Academic literature on the topic 'Capacitive Touch Sensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Capacitive Touch Sensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Capacitive Touch Sensors"
Zuk, Samuel, Alena Pietrikova, and Igor Vehec. "Capacitive touch sensor." Microelectronics International 35, no. 3 (July 2, 2018): 153–57. http://dx.doi.org/10.1108/mi-12-2017-0071.
Full textKo, Wen H., and Qiang Wang. "Touch mode capacitive pressure sensors." Sensors and Actuators A: Physical 75, no. 3 (June 1999): 242–51. http://dx.doi.org/10.1016/s0924-4247(99)00069-2.
Full textVallett, Richard, Ryan Young, Chelsea Knittel, Youngmoo Kim, and Genevieve Dion. "Development of a Carbon Fiber Knitted Capacitive Touch Sensor." MRS Advances 1, no. 38 (2016): 2641–51. http://dx.doi.org/10.1557/adv.2016.498.
Full textKwon, Oh-Kyong, Jae-Sung An, and Seong-Kwan Hong. "Capacitive Touch Systems With Styli for Touch Sensors: A Review." IEEE Sensors Journal 18, no. 12 (June 15, 2018): 4832–46. http://dx.doi.org/10.1109/jsen.2018.2830660.
Full textWang, Qiang, and Wen H. Ko. "Modeling of touch mode capacitive sensors and diaphragms." Sensors and Actuators A: Physical 75, no. 3 (June 1999): 230–41. http://dx.doi.org/10.1016/s0924-4247(99)00068-0.
Full textGuo, Xue. "3D Multi-Touch Screen Based on Pressure Sensor." Applied Mechanics and Materials 513-517 (February 2014): 4064–67. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.4064.
Full textHarnett, Cindy. "Making Soft Optical Sensors More Wearable." MRS Advances 5, no. 18-19 (2020): 1017–22. http://dx.doi.org/10.1557/adv.2020.64.
Full textHwu, Chen Chuan, and Jui Lin Hsu. "Shielding Method for the Capacitive Touch-Sensor." Applied Mechanics and Materials 300-301 (February 2013): 464–67. http://dx.doi.org/10.4028/www.scientific.net/amm.300-301.464.
Full textLiu, Yu-Qing, Yong-Lai Zhang, Zhi-Zhen Jiao, Dong-Dong Han, and Hong-Bo Sun. "Directly drawing high-performance capacitive sensors on copying tissues." Nanoscale 10, no. 36 (2018): 17002–6. http://dx.doi.org/10.1039/c8nr05731a.
Full textReynolds, Veronica G., Sanjoy Mukherjee, Renxuan Xie, Adam E. Levi, Amalie Atassi, Takumi Uchiyama, Hengbin Wang, Michael L. Chabinyc, and Christopher M. Bates. "Super-soft solvent-free bottlebrush elastomers for touch sensing." Materials Horizons 7, no. 1 (2020): 181–87. http://dx.doi.org/10.1039/c9mh00951e.
Full textDissertations / Theses on the topic "Capacitive Touch Sensors"
Cann, Maria. "Laser ablation processes of silver nanowire transparent conductors for capacitive touch sensors." Thesis, University of Surrey, 2016. http://epubs.surrey.ac.uk/811003/.
Full textMatula, Rastislav. "Dotykové ovládání přístroje pomocí kapacitních senzorových obvodů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-218208.
Full textLiguori, Elizabeth Angela. "(Not) Drawing The Line: Technology Reexamined." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/77949.
Full textMaster of Fine Arts
Calderon, Olle. "Genomskinlig touchsensor för pålitlig styrning av RGB-lysdioder." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210668.
Full textMånga av de elektronikprodukter som produceras idag använder någon form av touchteknik. Då den används i allt från skärmar på smartphones till biljettautomater är det tydligt att användningsområdena är många och att efterfrågan är stor. Touchtekniker kräver i regel ingen kraft för att användas, vilket minskar mekaniskt slitage och därför ökar dess livslängd. I detta arbete skulle en touchstyrning till en uppsättning RGB-lysdioder byggas. Problemet var att sensorytan skulle vara en vit, halvgenomskinlig plast, genom vilken lysdioderna skulle lysa. Eftersom plasten både skulle släppa igenom ljus och agera touchyta uppstod problemet: hur konstruerar man en genomskinlig touchsensor som kan styra RGBlysdioder på ett pålitligt sätt? Denna rapport inleds med att beskriva och diskutera många av de touchtekniker som finns idag samt vilka föroch nackdelar de har. Utifrån denna information valdes en specifik sensorteknik, varifrån en prototyp på den genomskinliga touchsensorn byggdes. Sensorprototypen var en kapacitiv sensor uppbyggd av ett tunt metallnät placerat bakom plastpanelen. Med ett inbyggt system, bestående av en integrerad touchkrets för differentiell kapacitansmätning och en mikrokontroller, mättes sensorns kapacitans och en styrning till lysdioderna implementerades. För att säkerställa sensorns pålitlighet var det viktigt att analysera vilka miljöfaktorer som påverkade sensorn och hur de kunde hanteras. Mätningar utfördes därför på sensorn för att se hur dess kapacitans förändrades med avseende på dessa. Det kunde konstateras att fukt, temperatur och frekvens hade försumbar påverkan på sensorns dielektrum. Däremot kunde det visas att närhet till jordplan påverkade sensorn avsevärt och att sensorns tillförlitlighet berodde signifikant på dess inkapsling och jordning.
Wang, Chen-chi, and 王貞淇. "Design and Implementation of Capacitive Multi-Touch Sensors." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/98915094774681995361.
Full text國立臺南大學
電機工程研究所
98
In this thesis, we design the capacitive multi-touch sensors and use enamel-insulated wires and high visible-transparency Indium Tin Oxide (ITO) films to implement them. For the design approach, we use enamel-insulated wires and high visible-transparency Indium Tin Oxide (ITO) films to fabricate several kinds of touch sensors, and analyze their touch sensitivity according to different sensors’ size and shape. Meanwhile, we also design an oscillator circuit to realize a capacitance to frequency converter for signal processing. In order to verify the system’s function, the proposed capacitive multi-touch sensors, which are implemented as a piano touch panel by ITO films, are integrated with the signal processing circuit to realize a music player interface.
Matos, Carlos Eduardo Fernandes. "Teclado touch capacitivo reconfigurável baseado em tecnologias impressas." Master's thesis, 2016. http://hdl.handle.net/1822/46576.
Full textA área da sensorização tem vindo a ser alvo de uma constante evolução nas últimas décadas. Esta evolução é devida à descoberta de novos materiais e também da inovação e do aperfeiçoamento de novas técnicas de fabrico em conjunto com o avanço da eletrónica, que levam ao aparecimento de novos tipos de sensores. Atualmente, grande parte da investigação na área consiste na exploração do potencial destes novos sensores, aplicando-os assim em diversos meios, de modo a medir variadas grandezas. Um exemplo dos novos tipos de sensores são os baseados em tecnologias impressas. Estes sensores ganham relevância quando são consideradas as suas vantagens, como por exemplo, o seu baixo custo de produção e facilidade do seu desenvolvimento. No contexto desta dissertação é pretendido o desenvolvimento de um teclado touch capacitivo reconfigurável baseado em tecnologias impressas. Quando se fala em superfícies multitoque, podemos considerar muitas alternativas em relação ao tipo de sensores utilizados, como por exemplo, sensores capacitivos, resistivos, infravermelhos, entre outros. Nesta dissertação, serão utilizados os sensores capacitivos, visto serem os mais promissores e apresentarem várias vantagens em relação às suas alternativas. O teclado será baseado em tecnologias impressas, uma vez que estas são indicadas como alternativa viável ao ITO (Indium Tin Oxide) [1], que é o material mais utilizado na indústria neste tipo de sensores. Dentro dos diversos métodos de impressão, podem ser considerados diferentes tipos de tintas utilizadas bem como diferentes métodos de impressão. Nesta dissertação, será utilizado o método de screen printing dado ser um método rápido e eficaz na deposição de tintas baseadas em prata, que se tornam ideais para este tipo de sistemas devido às suas características de condutividade elétrica. Para além do desenvolvimento da matriz capacitiva, será também feita a respetiva eletrónica de instrumentação da matriz. Através da adição de um microcontrolador, será possível comunicar com uma aplicação gráfica de modo a que seja possível visualizar as áreas de toque bem como definir o layout do teclado. A aplicação gráfica permitirá que o utilizador reconfigure a matriz, de maneira a definir o teclado da melhor maneira que lhe convém. Este requisito é um dos objetivos fundamentais desta dissertação. Os objetivos desta dissertação foram cumpridos. Foi possível, após o desenvolvimento do todo o sistema do teclado, visualizar a informação dos toques para diferentes layouts de forma satisfatória.
The area of sensing has been the target of a constant evolution over the past decades. This evolution is due to the discovery of new materials and also innovation and development of new manufacturing techniques together with the advancement of electronics, leading to the forthcoming of new types of sensors. Currently, much of the research in the area is on exploring the potential of these new sensors, employing them in several ways in order to measure various physical quantities. An example of new types of sensors are sensors based on printed technologies. These sensors become more important when considered its advantages such as its low cost of production and ease of development. In the context of this work it is intended the development of a reconfigurable capacitive touch keypad based on printed technologies. We can consider many alternatives in the type of sensors used, such as capacitive sensors, resistive, IR and others. Capacitive sensors are used in this dissertation because they are the most promising and have several advantages compared to its alternatives, such as, the possibility of recognizing multiple touches simultaneously and excellent optical characteristics. The keypad will be based on printed technologies since these technologies are shown as viable alternative to ITO (Indium Tin Oxide) [1], which is the material most used in the industry in this type of sensors. Within the various printing methods, different types of inks can be considered, as well as, many printing methods. In this dissertation, will be used screen printing method as it is a quick and efficient method for depositing silver-based inks, which make them ideal for this type of systems due to its characteristics of electrical conductivity. In addition to the development of the capacitive array, the array of respective electronic instrumentation is also made. Through the aid of a micro-controller to handle the communication with the graphical interface, it is possible such that it is possible to display the touch areas and to define areas of interest for our keypad. The application is developed in C # and allow the user to reconfigure the layout in order to set the keyboard in the best way that suits him. This requirement is one of the fundamental objectives of this dissertation. The objectives of this work have been met. It was possible, after the development of the entire keypad system, view the information of touches for the different layouts satisfactorily.
Chen, Chien-Yu, and 陳建宇. "Dependence of anti-electrostatic ability of capacitive touch sensor." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/99834114010962149323.
Full text國立交通大學
平面顯示技術碩士學位學程
103
This paper discusses the current touch panel process development. In order to avoid the touch panel scratches in the manufacturing process, it would attached a protect film on the touch panel at each process stop. However, the protective film can reduce the chance of scratching, but the differences in personnel practices, or the temperature and humidity of working environment made the touch panel suffered ESD issue. The main way to prevent the touch panel of ESD damage is releasing and shielding. We used the commonly touch sensor pattern, and this pattern is at the basis of the case from the lower the resistance and the change the capacitance to design different touch sensor unit. Then we made a small touch panel in each condition and used an electrostatic discharge simulator to test antistatic ability of each samples. Finally, the results show in the experiment, whether resistance is reduced in the X direction, the Y direction, or change the setting of capacitance can improve the antistatic ability of the touch panel.
Lee, Kun-da, and 李昆達. "Electrodes Pattern Design of Touch Sensor in Capacitive Touching Screen." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/09346094919442276189.
Full text義守大學
機械與自動化工程學系碩士班
97
Capacitive touch panel is one kind of technology which uses pure glass. This design relatively durability than resistance touch panel. However, the design of electric arrangement is much more difficult. The discontinuous line segments must be utilized to form a uniform electric field. In general, design will affect the precision of touch panel’s control and increase power consumption of the device. Moreover, trial-and-error method was used to verify the linearity in the past. It was not only manpower consuming, but also lack of precise electric resistance control. For that reason, this thesis is developed an electrode pattern design, with the assistance of the analysis of computer to precisely control the design value of electric resistance and make the design of capacitive touch panel with excellent quality on the initial stage. This study aimed to use Excel VBA (Visual Basic for Application) to set up a simple design program. After key-in the designing parameters, resulted data will be shown automatically. Besides, the computer software AutoCAD Mechanical is used to draw and create the model in the analysis process. With another computer analyzing software ANSYS, it can analysis electric field and electrode pattern design of capacitive touch panel. Develop a set of standardized design methods and let the electric resistance fixed of the electrode layout. The linearity of panel can be controlled in advance to decrease the cost and increase the production yield. A 15 inch touch panel was then designed by the above-mentioned approach to verify the solution works. The result showed that it can successfully control the electric resistance of electrode, uniformity of electric field and economized the cost and time.
Chen, Chia-Jen, and 陳家任. "Film type single-layer-multi-point capacitive touch sensor process research." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/13866967812818703587.
Full text國立交通大學
工學院半導體材料與製程設備學程
103
Abstract Various types of touch sensors have evolved to be manufactured in a production mode starting from a small trail production to the mass production due to swift changes in the competitive cell phone industry as it can shorten the lead time of production. The applied materials are assigned according to customers’ requirement for circuits thus a factory needs to have a quick response to customers’ needs. Even when the customers ask the factory to become the second supplier, the factory needs to use the “first supplier’s “material to undertake production. Hence, some materials are not certified onsite and the trail production starts off quickly and goes on with mass production. The production schedule will be decided according to the market feedback and sales performance of products. If the sales performance is not satisfactory, the orders would be cut off and the mass production would be forced to cease. Therefore a timely response to production procedure and better yield rate are becoming the key issues to tackle. Surface Capacitive single layer multi-touch sensor is a new design with different production paths and materials as to distinguish out from the old style. The experienced engineer would set up the production parameters during production to retrieve the tolerance range of each parameter. 8D and PCDA approaches are applied to adjust and improve the production situation and results. When the second stage production starts, the production parameters are generated using Analysis of variance (referred to as ANOVA hereunder) to attain the result of each parameter’s influence on the production and interaction effects. The production parameters of single layer multi-touch sensor include: dimension of models, resistance value result after anealing, critical dimension after photo etching on the ITO pattern, the thickness of isolation rubber for screen printing, accuracy of models dimension, alignment accuracy of screen printing silver circuit location and thickness, and critical dimension of silver circuits. In order to obtain the immediate and correct production parameters, every production process needs to be systematized and digitized. The variance data obtained by the experiment design can compute the optimal parameter combination of production in order to avoid the risk of instability and inaccuracy caused by the traditional calculation. The most optimal production parameters obtained by variation analyses in this project are as follows: Aging (ITO baking time 45 min, temperature of 160 ℃), dry film exposure (energy32 mj), development (time 45 min, temperature of 160 ℃), silver screen printing (squeegee pressure: 25 kgf, squeegee speed :100 mm / s ,height from screen to work stage: 3.0 mm), insulating rubber screen printing (squeegee pressure 35 kgf, squeegee speed of 80 mm / s, height from screen to work stage: 3.0 mm). The production parameters obtained by data analysis can be applied to shorten the testing time and to reduce defect factors largely caused by trial and error methods. The analysis models established by ANOVA can be used for material production of ITO film, insulation rubber and silver paste etc. as to avoid failure of material production, improve defect-free rate, stabilize the product quality and speed up the production schedule.
Liu, I.-Te, and 劉奕德. "A 41.5dB SNR 500fps Current Mode Capacitive Touch Sensor with Discrete Time Charge-Rotating Filter for In-cell Touch Panel." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/yby39t.
Full textBook chapters on the topic "Capacitive Touch Sensors"
Gray, Tony. "Sensor Stack Ups." In Projected Capacitive Touch, 91–100. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98392-9_10.
Full textBittner, Ray, and Mike Sinclair. "VersaPatch: A Low Cost 2.5D Capacitive Touch Sensor." In Human-Computer Interaction. Novel Interaction Methods and Techniques, 407–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02577-8_44.
Full textLee, Moon Kyu, Jeongho Eom, and Bumkyoo Choi. "Numerical Analysis of Touch Mode Capacitive Pressure Sensor Using Graphical User Interface." In Lecture Notes in Electrical Engineering, 371–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28807-4_52.
Full textGarcía, María Alcaraz, Clara María Sáez Sánchez, María Belén Sáez Sánchez, and José Jaime Pérez Segura. "Pedagogical Proposals for the Sensory and Motor Stimulation of Children From 0 to 2 Years Old." In Advances in Early Childhood and K-12 Education, 212–27. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7585-7.ch012.
Full textGarcía, Silvia, Paulina Trejo, and Alberto García. "Intelligent VR-AR for Natural Disasters Management." In Augmented Reality [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99337.
Full textConference papers on the topic "Capacitive Touch Sensors"
Juan-Yao Ruan, Paul C. P. Chao, and Wei-Par Chen. "A multi-touch interface circuit for a large-sized capacitive touch panel." In 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5689881.
Full textFragiacomo, Giulio, Thomas Pedersen, Ole Hansen, and Erik V. Thomsen. "Intrinsic low hysteresis touch mode capacitive pressure sensor." In 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690722.
Full textFan, W., B. K. Lok, F. K. Lai, and J. Wei. "Evaluation of printed capacitive touch sensors for touch panel." In 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC). IEEE, 2017. http://dx.doi.org/10.1109/eptc.2017.8277586.
Full textQin, Hantang, Yi Cai, Jingyan Dong, and Yuan-Shin Lee. "Direct Printing of Capacitive Touch Sensors on Flexible Substrates by Additive E-Jet Printing With Silver Nanoinks." In ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8740.
Full textShigeta, Ryo, Yoshihiro Kawahara, G. Divya Goud, and Banoth Balaji Naik. "Capacitive-Touch-Based Soil Monitoring Device with Exchangeable Sensor Probe." In 2018 IEEE Sensors. IEEE, 2018. http://dx.doi.org/10.1109/icsens.2018.8589698.
Full textFernandes, Jayer, and Hongrui Jiang. "Three axis capacitive touch sensor for clinical breast examination training." In 2016 IEEE SENSORS. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808881.
Full textSell, Johannes K., Herbert Enser, Bernhard Jakoby, Wolfgang Hilber, Michaela Schatzl-Linder, and Bernhard Straus. "Printed capacitive touch sensors embedded in organic coatings on sheet steel." In 2015 IEEE Sensors. IEEE, 2015. http://dx.doi.org/10.1109/icsens.2015.7370371.
Full textKo, Wen H., and Qiang Wang. "Touch Mode Capacitive Pressure Sensors for Automotive Applications." In 1996 SAE International Truck and Bus Meeting and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/962200.
Full textKo, W. H., Q. Wang, and Y. Wang. "Touch Mode Capacitive Pressure Sensors for Industrial Applications." In 1996 Solid-State, Actuators, and Microsystems Workshop. San Diego, CA USA: Transducer Research Foundation, Inc., 1996. http://dx.doi.org/10.31438/trf.hh1996.55.
Full textKo, W. H., Q. Wang, and Y. Wang. "Touch Mode Capacitive Pressure Sensors for Industrial Applications." In 1996 Solid-State, Actuators, and Microsystems Workshop. San Diego, CA USA: Transducer Research Foundation, Inc., 1996. http://dx.doi.org/10.31438/trf.hh1996.55.
Full text