 of [111]In-NLS-trastuzumab in non-tumor bearing BALB/c mice was 23-34 h when administered intravenously or intraperitoneally. The maximum tolerated dose was 9.2-18.5 MBq; doses >18.5 MBq caused decreased leukocyte and platelet counts. [111]In-NLS-trastuzumab exhibited strong anti-tumor effects against HER2-overexpressing MDA-MB-361 xenografts, reducing their growth rate 2-fold and 3-fold compared to mice administered [111]In-trastuzumab or unlabeled trastuzumab, respectively. These promising results suggest that [111]In-NLS-trastuzumab may be a useful Auger electron radioimmunotherapeutic agent for HER2-positive breast cancer in humans.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cancer – Radioimmunotherapy"

1

Pietro, Riva, ed. Cancer radioimmunotherapy: Present and future. Amsterdam, The Netherlands: Harwood Academic, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

N, Syrigos Konstantinos, and Harrington Kevin J. 1958-, eds. Targeted therapy for cancer. Oxford: Oxford University Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Conference on Radioimmunodetection and Radioimmunotherapy of Cancer (7th 1998 Princeton, New-Jersey). Seventh Conference on Radioimmunodetection and Radioimmunotherapy of Cancer: Princeton, New Jersey, October 15-17, 1998. Philadelphia, PA: American Association for Cancer Research, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1938-, Goldenberg David M., ed. Cancer therapy with radiolabeled antibodies. Boca Raton: CRC Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Targeted radionuclide therapy. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marco, Chinol, and Paganelli Giovanni, eds. Radionuclide peptide cancer therapy. New York: Taylor&Francis, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

E, Order Stanley, Johns Hopkins Medical Institutions, and National Cancer Institute (U.S.), eds. International Symposium on Labeled and Unlabeled Antibody in Cancer Diagnosis and Therapy: Turner Auditorium, the Johns Hopkins Medical Institutions, Baltimore, Maryland, September 12-13, 1985. Bethesda, MD: U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1925-, Vaeth Jerome M., and Meyer John 1949-, eds. The present and future role of monoclonal antibodies in the management of cancer: 24th Annual San Francisco Cancer Symposium, San Francisco, Calif., February 10-11, 1989. Basel: Karger, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Raymond, Reilly, ed. Monoclonal antibody and peptide-targeted radiotherapy of cancer. Hoboken, N.J: Wiley, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

C, Srivastava Suresh, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Radiolabeled monoclonal antibodies for imaging and therapy. New York: Plenum Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Cancer – Radioimmunotherapy"

1

Weigert, Oliver, and Martin Dreyling. "Radioimmunotherapy." In Encyclopedia of Cancer, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_4918-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weigert, Oliver, and Martin Dreyling. "Radioimmunotherapy." In Encyclopedia of Cancer, 3877–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-46875-3_4918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weigert, Oliver, and Martin Dreyling. "Radioimmunotherapy." In Encyclopedia of Cancer, 3148–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_4918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kuzel, Timothy M., and Steven T. Rosen. "Radioimmunotherapy of lymphoma." In Cancer Treatment and Research, 1–12. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3076-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sharkey, Robert M., and David G. Goldenberg. "Pretargeted Radioimmunotherapy of Cancer." In Monoclonal Antibody and Peptide-Targeted Radiotherapy of Cancer, 241–87. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470613214.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Divgi, Chaitanya. "Radioimmunotherapy of Renal Cancer." In Therapeutic Nuclear Medicine, 663–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/174_2012_710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Planting, A., J. Verweij, P. Cox, M. Pillay, and G. Stoter. "Radioimmunodetection and Radioimmunotherapy in Myosarcoma." In Cancer Therapy, 27–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73721-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Karmali, Reem, and Stephanie A. Gregory. "Radioimmunotherapy in Lymphomas." In Cancer Consult: Expertise for Clinical Practice, 398–402. Oxford, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118589199.ch62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Meller, Johannes, Torsten Liersch, Birgit Meller, Kia Homayounfar, and Carsten-Oliver Sahlmann. "Radioimmunotherapy in Metastatic Colorectal Cancer." In Therapeutic Nuclear Medicine, 639–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/174_2012_680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rousseau, Julie, Joseph Lau, and François Bénard. "Radiolabeled Antibodies for Cancer Radioimmunotherapy." In Nuclear Medicine and Immunology, 297–345. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81261-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cancer – Radioimmunotherapy"

1

Batra, Jaspreet S., He Liu, Sae Kim, Vicente N. Navarro, Shankar Vallabhajosula, Scott T. Tagawa, and Neil H. Bander. "Abstract 5201: PSMA-targeted alpha radioimmunotherapy for prostate cancer with225Ac-J591." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Huizi Keiko, and Sumitaka Hasegawa. "Abstract 860: Experimental alpha-radioimmunotherapy for liver metastasis of gastric cancer." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gostian, Antoniu Oreste, M. Eckstein, S. Rutzner, J. von der Grün, T. Illmer, M. Hautmann, T. Brunner, et al. "First-line therapy of advanced head and neck cancer with double checkpoint blockade and radioimmunotherapy - first results." In 100 JAHRE DGHNO-KHC: WO KOMMEN WIR HER? WO STEHEN WIR? WO GEHEN WIR HIN? Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1727929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Karacay, Habibe, Serengulam V. Govindan, Robert M. Sharkey, and David M. Goldenberg. "Abstract 5543: Combining antibody-targeted radiation (radioimmunotherapy) and antibody-SN-38 conjugates (ADC) improves pancreatic cancer therapy." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-5543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chung, Sebastian K., Christopher S. Chandler, Daniela Burnes Vargas, Shin H. Seo, Michael R. McDevitt, Darren Veach, Blesida Punzalan, et al. "Abstract P168: Pretargeted radioimmunotherapy using 225Ac for intraperitoneal Her2-expressing epithelial ovarian carcinoma xenografts." In Abstracts: AACR-NCI-EORTC Virtual International Conference on Molecular Targets and Cancer Therapeutics; October 7-10, 2021. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1535-7163.targ-21-p168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Houghton, Jacob L., Ryan Lanning, Dayla Abdel-atti, Toni Jun, Christine M. Kearns, Michael Schlosser, Wolfgang Scholz, Jason S. Lewis, and Paul W. Maffuid. "Abstract 5204: Preclinical development of MVT-1075 as radioimmunotherapy for pancreatic cancer and other CA19-9 positive malignancies." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dadachova, Ekaterina, Rebecca Phaeton, Ekaterina Revskaya, Zewei Jiang, Ruth A. Bryan, Gary L. Goldberg, and Arturo Casadevall. "Abstract 5344: The contribution of unlabeled antibodies to intracellular antigens to efficacy of radioimmunotherapy in experimental metastatic melanoma and cervical cancer." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-5344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schoffelen, Rafke, Otto C. Boerman, David M. Goldenberg, Robert M. Sharkey, Carla M. L. Herpen, Chien-Hsing Chang, Gerben M. Franssen, et al. "Abstract 1755: Pretargeted radioimmunotherapy of an anti-CEA bispecific antibody and177Lu-labeled peptide: a phase I study in patients with advanced colorectal cancer." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-1755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Molina, Ana M., Jaspreet S. Batra, Beerinder S. Karir, Yuliya Jhanwar, Shankar Vallabhajosula, Paul J. Christos, Linda Lam, et al. "Abstract CT140: Pilot study of “hyperfractionated” anti-prostate specific membrane antigen (PSMA) radioimmunotherapy (177Lu-J591) for progressive metastatic castration-resistant prostate cancer (mCRPC)." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-ct140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

O'Reilly, Eileen A., Christian Lohrmann, Joseph A. O'Donoghue, Erkut Borazanci, Hayley Estrella, Rebecca Teng, Terri Melink, et al. "Abstract CT140: Phase I dose escalation study of 177Lu-HuMab-5B1 (MVT-1075) in combination with MVT-5873 as radioimmunotherapy (RIT) in subjects with relapsed / refractory pancreatic cancer or other CA19-9+ malignancies." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-ct140.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cancer – Radioimmunotherapy"

1

DeNardo, S. J. Cancer radioimmunotherapy: Development of an effective approach. Office of Scientific and Technical Information (OSTI), January 1985. http://dx.doi.org/10.2172/5817221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wasserheit, Carolyn. Radioimmunotherapy of Metastatic Breast Cancer Using Radiolabeled Tumor Specific Antibodies. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada337596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

DeNardo, S. J. Cancer radioimmunotherapy: Development of an effective approach. Progress report, 1985. Office of Scientific and Technical Information (OSTI), December 1985. http://dx.doi.org/10.2172/10121195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vallabhajosula, Shankar. Radioimmunotherapy (RIT) Dose-Escalation Studies in Prostate Cancer Using Anti-PSMA Antibody 177Lu-J591: RIT Alone and RIT in Combination with Docetaxel. Fort Belvoir, VA: Defense Technical Information Center, October 2008. http://dx.doi.org/10.21236/ada512754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vallabhajosula, Shankar. Radioimmunotherapy (RIT) Dose-Escalation Studies in Prostate Cancer Using Anti-PSMA Antibody 177Lu-J591: RIT Alone and RIT in Combination with Docetaxel. Fort Belvoir, VA: Defense Technical Information Center, October 2009. http://dx.doi.org/10.21236/ada518243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vallabhajosula, Shankar. Radioimmunotherapy (RIT) Dose-Escalation Studies in Prostate Cancer Using Anti-PSMA Antibody 177Lu-J591: RIT Alone and RIT in Combination With Docetaxel. Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada477232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vallabhajosula, Shankar. Radioimmunotherapy (RIT) Dose-Escalation Studies in Prostate Cancer Using Anti-PSMA Antibody 177Lu-J591: RIT Alone and RIT in Combination with Docetaxel. Fort Belvoir, VA: Defense Technical Information Center, October 2007. http://dx.doi.org/10.21236/ada477470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography