Contents
Academic literature on the topic 'Cantori'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cantori.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cantori"
Dąbek, Tomasz Maria. "Refleksje na temat współczesnych kierunków interpretacji chorału gregoriańskiego." Ruch Biblijny i Liturgiczny 57, no. 3 (2004): 185. http://dx.doi.org/10.21906/rbl.514.
Full textSchellnhuber, H. J., H. Urbschat, and A. Block. "Calculation of ‘‘Cantori’’." Physical Review A 33, no. 4 (1986): 2856–58. http://dx.doi.org/10.1103/physreva.33.2856.
Full textEfthymiopoulos, C., G. Contopoulos, N. Voglis, and R. Dvorak. "Stickiness and cantori." Journal of Physics A: Mathematical and General 30, no. 23 (1997): 8167–86. http://dx.doi.org/10.1088/0305-4470/30/23/016.
Full textMaitra, N. T., and E. J. Heller. "Quantum transport through cantori." Physical Review E 61, no. 4 (2000): 3620–31. http://dx.doi.org/10.1103/physreve.61.3620.
Full textLi, Wentian, and Per Bak. "Fractal Dimension of Cantori." Physical Review Letters 57, no. 6 (1986): 655–58. http://dx.doi.org/10.1103/physrevlett.57.655.
Full textLesch, David W. "Louis Cantori 1935–2008." Review of Middle East Studies 42, no. 1-2 (2008): 221–22. http://dx.doi.org/10.1017/s0026318400052159.
Full textBaesens, C., and R. S. MacKay. "Cantori for multiharmonic maps." Physica D: Nonlinear Phenomena 69, no. 1-2 (1993): 59–76. http://dx.doi.org/10.1016/0167-2789(93)90180-9.
Full textMeiss, J. D. "Cantori for the stadium billiard." Chaos: An Interdisciplinary Journal of Nonlinear Science 2, no. 2 (1992): 267–72. http://dx.doi.org/10.1063/1.165867.
Full textBlock, A., H. J. Schellnhuber, and H. Urbschat. "Analytic fractal dimension of cantori." Physical Review Letters 58, no. 10 (1987): 1046. http://dx.doi.org/10.1103/physrevlett.58.1046.
Full textMacKay, R. S. "Hyperbolic cantori have dimension zero." Journal of Physics A: Mathematical and General 20, no. 9 (1987): L559—L561. http://dx.doi.org/10.1088/0305-4470/20/9/002.
Full text