Journal articles on the topic 'Capillary and porous materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Capillary and porous materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sychevskii, V. A. "Drying of colloidal capillary-porous materials." International Journal of Heat and Mass Transfer 85 (June 2015): 740–49. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.02.025.
Full textRatanadecho, P., K. Aoki, and M. Akahori. "Influence of Irradiation Time, Particle Sizes, and Initial Moisture Content During Microwave Drying of Multi-Layered Capillary Porous Materials." Journal of Heat Transfer 124, no. 1 (2001): 151–61. http://dx.doi.org/10.1115/1.1423951.
Full textAlbuquerque, A. P. R., and J. M. P. Q. Delgado. "Soluble Salts Transport in Building Materials." Diffusion Foundations and Materials Applications 30 (August 19, 2022): 1–23. http://dx.doi.org/10.4028/p-v8s6zp.
Full textTuchinskii, L. I., M. B. Shtern, and S. A. Zakharov. "Sintering kinetics of capillary-porous powder materials." Powder Metallurgy and Metal Ceramics 32, no. 6 (1993): 486–90. http://dx.doi.org/10.1007/bf00560725.
Full textHorikawa, Toshihide, D. D. Do, and D. Nicholson. "Capillary condensation of adsorbates in porous materials." Advances in Colloid and Interface Science 169, no. 1 (2011): 40–58. http://dx.doi.org/10.1016/j.cis.2011.08.003.
Full textSnezhkin, Yu F., V. М. Paziuk, and Zh O. Petrova. "Heat pump technologies of low temperature drying of capillary-porous materials spherical shape." Кераміка: наука і життя, no. 3(48) (October 12, 2020): 7–12. http://dx.doi.org/10.26909/csl.3.2020.1.
Full textAlsabry, Abdrahman, Beata Backiel-Brzozowska, Vadzim I. Nikitsin, and Serafim K. Nikitsin. "Equations for Calculating the Thermal Conductivity of Capillary-Porous Materials with over Sorption Moisture Content." Sustainability 14, no. 10 (2022): 5796. http://dx.doi.org/10.3390/su14105796.
Full textKostornov, A. G., A. A. Shapoval, and I. V. Shapoval. "Skeletal heat conductivity of porous metal fiber materials." Kosmìčna nauka ì tehnologìâ 27, no. 2 (2021): 70–77. http://dx.doi.org/10.15407/knit2021.02.070.
Full textSnezhkin, Yu F., V. М. Paziuk, and Zh O. Petrova. "Mathematical processing of results experimental studies of low-temperature modes of drying of capillary-porous materials of spherical shape." Кераміка: наука і життя, no. 1(42) (April 6, 2019): 20–25. http://dx.doi.org/10.26909/csl.1.2019.3.
Full textHa, Jonghyun, and Ho-Young Kim. "Capillarity in Soft Porous Solids." Annual Review of Fluid Mechanics 52, no. 1 (2020): 263–84. http://dx.doi.org/10.1146/annurev-fluid-010518-040419.
Full textAvraamov, N. I., A. V. Korolkov, V. A. Maslov, and V. B. Sapozhnikov. "Mathematical Simulation of Using a Combination of Mesh and Porous Materials as a Phase Separator." Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, no. 3 (126) (June 2019): 4–16. http://dx.doi.org/10.18698/0236-3941-2019-3-4-16.
Full textPazyuk, V. М. "Investigation of low-temperature drying modes plant capillary-porous materials spherical shape." Кераміка: наука і життя, no. 4(41) (December 28, 2018): 7–14. http://dx.doi.org/10.26909/csl.4.2018.1.
Full textGamayunov, N. I., and S. N. Gamayunov. "Shrinkage and Strength of Capillary-Porous Colloidal Materials." Journal of Engineering Physics and Thermophysics 77, no. 1 (2004): 45–52. http://dx.doi.org/10.1023/b:joep.0000020718.82001.6f.
Full textDenesuk, M., G. L. Smith, B. J. J. Zelinski, N. J. Kreidl, and D. R. Uhlmann. "Capillary Penetration of Liquid Droplets into Porous Materials." Journal of Colloid and Interface Science 158, no. 1 (1993): 114–20. http://dx.doi.org/10.1006/jcis.1993.1235.
Full textSheleg, V. K. "Increasing the efficiency of application of capillary-porous powder materials. I. Parameters of the efficiency of capillary-porous powder materials." Soviet Powder Metallurgy and Metal Ceramics 30, no. 3 (1991): 214–16. http://dx.doi.org/10.1007/bf00794909.
Full textElsen, J., and F. de Barquin. "Simulieren der kapillaren Wasseraufnahme von porösen Werkstoffen des Bauwesens / Modelling of the Capillary Water Absorption of Porous Building Materials." Restoration of Buildings and Monuments 6, no. 3 (2000): 293–306. http://dx.doi.org/10.1515/rbm-2000-5477.
Full textPetrova, Zh O., B. V. Davydenko, and K. S. Slobodianiuk. "Modeling of heat and mass transfer in the process of drying of colloid capillary - porous materials." Кераміка: наука і життя, no. 2(43) (July 7, 2019): 7–14. http://dx.doi.org/10.26909/csl.2.2019.1.
Full textSheleg, V. K. "Increasing the efficiency of using capillary-porous powder materials. II. Materials with steady capillary flow." Soviet Powder Metallurgy and Metal Ceramics 30, no. 5 (1991): 407–11. http://dx.doi.org/10.1007/bf00793669.
Full textPilinevich, L. P., M. V. Tumilovich, A. G. Kravtsov, D. M. Rumiantsav, and K. V. Hryb. "Research of the process of obtaining capillary-porous materials from metal powders for heat pipes." Doklady BGUIR 19, no. 4 (2021): 5–12. http://dx.doi.org/10.35596/1729-7648-2021-19-4-5-12.
Full textWang, J., J. J. Xu, Y. Yang, et al. "Simulations on the gelling process of particle suspension systems for in-situ preparing porous materials in a capillary." International Journal of Modern Physics B 29, no. 04 (2015): 1550015. http://dx.doi.org/10.1142/s0217979215500150.
Full textWang, Li Cheng, and Shu Hong Li. "Numerical Solutions for Capillary Absorption by Cementitious Materials." Applied Mechanics and Materials 94-96 (September 2011): 1560–63. http://dx.doi.org/10.4028/www.scientific.net/amm.94-96.1560.
Full textJOEKAR-NIASAR, V., S. M. HASSANIZADEH, and H. K. DAHLE. "Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling." Journal of Fluid Mechanics 655 (July 5, 2010): 38–71. http://dx.doi.org/10.1017/s0022112010000704.
Full textZhang, Jianyong, Junxing Chen, Sheng Peng, et al. "Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry." Chemical Society Reviews 48, no. 9 (2019): 2566–95. http://dx.doi.org/10.1039/c8cs00657a.
Full textHirsch, Hauke, Rüdiger Heyn, and Paul Klõšeiko. "Capillary condensation experiment for inverse modelling of porous building materials." E3S Web of Conferences 172 (2020): 17003. http://dx.doi.org/10.1051/e3sconf/202017217003.
Full textHartung, Katharina, Carolyn Benner, Norbert Willenbacher, and Erin Koos. "Lightweight Porous Glass Composite Materials Based on Capillary Suspensions." Materials 12, no. 4 (2019): 619. http://dx.doi.org/10.3390/ma12040619.
Full textHoan, Trinh Minh, Nguyen Van Toan, Nguyen Phu Hung, Pham Van Trinh, Tran Bao Trung, and Doan Dinh Phuong. "Dependence of Particle Size and Geometry of Copper Powder on the Porosity and Capillary Performance of Sintered Porous Copper Wicks for Heat Pipes." Metals 12, no. 10 (2022): 1716. http://dx.doi.org/10.3390/met12101716.
Full textVidales, A. M., R. J. Faccio, and G. Zgrablich. "Capillary hysteresis in porous media." Journal of Physics: Condensed Matter 7, no. 20 (1995): 3835–43. http://dx.doi.org/10.1088/0953-8984/7/20/004.
Full textKryuchkov, Yu N. "Determination of the Average Capillary Radius of Porous Materials." Glass and Ceramics 75, no. 3-4 (2018): 139–44. http://dx.doi.org/10.1007/s10717-018-0043-4.
Full textAlsabry, Abdrahman, Beata Backiel-Brzozowska, and Vadzim I. Nikitsin. "Dependencies for Determining the Thermal Conductivity of Moist Capillary-Porous Materials." Energies 13, no. 12 (2020): 3211. http://dx.doi.org/10.3390/en13123211.
Full textPrimi, P., and F. H. Wittmann. "Einfluss des Feuchtigkeitsgehaltes auf das kapillare Saugen / Influence of Moisture Content on Capillary Suction." Restoration of Buildings and Monuments 2, no. 5 (1996): 415–26. http://dx.doi.org/10.1515/rbm-1996-5132.
Full textZamytskyi, O. V., N. O. Holiver, N. V. Bondar, and S. O. Kradozhon. "Mathematical model of the process of drying fine dispersed materials under the influence of alternating electric current." Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, no. 3 (2021): 51–56. http://dx.doi.org/10.33271/nvngu/2021-3/051.
Full textFan, Jie, Cai-Xia Li, Yuan-Yuan Qi, Li-Li Wang, Wan Shou, and Yong Liu. "Liquid transport in non-uniform capillary fibrous media." Textile Research Journal 89, no. 9 (2018): 1684–98. http://dx.doi.org/10.1177/0040517518779248.
Full textHird, Robert, and Malcolm D. Bolton. "Migration of sodium chloride in dry porous materials." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2186 (2016): 20150710. http://dx.doi.org/10.1098/rspa.2015.0710.
Full textSheleg, V. K. "Increasing the efficiency of using capillary-porous powder materials. III. Infiltrating materials." Soviet Powder Metallurgy and Metal Ceramics 30, no. 7 (1991): 588–91. http://dx.doi.org/10.1007/bf00794651.
Full textFukui, Kazuma, and Satoru Takada. "Water uptake of porous building materials with extremely small air entrapment effects." Journal of Physics: Conference Series 2654, no. 1 (2023): 012033. http://dx.doi.org/10.1088/1742-6596/2654/1/012033.
Full textŠkramlík, Jan, Miloslav Novotný, Ondřej Fuciman, and Karel Šuhajda. "3D Data for Calculation of Capillary Conductivity Coefficient." Advanced Materials Research 688 (May 2013): 180–84. http://dx.doi.org/10.4028/www.scientific.net/amr.688.180.
Full textChovniuk, Yurii, Petro Cherednichenko, Anna Moskvitina, Mariia Shyshyna, Nataliia Shudra, and Evhen Ivanov. "Hyperbolic models in the analysis of heat and moisture exchange in inhomogeneous porous materials." Strength of Materials and Theory of Structures, no. 113 (November 29, 2024): 227–40. https://doi.org/10.32347/2410-2547.2024.113.227-240.
Full textLukovičová, Jozefa, Gabriela Pavlendová, Ivan Baník, and Rudolf Podoba. "Determination of Poroelastic Parameters of Porous Building Materials." Defect and Diffusion Forum 353 (May 2014): 189–92. http://dx.doi.org/10.4028/www.scientific.net/ddf.353.189.
Full textFei, Linlin, Dominique Derome, and Jan Carmeliet. "How to design the drying of porous materials?" Journal of Physics: Conference Series 2654, no. 1 (2023): 012079. http://dx.doi.org/10.1088/1742-6596/2654/1/012079.
Full textZáleská, Martina, Milena Pavlíková, Zbyšek Pavlík, and Robert Černý. "Retention Curves of Different Types of Sandstone." Advanced Materials Research 982 (July 2014): 44–48. http://dx.doi.org/10.4028/www.scientific.net/amr.982.44.
Full textPetrova, Zh O., V. M. Vyshnievskyi, Yu P. Novikova, and A. I. Petrov. "Investigation of the dispersion processes of composite colloidal capillary-porous materials." Кераміка: наука і життя, no. 4(45) (December 27, 2019): 21–25. http://dx.doi.org/10.26909/csl.4.2019.3.
Full textСинцов, А., A. Sintsov, Владимир Девисилов, and Vladimir Devisilov. "Capillary Scanning of a Porous Matrix. Experimental Techniques and Processing of its Results." Safety in Technosphere 7, no. 4 (2019): 29–42. http://dx.doi.org/10.12737/article_5cf669e65b8b77.11704754.
Full textDavydenko, B. V., and K. M. Samoilenko. "THEORETICAL AND EXPERIMENTAL ANALYSIS OF DRYING KINETICS OF COLLOID CAPILLARY-POROUS MATERIALS AS DRYING OBJECTS." Thermophysics and Thermal Power Engineering 46, no. 2 (2024): 42–51. http://dx.doi.org/10.31472/ttpe.2.2024.5.
Full textSuchorab, Zbigniew, Marcin K. Widomski, Grzegorz Łagód, Danuta Barnat-Hunek, and Piotr Smarzewski. "Methodology of Moisture Measurement in Porous Materials Using Time Domain Reflectometry / Metodyka Prowadzenia Badań Wilgotności W Ośrodkach Porowatych Za Pomocą Reflektometrii W Domenie Czasu." Chemistry-Didactics-Ecology-Metrology 19, no. 1-2 (2014): 97–107. http://dx.doi.org/10.1515/cdem-2014-0009.
Full textTaurbayev, Y. T., K. A. Gonchar, A. V. Zoteev, et al. "Electrochemical Nanostructuring of Semiconductors by Capillary-Cell Method." Key Engineering Materials 442 (June 2010): 1–6. http://dx.doi.org/10.4028/www.scientific.net/kem.442.1.
Full textLago, Marcelo, and Mariela Araujo. "Capillary Rise in Porous Media." Journal of Colloid and Interface Science 234, no. 1 (2001): 35–43. http://dx.doi.org/10.1006/jcis.2000.7241.
Full textKirianova, Liudmila. "Mathematical model of the porous-capillary body in construction materials." IOP Conference Series: Materials Science and Engineering 365 (June 2018): 042027. http://dx.doi.org/10.1088/1757-899x/365/4/042027.
Full textShen, Vincent K., Daniel W. Siderius, and Nathan A. Mahynski. "Molecular simulation of capillary phase transitions in flexible porous materials." Journal of Chemical Physics 148, no. 12 (2018): 124115. http://dx.doi.org/10.1063/1.5022171.
Full textPetrova, Zh A., and E. S. Slobodyanyuk. "Energy-Efficient Modes of Drying of Colloidal Capillary-Porous Materials." Journal of Engineering Physics and Thermophysics 92, no. 5 (2019): 1231–38. http://dx.doi.org/10.1007/s10891-019-02038-x.
Full textGel'miza, V. I. "Failure of porous capillary materials under high-intensity thermal loading." Soviet Applied Mechanics 24, no. 6 (1988): 620–23. http://dx.doi.org/10.1007/bf01890823.
Full text