Academic literature on the topic 'Canopy quantum efficiency'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Canopy quantum efficiency.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Canopy quantum efficiency"

1

Hussain, M. Iftikhar, François Mitterand tsombou, and Ali El-Keblawy. "Surface Canopy Position Determines the Photosystem II Photochemistry in Invasive and Native Prosopis Congeners at Sharjah Desert, UAE." Forests 11, no. 7 (July 8, 2020): 740. http://dx.doi.org/10.3390/f11070740.

Full text
Abstract:
Plants have evolved photoprotective mechanisms in order to counteract the damaging effects of excess light in hyper-arid desert environments. We evaluated the impact of surface canopy positions on the photosynthetic adjustments and chlorophyll fluorescence attributes (photosystem II photochemistry, quantum yield, fluorescence quenching, and photon energy dissipation), leaf biomass and nutrient content of sun-exposed leaves at the south east (SE canopy position) and shaded-leaves at the north west (NW canopy position) in the invasive Prosopis juliflora and native Prosopis cineraria in the extreme environment (hyper-arid desert area, United Arab Emirates (UAE)). The main aim of this research was to study the photoprotection mechanism in invasive and native Prosopis congeners via the safe removal—as thermal energy—of excess solar energy absorbed by the light collecting system, which counteracts the formation of reactive oxygen species. Maximum photosynthetic efficiency (Fv/Fm) from dark-adapted leaves in P. juliflora and P. cineraria was higher on NW than SE canopy position while insignificant difference was observed within the two Prosopis congeners. Greater quantum yield was observed in P. juliflora than P. cineraria on the NW canopy position than SE. With the change of canopy positions from NW to SE, the reduction of the PSII reaction center activity in the leaves of both Prosopis congeners was accelerated. On the SE canopy position, a significant decline in the electron transport rate (ETR) of in the leaves of both Prosopis congeners occurred, which might be due to the blockage of electron transfer from QA to QB on the PSII acceptor side. On the SE canopy position; Prosopis leaves dissipated excess light energy by increasing non-photochemical quenching (NPQ). However, in P. cineraria, the protective ability of NPQ decreased, which led to the accumulation of excess excitation energy (1 − qP)/NPQ and the aggravation of photoinhibition. The results also explain the role of different physiological attributes contributing to invasiveness of P. juliflora and to evaluate its liaison between plasticity of these characters and invasiveness.
APA, Harvard, Vancouver, ISO, and other styles
2

Jaikumar, Nikhil S., Samantha S. Stutz, Samuel B. Fernandes, Andrew D. B. Leakey, Carl J. Bernacchi, Patrick J. Brown, and Stephen P. Long. "Can improved canopy light transmission ameliorate loss of photosynthetic efficiency in the shade? An investigation of natural variation in Sorghum bicolor." Journal of Experimental Botany 72, no. 13 (April 29, 2021): 4965–80. http://dx.doi.org/10.1093/jxb/erab176.

Full text
Abstract:
Abstract Previous studies have found that maximum quantum yield of CO2 assimilation (Φ CO2,max,app) declines in lower canopies of maize and miscanthus, a maladaptive response to self-shading. These observations were limited to single genotypes, leaving it unclear whether the maladaptive shade response is a general property of this C4 grass tribe, the Andropogoneae. We explored the generality of this maladaptation by testing the hypothesis that erect leaf forms (erectophiles), which allow more light into the lower canopy, suffer less of a decline in photosynthetic efficiency than drooping leaf (planophile) forms. On average, Φ CO2,max,app declined 27% in lower canopy leaves across 35 accessions, but the decline was over twice as great in planophiles than in erectophiles. The loss of photosynthetic efficiency involved a decoupling between electron transport and assimilation. This was not associated with increased bundle sheath leakage, based on 13C measurements. In both planophiles and erectophiles, shaded leaves had greater leaf absorptivity and lower activities of key C4 enzymes than sun leaves. The erectophile form is considered more productive because it allows a more effective distribution of light through the canopy to support photosynthesis. We show that in sorghum, it provides a second benefit, maintenance of higher Φ CO2,max,app to support efficient use of that light resource.
APA, Harvard, Vancouver, ISO, and other styles
3

Pieruschka, Roland, Denis Klimov, Zbigniew S. Kolber, and Joseph A. Berry. "Monitoring of cold and light stress impact on photosynthesis by using the laser induced fluorescence transient (LIFT) approach." Functional Plant Biology 37, no. 5 (2010): 395. http://dx.doi.org/10.1071/fp09266.

Full text
Abstract:
Chlorophyll fluorescence measurements have been widely applied to quantify the photosynthetic efficiency of plants non-destructively. The most commonly used pulse amplitude modulated (PAM) technique provides a saturating light pulse, which is not practical at the canopy scale. We report here on a recently developed technique, laser induced fluorescence transient (LIFT), which is capable of remotely measuring the photosynthetic efficiency of selected leaves at a distance of up to 50 m. The LIFT approach correlated well with gas exchange measurements under laboratory conditions and was tested in a field experiment monitoring the combined effect of low temperatures and high light intensity on a variety of plants during the early winter in California. We observed a reduction in maximum and effective quantum yield in electron transport for Capsicum annuum L., Lycopersicon esculentum L. and Persea americana Mill. as the temperatures fell, while a grass community was not affected by combined low temperature and high light stress. The ability to make continuous, automatic and remote measurements of the photosynthetic efficiency of leaves with the LIFT system provides a new approach for studying and monitoring of stress effects on the canopy scale.
APA, Harvard, Vancouver, ISO, and other styles
4

Nichol, Caroline, Guillaume Drolet, Albert Porcar-Castell, Tom Wade, Neus Sabater, Elizabeth Middleton, Chris MacLellan, et al. "Diurnal and Seasonal Solar Induced Chlorophyll Fluorescence and Photosynthesis in a Boreal Scots Pine Canopy." Remote Sensing 11, no. 3 (January 30, 2019): 273. http://dx.doi.org/10.3390/rs11030273.

Full text
Abstract:
Solar induced chlorophyll fluorescence has been shown to be increasingly an useful proxy for the estimation of gross primary productivity (GPP), at a range of spatial scales. Here, we explore the seasonality in a continuous time series of canopy solar induced fluorescence (hereafter SiF) and its relation to canopy gross primary production (GPP), canopy light use efficiency (LUE), and direct estimates of leaf level photochemical efficiency in an evergreen canopy. SiF was calculated using infilling in two bands from the incoming and reflected radiance using a pair of Ocean Optics USB2000+ spectrometers operated in a dual field of view mode, sampling at a 30 min time step using custom written automated software, from early spring through until autumn in 2011. The optical system was mounted on a tower of 18 m height adjacent to an eddy covariance system, to observe a boreal forest ecosystem dominated by Scots pine. (Pinus sylvestris) A Walz MONITORING-PAM, multi fluorimeter system, was simultaneously mounted within the canopy adjacent to the footprint sampled by the optical system. Following correction of the SiF data for O2 and structural effects, SiF, SiF yield, LUE, the photochemicsl reflectance index (PRI), and the normalized difference vegetation index (NDVI) exhibited a seasonal pattern that followed GPP sampled by the eddy covariance system. Due to the complexities of solar azimuth and zenith angle (SZA) over the season on the SiF signal, correlations between SiF, SiF yield, GPP, and LUE were assessed on SZA <50° and under strictly clear sky conditions. Correlations found, even under these screened scenarios, resulted around ~r2 = 0.3. The diurnal responses of SiF, SiF yield, PAM estimates of effective quantum yield (ΔF/Fm′), and meteorological parameters demonstrated some agreement over the diurnal cycle. The challenges inherent in SiF retrievals in boreal evergreen ecosystems are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Monje, O., and B. Bugbee. "Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency." Plant, Cell and Environment 21, no. 3 (March 1998): 315–24. http://dx.doi.org/10.1046/j.1365-3040.1998.00284.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Foo, Chuan Ching, Alexandra J. Burgess, Renata Retkute, Pracha Tree-Intong, Alexander V. Ruban, and Erik H. Murchie. "Photoprotective energy dissipation is greater in the lower, not the upper, regions of a rice canopy: a 3D analysis." Journal of Experimental Botany 71, no. 22 (September 9, 2020): 7382–92. http://dx.doi.org/10.1093/jxb/eraa411.

Full text
Abstract:
Abstract High light intensities raise photosynthetic and plant growth rates but can cause damage to the photosynthetic machinery. The likelihood and severity of deleterious effects are minimised by a set of photoprotective mechanisms, one key process being the controlled dissipation of energy from chlorophyll within PSII known as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity is important because it momentarily reduces the quantum efficiency of photosynthesis. Rice plants overexpressing and deficient in the gene encoding a central regulator of NPQ, the protein PsbS, were used to assess the effect of protective effectiveness of NPQ (pNPQ) at the canopy scale. Using a combination of three-dimensional reconstruction, modelling, chlorophyll fluorescence, and gas exchange, the influence of altered NPQ capacity on the distribution of pNPQ was explored. A higher phototolerance in the lower layers of a canopy was found, regardless of genotype, suggesting a mechanism for increased protection for leaves that experience relatively low light intensities interspersed with brief periods of high light. Relative to wild-type plants, psbS overexpressors have a reduced risk of photoinactivation and early growth advantage, demonstrating that manipulating photoprotective mechanisms can impact both subcellular mechanisms and whole-canopy function.
APA, Harvard, Vancouver, ISO, and other styles
7

Ohler, Tracy A., and Cary A. Mitchell. "734 PB 026 EFFECT OF CO2 LEVEL ON COWPEA CANOPY PHOTOSYNTHESIS AND GROWTH." HortScience 29, no. 5 (May 1994): 538b—538. http://dx.doi.org/10.21273/hortsci.29.5.538b.

Full text
Abstract:
The vigorous growth habit and tolerances to heat, water, and acid stresses suggest cowpea as a candidate species for Controlled Ecological Life-Support Systems (CELSS). The low fat, high protein, moderate carbohydrate content of the edible leaves and seeds complement cereal grains in the vegetarian diets planned for CELSS. Cowpea canopy densities of 3.6, 7.2, 10.7, and 14.3 plants·m-2 were grown under CO2 levels of 400 or 1200 μl·l-1. Plants were grown in a deep-batch recirculating hydroponic system. pH was maintained at 5.5 by a pH controller with an in-line electrode. The nutrient solution was replaced as needed and sampled weekly for analysis by inductively coupled plasmaatomic emission spectrometry. Fluorescent lights provided 674±147 μmol·m-2s-1 PAR for an 8-hour photoperiod. Day/night temperature was maintained at 27/25°C. CO2 draw-down within the growth chamber was measured to calculate net photosynthesis. Power consumption was metered and canopy quantum efficiency was calculated. Crop yield rate (g·m-2·d-1). harvest index (% edible biomass), and yield efficiency (edible g·m-2·d-1·(nonedible g)-1) were determined to evaluate the productivity of cowpea for a CELSS. This study was supported by NASA Grant NAGW-2329.
APA, Harvard, Vancouver, ISO, and other styles
8

Lahive, Fiona, Liam R. Handley, Paul Hadley, and Andrew J. Daymond. "Climate Change Impacts on Cacao: Genotypic Variation in Responses of Mature Cacao to Elevated CO2 and Water Deficit." Agronomy 11, no. 5 (April 22, 2021): 818. http://dx.doi.org/10.3390/agronomy11050818.

Full text
Abstract:
Climate change poses a significant threat to agricultural production in the tropics, yet relatively little research has been carried out to understand its impact on mature tropical tree crops. This research aims to understand the genotypic variation in growth and photosynthesis in mature cacao trees in response to elevated CO2 and water deficit. Six genotypes were grown under greenhouse conditions at ambient (ca. 437 ppm) and elevated CO2 (ca. 724 ppm) and under well-watered and water deficit conditions for 23 months. Leaf- and canopy-level photosynthesis, water-use efficiency, and vegetative growth increased significantly in response to elevated CO2. Water deficit had a significant negative effect on many photosynthetic parameters and significantly reduced biomass production. The negative effect of water deficit on quantum efficiency was alleviated by elevated CO2. Genotypic variation was observed in several parameters including stomatal conductance, stomatal density and index, quantum efficiency, and biomass production, indicating the potential to develop more climate-change-resilient genotypes that can cope with predicted future climate change conditions. Elevated CO2 reduced some of the negative effects of water deficit through changes in water-use efficiency and light utilisation and reduced the negative impact of water deficit on biomass accumulation, but this was genotype-specific.
APA, Harvard, Vancouver, ISO, and other styles
9

Campbell, Richard J., Richard P. Marini, and Jeffrey B. Birch. "Canopy Position Affects Light Response Curves for Gas Exchange Characteristics of Apple Spur Leaves." Journal of the American Society for Horticultural Science 117, no. 3 (May 1992): 467–72. http://dx.doi.org/10.21273/jashs.117.3.467.

Full text
Abstract:
Light response curves for gas exchange characteristics were developed for spur leaves of `Stayman' and `Delicious' apple (Malus domestica Borkh.) from interior, intermediate, and exterior canopy positions throughout the season. At full bloom (FB), before full leaf expansion, exterior leaves had higher maximum rates of net photosynthesis (Pn), and a statistically different Pn light response curve than the interior leaves. Intermediate leaves had intermediate Pn rates and light response curves. Pn light response curves for all three `Delicious' canopy positions differed from each other from FB + 6 weeks until the end of the season. Interior leaves had maximum Pn rates of only 50% to 60% of those for the exterior leaves from FB + 10 weeks until the end of the season. Light saturation levels were higher for the exterior leaves than for interior or intermediate leaves. Exterior leaves had a tendency throughout the season for higher quantum efficiency of Pn at subsaturating light levels than interior or intermediate leaves. Stomatal conductance was higher for the exterior than the interior or intermediate leaves of `Delicious' on all dates. Water-use efficiency was equivalent among all leaves. Exterior leaves had higher specific leaf weight, dark respiration rates, and incident light levels on all dates than interior or intermediate leaves.
APA, Harvard, Vancouver, ISO, and other styles
10

Jiang, Yu, John L. Snider, Changying Li, Glen C. Rains, and Andrew H. Paterson. "Ground Based Hyperspectral Imaging to Characterize Canopy-Level Photosynthetic Activities." Remote Sensing 12, no. 2 (January 18, 2020): 315. http://dx.doi.org/10.3390/rs12020315.

Full text
Abstract:
Improving plant photosynthesis provides the best possibility for increasing crop yield potential, which is considered a crucial effort for global food security. Chlorophyll fluorescence is an important indicator for the study of plant photosynthesis. Previous studies have intensively examined the use of spectrometer, airborne, and spaceborne spectral data to retrieve solar induced fluorescence (SIF) for estimating gross primary productivity and carbon fixation. None of the methods, however, had a spatial resolution and a scanning throughput suitable for applications at the canopy and sub-canopy levels, thereby limiting photosynthesis analysis for breeding programs and genetics/genomics studies. The goal of this study was to develop a hyperspectral imaging approach to characterize plant photosynthesis at the canopy level. An experimental field was planted with two cotton cultivars that received two different treatments (control and herbicide treated), with each cultivar-treatment combination having eight replicate 10 m plots. A ground mobile sensing system (GPhenoVision) was configured with a hyperspectral module consisting of a spectrometer and a hyperspectral camera that covered the spectral range from 400 to 1000 nm with a spectral sampling resolution of 2 nm. The system acquired downwelling irradiance spectra from the spectrometer and reflected radiance spectral images from the hyperspectral camera. On the day after 24 h of the DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) application, the system was used to conduct six data collection trials in the experiment field from 08:00 to 18:00 with an interval of two hours. A data processing pipeline was developed to measure SIF using the irradiance and radiance spectral data. Diurnal SIF measurements were used to estimate the effective quantum yield and electron transport rate, deriving rapid light curves (RLCs) to characterize photosynthetic efficiency at the group and plot levels. Experimental results showed that the effective quantum yields estimated by the developed method highly correlated with those measured by a pulse amplitude modulation (PAM) fluorometer. In addition, RLC characteristics calculated using the developed method showed similar statistical trends with those derived using the PAM data. Both the RLC and PAM data agreed with destructive growth analyses. This suggests that the developed method can be used as an effective tool for future breeding programs and genetics/genomics studies to characterize plant photosynthesis at the canopy level.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Canopy quantum efficiency"

1

Monje, Oscar A. "Effects of Elevated CO2 on Crop Growth Rates, Radiation Absorption, Canopy Quantum Yield, Canopy Carbon Use Efficiency, and Root Respiration of Wheat." DigitalCommons@USU, 1993. https://digitalcommons.usu.edu/etd/6763.

Full text
Abstract:
Wheat canopies were grown at either 330 or 1200 μmol mol-1 CO2 in sealed controlled environments, where carbon fluxes and radiation interception were continuously and nondestructively measured during their life cycles. The effects of elevated CO2 on daily growth rates, canopy quantum yield, canopy and root carbon use efficiencies, and final dry mass were calculated from carbon flux measurements in an open gas exchange system. Dry biomass at harvest was predicted from the gas exchange data to within ± 8%. The greatest effect of elevated CO2 occurred in the first 15d after emergence; however, several physiological processes were enhanced throughout the life cycle. Elevated CO2 increased average net photosynthesis by 30%, average shoot respiration by 10%, and average root respiration by 40%. Crop growth rate, calculated from gas exchange data, was 30% higher during both vegetative growth and reproductive growth. Elevated CO 2 did not affect radiation interception, but increased average canopy quantum yield from 0.039 to 0.051 (31%). Average canopy carbon use efficiency was increased by 12%. Although harvest index was unaffected, these increases in the physiological determinants of yield by elevated CO2 resulted in a 14% increase in seed yield.
APA, Harvard, Vancouver, ISO, and other styles
2

Du, Toit Ben. "Effects of site management on nutrition, sustainability and productivity in a Eucalyptus Grandis stand in South Africa." Thesis, 2008. http://hdl.handle.net/10539/5323.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Canopy quantum efficiency"

1

Boote, K. J., and J. W. Jones. "Equations to Define Canopy Photosynthesis from Quantum Efficiency, Maximum Leaf Rate, Light Extinction, Leaf Area Index, and Photon Flux Density." In Progress in Photosynthesis Research, 415–18. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-017-0519-6_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography