Contents
Academic literature on the topic 'Cancérologie – Modèles mathématiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cancérologie – Modèles mathématiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Cancérologie – Modèles mathématiques"
Véra-Hernandez, Arturo. "Contribution à l'étude d'un système d'hyperthermie profonde en cancérologie : automatisation du traitement du signal, modélisation, validation de la distribution et de l'absorption du champ électrique à 2 7.12 MHz dans les tissus simulés." Vandoeuvre-les-Nancy, INPL, 1999. http://docnum.univ-lorraine.fr/public/INPL_T_1999_VERA_HERNANDEZ_A.pdf.
Full textCornelis, Francois. "Imagerie oncologique et modélisation mathématique : développement, optimisation et perspectives." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0121/document.
Full textThis work performed at the Institute of Mathematics of Bordeaux (IMB) from 2010 to 2015 under the direction of Thierry Colin and Olivier Saut describes the creation and gradual development of a set of theories, techniques and tools linking medical imaging and applied mathematics in order to consider their clinical application in the short term in oncology. The first goal was to optimize the spatial models of tumor growth developed at the IMB including microscopic and macroscopic elements obtained by analyzing the information available on imaging explorations. Several steps were performed to better understand the in vivo modeling. Various organs and tumor types were investigated, especially in the lung, liver, and kidney. These locations were studied successively to progressively enrich the model by the answers they brought and thus respond to clinical reality. Concomitantly, tools were integrated to standardize the data collection process and help to refine the therapeutic evaluation by imaging with digital markers. The implementation of functional imaging in clinical practice has become a reality. The goal is ultimately to apply prospectively these support tools in a daily practice. Modelling was also applied in interventional oncology for the study of the electric field distribution after percutaneous irreversible electroporation in the prostate and soon in the liver. This will allow a better control of the ablation areas and thereby improve the safety and efficacy of these treatments
Kritter, Thibaut. "Utilisation de données cliniques pour la construction de modèles en oncologie." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0166/document.
Full textThis thesis deals with the use of clinical data in the construction of models applied to oncology. Existing models which take into account many biological mechanisms of tumor growth have too many parameters and cannot be calibrated on clinical cases. On the contrary, too simple models are not able to precisely predict tumor evolution for each patient. The diversity of data acquired by clinicians is a source of information that can make model estimations more precise. Through two different projets, we integrated data in the modeling process in order to extract more information from it. In the first part, clinical imaging and biopsy data are combined with machine learning methods. Our aim is to distinguish fast recurrent patients from slow ones. Results show that the obtained stratification is more efficient than the stratification used by cliniciens. It could help physicians to adapt treatment in a patient-specific way. In the second part, data is used to correct a simple tumor growth model. Even though this model is efficient to predict the volume of a tumor, its simplicity prevents it from accounting for shape evolution. Yet, an estimation of the tumor shape enables clinician to better plan surgery. Data assimilation methods aim at adapting the model and rebuilding the tumor environment which is responsible for these shape changes. The prediction of the growth of brain metastases is then more accurate
Ouerdani, Aziz. "Modélisation de données pharmacologiques précliniques et cliniques d'efficacité des médicaments anti-angiogéniques en cancérologie." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM018/document.
Full textWithin the last 40 years, knowledge of tumor angiogenesis has literally exploded. In the seventies, Judah Folkman demonstrated that tumors need to be vascularized to continue to proliferate. Shortly after, the main protagonists of tumor angiogenesis have been discovered, as well as the mechanisms in which they are involved. The next decade is the beginning of the research on molecules with anti-angiogenic effects and in 2004 bevacizumab (Avastin, Roche), the first antiangiogenic drug used in oncology, was available for treating solid cancer patients. Along with this, the increasing interest of mixed-effects modeling coupled with advances in computer tools allowed developing more efficient methods of data analysis. In 2009, the regulatory agency FDA (Food and Drug Administration) in the United States has identified the central role of numerical modeling to better analyze the efficacy and toxicity preclinical and clinical oncology data. The aim of this project is to study the effects of different angiogenesis inhibitors on tumor dynamics, based on a population approach. The developed models are models based on ordinary differential equations and that integrate data and information from the literature. The objective of these models is to characterize the dynamics of tumor sizes in animals and patients in order to understand the effects of anti-angiogenic treatments and provide support for the development of these molecules, or to help clinicians for therapeutic decision making
Pouchol, Camille. "Analyse, contrôle et optimisation d'EDP, application à la biologie et la thérapie du cancer." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS176/document.
Full textThis PhD originates from a joint project on chemotherapy optimisation, bringing together three advisors: Jean Clairambault, medical doctor and mathematician, Michèle Sabbah, cancer biologist, and Emmanuel Trélat, mathematician specialised in optimal control. Most of the work undertaken has thus been motivated by questions from cancer biology or therapy. Answering them has required using and further developing tools from several different mathematical areas, among them the asymptotic analysis for partial differential equations, and theoretical and numerical optimal control. These developments have in turn posed new mathematical problems, interesting in their own right, with applications in the mathematical fields of adaptive dynamics, population dynamics, optimal control or numerical analysis. More precisely, we propose results of asymptotic analysis for some selection/mutation and reaction/diffusion non-local equations or systems. The Dirichlet control towards homogeneous states of 1D monostable and bistable equations is investigated in detail. A numerical and theoretical analysis for an optimal control is performed on a system representing cancer and healthy cells exposed to chemotherapy. Finally, Turing instabilities are shown to be exhibited by some Keller-Segel equations, for which we design finite-volume numerical schemes preserving positivity, energy dissipation, mass conservation and steady states
Berment, Perrine. "Modélisation de la réponse au traitement en oncologie : exemples en radiothérapie et en thérapies ciblées." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0089/document.
Full textWe first present two mathematical models to simulate the evolution and theresponse to treatments of GIST.Then, we study colorectal tumors and radiotherapy response. We present apartial differential equations model to simulate the tumor evolution, the responseto radiotherapy and the PET-scan. We introduce a simplification of thefirst model to develope a calibration technic based on medical images of thetumor. Two applications on clinical cases are presented.To finish, a similar method is adapted to ORL tumors and response to radiotherapyand tested on six clinical cases
Crombé, Amandine. "Développement des approches radiomics à visées diagnostique et pronostique pour la prise en charge de patients atteints des sarcomes des tissus mous." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0059.
Full textSoft-tissue sarcomas (STS) are malignant ubiquitous mesenchymal tumors that are characterized by their heterogeneity at several levels, i.e. in terms of clinical presentation, radiological presentation, histology, molecular features and prognosis. Magnetic resonance imaging (MRI) with a contrast-agent injection is the imaging of reference for these tumors. MRI enables to perform the local staging, the evaluation of response to treatment, to plan the surgery and to look for local relapse. Furthermore, MRI can access non-invasively to the whole tumor in situ and in vivo which is complementary to histopathological and molecular analyses requiring invasive biopsy samples at risk of sampling bias. However, no imaging biomarker dedicated to STS has been validated so far. Meanwhile, technical innovations have been developed, namely: (i) alternative imaging modalities or MRI sequences that can quantify intratumoral physiopathological phenomenon; (ii) image analysis tools that can quantify radiological phenotypes better than human’s eyes through hundreds of textural and shape quantitative features (named radiomics features); and (iii) mathematical algorithms that can integrate all these information into predictive models (: machine-learning). Radiomics approaches correspond to the development of predictive models based on machine-learning algorithms and radiomics features, eventually combined with other clinical, pathological and molecular features. The aim of this thesis was to put these innovations into practice and to optimize them in order to improve the diagnostic and therapeutic managements of patients with STS.In the first part, we combined radiological and radiomics features extracted from the baseline structural MRIs of patients with a locally-advanced subtype of STS in order to build a radiomics signature that could help to identify patients with higher risk of metastatic relapse and may benefit from neoadjuvant treatments. In the second part, we elaborated a model based on the early changes in intratumoral heterogeneity (: delta-radiomics) on structural MRIs of patients with locally-advanced high-grade STS treated with neoadjuvant chemotherapy, in order to rapidly identify patients who do not respond to treatment and would benefit from early therapeutic adjustments. In the last part, we tried to better identify and control potential bias in radiomics approaches in order to optimize the predictive models based on radiomics features
Perier, Cynthia. "Analyse quantitative des données de routine clinique pour le pronostic précoce en oncologie." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0219/document.
Full textTumor shape and texture evolution may highlight internal modifications resulting from the progression of cancer. In this work, we want to study the contribution of delta-radiomics features to cancer-evolution prediction. Our goal is to provide a complete pipeline from the 3D reconstruction of the volume of interest to the prediction of its evolution, using routinely acquired data only.To this end, we first analyse a subset of MRI(-extracted) radiomics biomarquers in order to determine conditions that ensure their robustness. Then, we determine the prerequisites of features reliability and explore the impact of both reconstruction and image processing (rescaling, grey-level normalization). A first clinical study emphasizes some statistically-relevant MRI radiomics features associated with event-free survival in anal carcinoma.We then develop machine-learning models to improve our results.Radiomics and machine learning approaches were then combined in a study on high grade soft tissu sarcoma (STS). Combining Radiomics and machine-learning approaches in a study on high-grade soft tissue sarcoma, we find out that a T2-MRI delta-radiomic signature with only three features is enough to construct a classifier able to predict the STS histological response to neoadjuvant chemotherapy. Our ML pipeline is then trained and tested on a middle-size clinical dataset in order to predict early metastatic relapse of patients with breast cancer. This classification model is then compared to the relapsing time predicted by the mechanistic model.Finally we discuss the contribution of deep-learning techniques to extend our pipeline with tumor automatic segmentation or edema detection
Bodin, Justine. "Modélisation de la pharmacocinétique et des mécanismes d’action intracellulaire du 5-fluorouracile : applications à l’étude de la variabilité de l’effet thérapeutique en population et à l’innovation thérapeutique." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10142.
Full textExisting treatments for liver metastases of colorectal cancer show a lack of efficacy. In order to improve the prognosis of patients, the GR5FU project has been implemented. It consisted in delivering the drug 5-fluorouracil (5FU) in the liver via its encapsulation in red blood cells (RBC) to increase its efficacy / toxicity ratio. In this context, the modeling aimed at predicting the amount of 5FU to encapsulate in RBC to achieve an efficacy equivalent to standard 5FU. In this thesis, we have created and implemented a multiscale mathematical model that links the injection of 5FU to its efficacy on tumor growth by integrating its pharmacokinetics and mechanism of intracellular action. Population simulations of this model, using parameters from the literature, allowed us (i) to reproduce clinical results showing the predictive power of TS enzyme level and (ii) to identify two potential predictors of response to 5FU at the level of a population of virtual patients, in addition to TS level. We also analyzed, using mixed effects models, (i) the in vivo growth of intrahepatic VX2 tumor without treatment, serving as an animal model of liver metastasis, and (ii) the distribution of 5FU in the animal’s organism. This statistical modelization enabled us to identify the models describing experimental data, to estimate the parameters of these models and their variability, and generate a better knowledge of VX2 tumor growth and animal 5FU pharmacokinetics. In this thesis, we illustrated how the integration of drug metabolism and its mechanism of action in a global model and the simulation of this model at the scale of a virtual population, form a promising approach to optimize the development of innovative therapeutic hypotheses in collaboration with experimentalists
Martens, Corentin. "Patient-Derived Tumour Growth Modelling from Multi-Parametric Analysis of Combined Dynamic PET/MR Data." Doctoral thesis, Universite Libre de Bruxelles, 2021. https://dipot.ulb.ac.be/dspace/bitstream/2013/320127/5/contratCM.pdf.
Full textLes gliomes sont les tumeurs cérébrales primitives les plus communes et sont associés à un mauvais pronostic. Parmi ces derniers, les gliomes diffus – qui incluent la forme la plus agressive, le glioblastome (GBM) – sont connus pour être hautement infiltrants. Le diagnostic et le suivi des gliomes s'appuient sur la tomographie par émission de positons (TEP) ainsi que l'imagerie par résonance magnétique (IRM). Cependant, ces techniques d'imagerie ne permettent actuellement pas d'évaluer l'étendue totale de tumeurs aussi infiltrantes ni d'anticiper leurs schémas d'invasion préférentiels, conduisant à une planification sous-optimale du traitement. La modélisation mathématique de la croissance tumorale a été proposée pour répondre à ce problème. Les modèles de croissance tumorale de type réaction-diffusion, qui sont probablement les plus communément utilisés pour la modélisation de la croissance des gliomes diffus, proposent de capturer la prolifération et la migration des cellules tumorales au moyen d'une équation aux dérivées partielles. Bien que le potentiel de tels modèles ait été démontré dans de nombreux travaux pour le suivi des patients et la planification de thérapies, seules quelques applications cliniques restreintes semblent avoir émergé de ces derniers. Ce travail de thèse a pour but de revisiter les modèles de croissance tumorale de type réaction-diffusion en utilisant des technologies de pointe en imagerie médicale et traitement de données, avec pour objectif d'y intégrer des données TEP/IRM multi-paramétriques pour personnaliser davantage le modèle. Le problème de la segmentation des tissus cérébraux dans les images IRM est d'abord adressé, avec pour but de définir un domaine propre au patient pour la résolution du modèle. Une méthode proposée précédemment permettant de dériver un tenseur de diffusion tumoral à partir du tenseur de diffusion de l'eau évalué par imagerie DTI a ensuite été implémentée afin de guider la migration anisotrope des cellules tumorales le long des fibres de matière blanche. L'utilisation de l'imagerie TEP dynamique à la [S-méthyl-11C]méthionine ([11C]MET) est également investiguée pour la génération de cartes de potentiel prolifératif propre au patient afin de nourrir le modèle. Ces investigations ont mené au développement d'un modèle compartimental pour le transport des traceurs TEP dérivés des acides aminés dans les gliomes. Sur base des résultats du modèle compartimental, une nouvelle méthodologie est proposée utilisant l'analyse en composantes principales pour extraire des cartes paramétriques à partir de données TEP dynamiques à la [11C]MET. Le problème de l'estimation des conditions initiales du modèle à partir d'images IRM est ensuite adressé par le biais d'une étude translationelle combinant IRM et histologie menée sur un cas de GBM non-opéré. Différentes stratégies de résolution numérique basées sur les méthodes des différences et éléments finis sont finalement implémentées et comparées. Tous ces développements sont embarqués dans un framework commun permettant d'étudier in silico la croissance des gliomes et fournissant une base solide pour de futures recherches dans le domaine. Cependant, certaines hypothèses communément admises reliant les délimitations des anormalités visibles en IRM à des iso-contours de densité de cellules tumorales ont été invalidée par l'étude translationelle menée, laissant ouverte les questions de l'initialisation et de la validation du modèle. Par ailleurs, l'analyse de l'évolution temporelle de cas réels de gliomes multi-traités démontre les limitations du modèle. Ces dernières affirmations mettent en évidence les obstacles actuels à l'application clinique de tels modèles et ouvrent la voie à de nouvelles possibilités d'amélioration.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished