Journal articles on the topic 'Canonical Representation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Canonical Representation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
YAMASHITA, HIDEYASU, and MASANAO OZAWA. "NONSTANDARD REPRESENTATIONS OF THE CANONICAL COMMUTATION RELATIONS." Reviews in Mathematical Physics 12, no. 11 (2000): 1407–27. http://dx.doi.org/10.1142/s0129055x00000617.
Full textChua, L. O., and A. C. Deng. "Canonical piecewise-linear representation." IEEE Transactions on Circuits and Systems 35, no. 1 (1988): 101–11. http://dx.doi.org/10.1109/31.1705.
Full textACCARDI, LUIGI, and YUJI HIBINO. "CANONICAL REPRESENTATION OF STATIONARY QUANTUM GAUSSIAN PROCESSES." Infinite Dimensional Analysis, Quantum Probability and Related Topics 05, no. 03 (2002): 421–28. http://dx.doi.org/10.1142/s0219025702000869.
Full textArai, Asao. "Singular Bogoliubov transformations and inequivalent representations of canonical commutation relations." Reviews in Mathematical Physics 31, no. 08 (2019): 1950026. http://dx.doi.org/10.1142/s0129055x19500260.
Full textKEEVER, R. D. "MINIMAL 3-BRAID REPRESENTATIONS." Journal of Knot Theory and Its Ramifications 03, no. 02 (1994): 163–77. http://dx.doi.org/10.1142/s0218216594000125.
Full textGilboa, Itzhak, and David Schmeidler. "Canonical Representation of Set Functions." Mathematics of Operations Research 20, no. 1 (1995): 197–212. http://dx.doi.org/10.1287/moor.20.1.197.
Full textVemuri, M. K. "Realizations of the canonical representation." Proceedings Mathematical Sciences 118, no. 1 (2008): 115–31. http://dx.doi.org/10.1007/s12044-008-0007-7.
Full textHtay, Win Win. "Optimalities for random functions Lee-Wiener’s network and non-canonical representation of stationary Gaussian processes." Nagoya Mathematical Journal 149 (March 1998): 9–17. http://dx.doi.org/10.1017/s0027763000006528.
Full textGAGU, Cristian. "THE CANONICAL REPRESENTATION OF THE HOLY TRINITY IN ORTHODOX ICONOGRAPHY." Icoana Credintei 9, no. 17 (2023): 5–30. http://dx.doi.org/10.26520/icoana.2023.17.9.5-30.
Full textGRUNDLING, HENDRIK, and KARL-HERMANN NEEB. "FULL REGULARITY FOR A C*-ALGEBRA OF THE CANONICAL COMMUTATION RELATIONS." Reviews in Mathematical Physics 21, no. 05 (2009): 587–613. http://dx.doi.org/10.1142/s0129055x09003670.
Full textBauer, Dietmar, and Martin Wagner. "A STATE SPACE CANONICAL FORM FOR UNIT ROOT PROCESSES." Econometric Theory 28, no. 6 (2012): 1313–49. http://dx.doi.org/10.1017/s026646661200014x.
Full textLarget, Bret. "A canonical representation for aggregated Markov processes." Journal of Applied Probability 35, no. 2 (1998): 313–24. http://dx.doi.org/10.1239/jap/1032192850.
Full textLarget, Bret. "A canonical representation for aggregated Markov processes." Journal of Applied Probability 35, no. 02 (1998): 313–24. http://dx.doi.org/10.1017/s0021900200014972.
Full textPainsky, Amichai, Meir Feder, and Naftali Tishby. "Nonlinear Canonical Correlation Analysis:A Compressed Representation Approach." Entropy 22, no. 2 (2020): 208. http://dx.doi.org/10.3390/e22020208.
Full textKober, Martin. "Canonical quantum gravity on noncommutative space–time." International Journal of Modern Physics A 30, no. 17 (2015): 1550085. http://dx.doi.org/10.1142/s0217751x15500852.
Full textKahlert, C., and L. O. Chua. "A generalized canonical piecewise-linear representation." IEEE Transactions on Circuits and Systems 37, no. 3 (1990): 373–83. http://dx.doi.org/10.1109/31.52731.
Full textWebster, Ben. "Canonical bases and higher representation theory." Compositio Mathematica 151, no. 1 (2014): 121–66. http://dx.doi.org/10.1112/s0010437x1400760x.
Full textValdes-Perez, Raul E. "A canonical representation of multistep reactions." Journal of Chemical Information and Modeling 31, no. 4 (1991): 554–56. http://dx.doi.org/10.1021/ci00004a021.
Full textRudas, Tamás. "CANONICAL REPRESENTATION OF LOG-LINEAR MODELS." Communications in Statistics - Theory and Methods 31, no. 12 (2002): 2311–23. http://dx.doi.org/10.1081/sta-120017227.
Full textBihui, Hou, and Yang Hongbo. "A group representation of canonical transformation." Applied Mathematics and Mechanics 19, no. 4 (1998): 345–50. http://dx.doi.org/10.1007/bf02457538.
Full textChen, Zirui, and Michael Bonner. "Canonical Dimensions of Neural Visual Representation." Journal of Vision 23, no. 9 (2023): 4937. http://dx.doi.org/10.1167/jov.23.9.4937.
Full textNagamochi, Hiroshi, and Tiko Kameda. "Canonical cactus representation for minimum cuts." Japan Journal of Industrial and Applied Mathematics 11, no. 3 (1994): 343–61. http://dx.doi.org/10.1007/bf03167227.
Full textCotaescu, Ion I. "Canonical quantization of the covariant fields on de Sitter space–times." International Journal of Modern Physics A 33, no. 08 (2018): 1830007. http://dx.doi.org/10.1142/s0217751x18300077.
Full textMeszáros, András, János Papp, and Miklós Telek. "Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes." International Journal of Applied Mathematics and Computer Science 24, no. 3 (2014): 453–70. http://dx.doi.org/10.2478/amcs-2014-0034.
Full textMartínez, Servet. "Entropy of killed-resurrected stationary Markov chains." Journal of Applied Probability 58, no. 1 (2021): 177–96. http://dx.doi.org/10.1017/jpr.2020.81.
Full textMiković, Aleksandar, and Branislav Sazdović. "W-Strings on Curved Backgrounds." Modern Physics Letters A 12, no. 07 (1997): 501–9. http://dx.doi.org/10.1142/s0217732397000522.
Full textHARPER, ROBERT, and DANIEL R. LICATA. "Mechanizing metatheory in a logical framework." Journal of Functional Programming 17, no. 4-5 (2007): 613–73. http://dx.doi.org/10.1017/s0956796807006430.
Full textKarami, Mahdi, and Dale Schuurmans. "Deep Probabilistic Canonical Correlation Analysis." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 8055–63. http://dx.doi.org/10.1609/aaai.v35i9.16982.
Full textKrzyśko, Mirosław, and Łukasz Waszak. "Methods of representation for kernel canonical correlation analysis." Statistics in Transition new series 13, no. 2 (2013): 301–10. http://dx.doi.org/10.59170/stattrans-2012-024.
Full textYushchenko, Olga V., and Anna Yu Badalyan. "Canonical Representation of the Active Nanoparticles Kinetics." Universal Journal of Materials Science 2, no. 2 (2014): 42–48. http://dx.doi.org/10.13189/ujms.2014.020204.
Full textShpiz, G., and A. Kryukov. "Canonical Representation of Polynomial Expressions with Indices." Programming and Computer Software 45, no. 2 (2019): 81–87. http://dx.doi.org/10.1134/s0361768819020105.
Full textBertot, Yves. "A simple canonical representation of rational numbers." Electronic Notes in Theoretical Computer Science 85, no. 7 (2003): 1–16. http://dx.doi.org/10.1016/s1571-0661(04)80754-0.
Full textDelgado, M., M. A. Vila, and W. Voxman. "On a canonical representation of fuzzy numbers." Fuzzy Sets and Systems 93, no. 1 (1998): 125–35. http://dx.doi.org/10.1016/s0165-0114(96)00144-3.
Full textNikanorova, M. Yu. "Canonical representation of tangent vectors of Grassmannians." Journal of Mathematical Sciences 140, no. 4 (2007): 582–88. http://dx.doi.org/10.1007/s10958-007-0440-7.
Full textGustavsen, Trond Stølen, and Runar Ile. "Representation theory for log-canonical surface singularities." Annales de l’institut Fourier 60, no. 2 (2010): 389–416. http://dx.doi.org/10.5802/aif.2526.
Full textKURATSUJI, HIROSHI, and KEN-ICHI TAKADA. "CANONICAL PHASE, TOPOLOGICAL INVARIANT AND REPRESENTATION THEORY." Modern Physics Letters A 05, no. 12 (1990): 917–25. http://dx.doi.org/10.1142/s0217732390001013.
Full textBrunat, Josep M., and Antonio Montes. "Computing the Canonical Representation of Constructible Sets." Mathematics in Computer Science 10, no. 1 (2016): 165–78. http://dx.doi.org/10.1007/s11786-016-0248-2.
Full textPollack, Randy, Masahiko Sato, and Wilmer Ricciotti. "A Canonical Locally Named Representation of Binding." Journal of Automated Reasoning 49, no. 2 (2011): 185–207. http://dx.doi.org/10.1007/s10817-011-9229-y.
Full textCutzu, Florin, and Shimon Edelman. "Canonical views in object representation and recognition." Vision Research 34, no. 22 (1994): 3037–56. http://dx.doi.org/10.1016/0042-6989(94)90277-1.
Full textWen, Chengtao, and Xiaoyan Ma. "A Canonical Piecewise-Linear Representation Theorem: Geometrical Structures Determine Representation Capability." IEEE Transactions on Circuits and Systems II: Express Briefs 58, no. 12 (2011): 936–40. http://dx.doi.org/10.1109/tcsii.2011.2172715.
Full textBRZOZOWSKI, JANUSZ, and HELMUT JÜRGENSEN. "REPRESENTATION OF SEMIAUTOMATA BY CANONICAL WORDS AND EQUIVALENCES." International Journal of Foundations of Computer Science 16, no. 05 (2005): 831–50. http://dx.doi.org/10.1142/s0129054105003327.
Full textCoşkun, Kemal Çağlar, Muhammad Hassan, and Rolf Drechsler. "Equivalence Checking of System-Level and SPICE-Level Models of Linear Circuits." Chips 1, no. 1 (2022): 54–71. http://dx.doi.org/10.3390/chips1010006.
Full textSrivastava, H. M., Firdous A. Shah, and Aajaz A. Teali. "On Quantum Representation of the Linear Canonical Wavelet Transform." Universe 8, no. 9 (2022): 477. http://dx.doi.org/10.3390/universe8090477.
Full textKupsch, Joachim. "Canonical transformations for fermions in superanalysis." Reviews in Mathematical Physics 26, no. 06 (2014): 1450009. http://dx.doi.org/10.1142/s0129055x14500093.
Full textWang, Minghui, Lingling Yue, Situo Xu, and Rufeng Chen. "The Real Representation of Canonical Hyperbolic Quaternion Matrices and Its Applications." Academic Journal of Applied Mathematical Sciences, no. 56 (June 15, 2019): 62–68. http://dx.doi.org/10.32861/ajams.56.62.68.
Full textBenedetti, Vladimiro, Sara Angela Filippini, Laurent Manivel, and Fabio Tanturri. "Orbital Degeneracy Loci II: Gorenstein Orbits." International Mathematics Research Notices 2020, no. 24 (2018): 9887–932. http://dx.doi.org/10.1093/imrn/rny272.
Full textPerez-Garcia, D., F. Verstraete, M. M. Wolf, and J. I. Cirac. "Matrix product state representations." Quantum Information and Computation 7, no. 5&6 (2007): 401–30. http://dx.doi.org/10.26421/qic7.5-6-1.
Full textLusztig, George. "The canonical basis of the quantum adjoint representation." Journal of Combinatorial Algebra 1, no. 1 (2017): 45–57. http://dx.doi.org/10.4171/jca/1-1-2.
Full textQuinton, Patrice, Sanjay Rajopadhye, and Tanguy Risset. "On Manipulating Z-Polyhedra Using a Canonical Representation." Parallel Processing Letters 07, no. 02 (1997): 181–94. http://dx.doi.org/10.1142/s012962649700019x.
Full textTesu, I. C., and F. Dartu. "A comment on 'A generalized canonical PWL representation'." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 39, no. 12 (1992): 885–87. http://dx.doi.org/10.1109/82.208588.
Full text