Journal articles on the topic 'Cantor sets'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cantor sets.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Evans, Michael J., Paul D. Humke, and Karen Saxe. "Symmetric porosity of symmetric Cantor sets." Czechoslovak Mathematical Journal 44, no. 2 (1994): 251–64. http://dx.doi.org/10.21136/cmj.1994.128468.
Full textGeschke, Stefan, Jan Grebík, and Benjamin Miller. "Scrambled Cantor sets." Proceedings of the American Mathematical Society 149, no. 10 (July 20, 2021): 4461–68. http://dx.doi.org/10.1090/proc/15532.
Full textCheraghi, Davoud, and Mohammad Pedramfar. "Hairy Cantor sets." Advances in Mathematics 398 (March 2022): 108168. http://dx.doi.org/10.1016/j.aim.2021.108168.
Full textBerger, Pierre, and Carlos Gustavo Moreira. "Nested Cantor sets." Mathematische Zeitschrift 283, no. 1-2 (January 21, 2016): 419–35. http://dx.doi.org/10.1007/s00209-015-1605-6.
Full text栾, 佳璇. "Research on the Properties of Cantor Sets and Cantor Functions." Advances in Applied Mathematics 10, no. 04 (2021): 1222–28. http://dx.doi.org/10.12677/aam.2021.104132.
Full textFletcher, Alastair, and Jang-Mei Wu. "Julia sets and wild Cantor sets." Geometriae Dedicata 174, no. 1 (September 17, 2014): 169–76. http://dx.doi.org/10.1007/s10711-014-0010-3.
Full textGrines, V. Z., and E. V. Zhuzhoma. "Cantor Type Basic Sets of Surface $A$-endomorphisms." Nelineinaya Dinamika 17, no. 3 (2021): 335–45. http://dx.doi.org/10.20537/nd210307.
Full textWright, David. "Bing-Whitehead Cantor sets." Fundamenta Mathematicae 132, no. 2 (1989): 105–16. http://dx.doi.org/10.4064/fm-132-2-105-116.
Full textPERES, YUVAL, and PABLO SHMERKIN. "Resonance between Cantor sets." Ergodic Theory and Dynamical Systems 29, no. 1 (February 2009): 201–21. http://dx.doi.org/10.1017/s0143385708000369.
Full textCABRELLI, CARLOS A., KATHRYN E. HARE, and URSULA M. MOLTER. "Sums of Cantor sets." Ergodic Theory and Dynamical Systems 17, no. 6 (December 1997): 1299–313. http://dx.doi.org/10.1017/s0143385797097678.
Full textBAMÓN, RODRIGO, CARLOS G. MOREIRA, SERGIO PLAZA, and JAIME VERA. "Differentiable structures of central Cantor sets." Ergodic Theory and Dynamical Systems 17, no. 5 (October 1997): 1027–42. http://dx.doi.org/10.1017/s014338579708629x.
Full textHare, Kathryn E. "Maximal Operators and Cantor Sets." Canadian Mathematical Bulletin 43, no. 3 (September 1, 2000): 330–42. http://dx.doi.org/10.4153/cmb-2000-040-5.
Full textNymann, J. "Linear combinations of Cantor sets." Colloquium Mathematicum 68, no. 2 (1995): 259–64. http://dx.doi.org/10.4064/cm-68-2-259-264.
Full textCui, Keqin, Wenjia Ma, and Kan Jiang. "Geometric progressions meet Cantor sets." Chaos, Solitons & Fractals 163 (October 2022): 112567. http://dx.doi.org/10.1016/j.chaos.2022.112567.
Full textDubuc. "A NOTE ON CANTOR SETS." Real Analysis Exchange 23, no. 2 (1997): 767. http://dx.doi.org/10.2307/44153998.
Full textDettmann, C. P., N. E. Frankel, and T. Taucher. "Structure factor of Cantor sets." Physical Review E 49, no. 4 (April 1, 1994): 3171–78. http://dx.doi.org/10.1103/physreve.49.3171.
Full textTakahashi, Yuki. "Products of two Cantor sets." Nonlinearity 30, no. 5 (April 10, 2017): 2114–37. http://dx.doi.org/10.1088/1361-6544/aa6761.
Full textKhalili Golmankhaneh, Ali, Saleh Ashrafi, Dumitru Baleanu, and Arran Fernandez. "Brownian Motion on Cantor Sets." International Journal of Nonlinear Sciences and Numerical Simulation 21, no. 3-4 (May 26, 2020): 275–81. http://dx.doi.org/10.1515/ijnsns-2018-0384.
Full textOrzechowski, Mark E. "Percolation in Random Cantor Sets." Fractals 05, supp01 (April 1997): 101–9. http://dx.doi.org/10.1142/s0218348x9700067x.
Full textGarcia, Ignacio, Ursula Molter, and Roberto Scotto. "Dimension functions of Cantor sets." Proceedings of the American Mathematical Society 135, no. 10 (October 1, 2007): 3151–62. http://dx.doi.org/10.1090/s0002-9939-07-09019-3.
Full textHunt, Brian R., Ittai Kan, and James A. Yorke. "When Cantor sets intersect thickly." Transactions of the American Mathematical Society 339, no. 2 (February 1, 1993): 869–88. http://dx.doi.org/10.1090/s0002-9947-1993-1117219-8.
Full textGarity, Dennis, Dušan Repovš, David Wright, and Matjaž Željko. "Distinguishing Bing-Whitehead Cantor sets." Transactions of the American Mathematical Society 363, no. 02 (February 1, 2011): 1007. http://dx.doi.org/10.1090/s0002-9947-2010-05175-x.
Full textAstels, S. "Thickness measures for Cantor sets." Electronic Research Announcements of the American Mathematical Society 5, no. 15 (July 20, 1999): 108–11. http://dx.doi.org/10.1090/s1079-6762-99-00068-2.
Full textCrovisier, Sylvain, and Michał Rams. "IFS attractors and Cantor sets." Topology and its Applications 153, no. 11 (May 2006): 1849–59. http://dx.doi.org/10.1016/j.topol.2005.06.010.
Full textHu, Meidan, and Shengyou Wen. "Quasisymmetrically minimal uniform Cantor sets." Topology and its Applications 155, no. 6 (February 2008): 515–21. http://dx.doi.org/10.1016/j.topol.2007.10.006.
Full textMonterie, M. A. "Capacities of certain Cantor sets." Indagationes Mathematicae 8, no. 2 (June 1997): 247–66. http://dx.doi.org/10.1016/s0019-3577(97)89123-9.
Full textFalconer, K. J. "Projections of random Cantor sets." Journal of Theoretical Probability 2, no. 1 (January 1989): 65–70. http://dx.doi.org/10.1007/bf01048269.
Full textAlpan, Gökalp, and Alexander Goncharov. "Two measures on Cantor sets." Journal of Approximation Theory 186 (October 2014): 28–32. http://dx.doi.org/10.1016/j.jat.2014.07.003.
Full textZeljko, Matjaz. "On linking of Cantor sets." Glasnik Matematicki 41, no. 1 (June 15, 2006): 165–76. http://dx.doi.org/10.3336/gm.41.1.14.
Full textKraft, Roger. "Intersections of thick Cantor sets." Memoirs of the American Mathematical Society 97, no. 468 (1992): 0. http://dx.doi.org/10.1090/memo/0468.
Full textArosio, Leandro, John Erik Fornæss, Nikolay Shcherbina, and Erlend F. Wold. "Squeezing functions and Cantor sets." ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA - CLASSE DI SCIENZE 21, no. 2 (December 2020): 1359–69. http://dx.doi.org/10.2422/2036-2145.201807_003.
Full textIbragimov, Zair, and John Simanyi. "Hyperbolic construction of Cantor sets." Involve, a Journal of Mathematics 6, no. 3 (September 8, 2013): 333–43. http://dx.doi.org/10.2140/involve.2013.6.333.
Full textKrushkal, Vyacheslav. "Sticky Cantor sets in ℝd." Journal of Topology and Analysis 10, no. 02 (June 2018): 477–82. http://dx.doi.org/10.1142/s1793525318500164.
Full textBateman, Michael, and Nets Hawk Katz. "Kakeya sets in Cantor directions." Mathematical Research Letters 15, no. 1 (2008): 73–81. http://dx.doi.org/10.4310/mrl.2008.v15.n1.a7.
Full textVeerman, J. J. P. "Intersecting self-similar Cantor sets." Boletim da Sociedade Brasileira de Matem�tica 26, no. 2 (September 1995): 167–81. http://dx.doi.org/10.1007/bf01236992.
Full textSchweizer, J., and B. Frank. "Calculus on linear Cantor sets." Archiv der Mathematik 79, no. 1 (July 2002): 46–50. http://dx.doi.org/10.1007/s00013-002-8283-4.
Full textBugeaud, Yann. "Diophantine approximation and Cantor sets." Mathematische Annalen 341, no. 3 (February 2, 2008): 677–84. http://dx.doi.org/10.1007/s00208-008-0209-4.
Full textGoncharov, Alexander P. "Weakly Equilibrium Cantor-type Sets." Potential Analysis 40, no. 2 (April 24, 2013): 143–61. http://dx.doi.org/10.1007/s11118-013-9344-y.
Full textDai, Mei-Feng. "Quasisymmetrically Minimal Moran Sets." Canadian Mathematical Bulletin 56, no. 2 (June 1, 2013): 292–305. http://dx.doi.org/10.4153/cmb-2011-164-2.
Full textDEVANEY, ROBERT L. "Cantor sets of circles of Sierpiński curve Julia sets." Ergodic Theory and Dynamical Systems 27, no. 5 (October 2007): 1525–39. http://dx.doi.org/10.1017/s0143385707000156.
Full textMendivil, F., and T. D. Taylor. "Thin Sets with Fat Shadows: Projections of Cantor Sets." American Mathematical Monthly 115, no. 5 (May 2008): 451–56. http://dx.doi.org/10.1080/00029890.2008.11920549.
Full textLi, Wenwen, Wenxia Li, Junjie Miao, and Lifeng Xi. "Assouad dimensions of Moran sets and Cantor-like sets." Frontiers of Mathematics in China 11, no. 3 (April 1, 2016): 705–22. http://dx.doi.org/10.1007/s11464-016-0539-6.
Full textQIU, WEIYUAN, FEI YANG, and YONGCHENG YIN. "Rational maps whose Julia sets are Cantor circles." Ergodic Theory and Dynamical Systems 35, no. 2 (August 19, 2013): 499–529. http://dx.doi.org/10.1017/etds.2013.53.
Full textBALANKIN, A. S., J. BORY-REYES, M. E. LUNA-ELIZARRARÁS, and M. SHAPIRO. "CANTOR-TYPE SETS IN HYPERBOLIC NUMBERS." Fractals 24, no. 04 (December 2016): 1650051. http://dx.doi.org/10.1142/s0218348x16500511.
Full textAnisca, Razvan, and Monica Ilie. "A Technique of Studying Sums of Central Cantor Sets." Canadian Mathematical Bulletin 44, no. 1 (March 1, 2001): 12–18. http://dx.doi.org/10.4153/cmb-2001-002-8.
Full textJohnson, Stewart D. "Absorbing cantor sets and trapping structures." Ergodic Theory and Dynamical Systems 11, no. 4 (December 1991): 731–36. http://dx.doi.org/10.1017/s0143385700006441.
Full textZhao, Yang, Dumitru Baleanu, Carlo Cattani, De-Fu Cheng, and Xiao-Jun Yang. "Maxwell’s Equations on Cantor Sets: A Local Fractional Approach." Advances in High Energy Physics 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/686371.
Full textZhen, Fang-Xiong. "Dimensions of subsets of cantor-type sets." International Journal of Mathematics and Mathematical Sciences 2006 (2006): 1–8. http://dx.doi.org/10.1155/ijmms/2006/26359.
Full textRani, Mamta, and Sanjeev Kumar Prasad. "Superior Cantor Sets and Superior Devil Staircases." International Journal of Artificial Life Research 1, no. 1 (January 2010): 78–84. http://dx.doi.org/10.4018/jalr.2010102106.
Full textZENG, YING. "SELF-SIMILAR SUBSETS OF SYMMETRIC CANTOR SETS." Fractals 25, no. 01 (February 2017): 1750003. http://dx.doi.org/10.1142/s0218348x17500037.
Full text