Journal articles on the topic 'Capture de CO₂'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Capture de CO₂.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Green, N. S., C. E. Early, L. K. Beard, and K. T. Wilkins. "Multiple captures of fulvous harvest mice (Reithrodontomys fulvescens) and northern pygmy mice (Baiomys taylori): evidence for short-term co-traveling." Canadian Journal of Zoology 90, no. 3 (2012): 313–19. http://dx.doi.org/10.1139/z11-137.
Full textRoxanne, Z. Pinsky* B.S.E Dr. Piyush Sabharwall Lynn Wendt M.S. &. Dr. Anne M. Gaffney. "ENERGY INPUT AND PROCESS FLOW FOR CARBON CAPTURE AND STORAGE." INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY 8, no. 7 (2019): 244–54. https://doi.org/10.5281/zenodo.3352141.
Full textAresta, Michele, Angela Dibenedetto, and Antonella Angelini. "The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1996 (2013): 20120111. http://dx.doi.org/10.1098/rsta.2012.0111.
Full textXiao, Yurou Celine, Siyu Sun, Yong Zhao, et al. "Reactive Capture of CO2 via Amino Acid." ECS Meeting Abstracts MA2024-02, no. 62 (2024): 4247. https://doi.org/10.1149/ma2024-02624247mtgabs.
Full textRoussanaly, Simon, and Rahul Anantharaman. "Cost-optimal CO 2 capture ratio for membrane-based capture from different CO 2 sources." Chemical Engineering Journal 327 (November 2017): 618–28. http://dx.doi.org/10.1016/j.cej.2017.06.082.
Full textSaragih, Harriman Samuel, Togar Simatupang, and Yos Sunitiyoso. "From co-discovery to co-capture: co-innovation in themusic business." International Journal of Innovation Science 11, no. 4 (2019): 600–617. http://dx.doi.org/10.1108/ijis-07-2019-0068.
Full textLeverick, Graham, and Betar M. Gallant. "Electrochemical Reduction of Amine-Captured CO2 in Aqueous Solutions." ECS Meeting Abstracts MA2023-01, no. 26 (2023): 1719. http://dx.doi.org/10.1149/ma2023-01261719mtgabs.
Full textRamanan, G., and Gordon R. Freeman. "Electron thermalization distance distribution in liquid carbon monoxide: electron capture." Canadian Journal of Chemistry 66, no. 5 (1988): 1304–12. http://dx.doi.org/10.1139/v88-212.
Full textKazepidis, Panagiotis, Panos Seferlis, and Athanasios Papadopoulos. "Energy Recovery Strategies in CO2 Compression Using an Integrated Supercritical Rankine Cycle." Chemical Engineering Transactions 114 (December 27, 2024): 559–64. https://doi.org/10.3303/CET24114094.
Full textGomez-Garcia, J. Francisco, and Heriberto Pfeiffer. "Structural and CO2capture analyses of the Li1+xFeO2(0 ≤ x ≤ 0.3) system: effect of different physicochemical conditions." RSC Advances 6, no. 113 (2016): 112040–49. http://dx.doi.org/10.1039/c6ra23329e.
Full textWang, Tao, Kun Ge, Jun Liu, and Meng Xiang Fang. "A Thermodynamic Analysis of the Fuel Synthesis System with CO2 Direct Captured from Atmosphere." Advanced Materials Research 960-961 (June 2014): 308–15. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.308.
Full textTuğrul Erdem, R. "Innovative technologies in the cement industry." Cement Wapno Beton 26, no. 5 (2021): 444–51. http://dx.doi.org/10.32047/cwb.2021.26.5.7.
Full textKothandaraman, Jotheeswari, Alain Goeppert, Miklos Czaun, George A. Olah, and G. K. Surya Prakash. "CO2capture by amines in aqueous media and its subsequent conversion to formate with reusable ruthenium and iron catalysts." Green Chemistry 18, no. 21 (2016): 5831–38. http://dx.doi.org/10.1039/c6gc01165a.
Full textChan, Hao Xian Malcolm, Eng Hwa Yap, and Jee Hou Ho. "Overview of Axial Compression Technology for Direct Capture of CO2." Advanced Materials Research 744 (August 2013): 392–95. http://dx.doi.org/10.4028/www.scientific.net/amr.744.392.
Full textDeng, Liyuan, and Hanne Kvamsdal. "CO 2 capture: Challenges and opportunities." Green Energy & Environment 1, no. 3 (2016): 179. http://dx.doi.org/10.1016/j.gee.2016.12.002.
Full textReis Machado, Ana S., and Manuel Nunes da Ponte. "CO 2 capture and electrochemical conversion." Current Opinion in Green and Sustainable Chemistry 11 (June 2018): 86–90. http://dx.doi.org/10.1016/j.cogsc.2018.05.009.
Full textXiao, Yurou Celine, Christine M. Gabardo, Shijie Liu, et al. "Integrated Capture and Electrochemical Conversion of CO2 into CO." ECS Meeting Abstracts MA2023-02, no. 47 (2023): 2390. http://dx.doi.org/10.1149/ma2023-02472390mtgabs.
Full textWei, Duo, Henrik Junge, and Matthias Beller. "An amino acid based system for CO2 capture and catalytic utilization to produce formates." Chemical Science 12, no. 17 (2021): 6020–24. http://dx.doi.org/10.1039/d1sc00467k.
Full textKothandaraman, Jotheeswari, and David J. Heldebrant. "Towards environmentally benign capture and conversion: heterogeneous metal catalyzed CO2 hydrogenation in CO2 capture solvents." Green Chemistry 22, no. 3 (2020): 828–34. http://dx.doi.org/10.1039/c9gc03449h.
Full textAri, Betul, Erk Inger, Aydin K. Sunol, and Nurettin Sahiner. "Optimized Porous Carbon Particles from Sucrose and Their Polyethyleneimine Modifications for Enhanced CO2 Capture." Journal of Composites Science 8, no. 9 (2024): 338. http://dx.doi.org/10.3390/jcs8090338.
Full textHarwood, Gyan, and Leticia Avilés. "Differences in group size and the extent of individual participation in group hunting may contribute to differential prey-size use among social spiders." Biology Letters 9, no. 6 (2013): 20130621. http://dx.doi.org/10.1098/rsbl.2013.0621.
Full textStolaroff, Joshuah K., Congwang Ye, James S. Oakdale, et al. "Microencapsulation of advanced solvents for carbon capture." Faraday Discussions 192 (2016): 271–81. http://dx.doi.org/10.1039/c6fd00049e.
Full textLiu, Hengzhou, Ke Xie, and Edward Hartley Sargent. "Energy-Efficient Electrified Reactive Capture to Syngas Via Tuning of Morphology and Energetics of Catalyst Supports." ECS Meeting Abstracts MA2024-02, no. 62 (2024): 4207. https://doi.org/10.1149/ma2024-02624207mtgabs.
Full textChonyo, Shinglai1 Khusbu Samal*1 Narendra Kumar Maurya2 Khalasi Binal Rajeshbhai*2. "Carbon Sequestration: An Essential Approach to Addressing Climate Change." Fish world a monthly magazine 2, no. 3 (2025): 182–94. https://doi.org/10.5281/zenodo.15199468.
Full textDowson, G. R. M., I. Dimitriou, R. E. Owen, D. G. Reed, R. W. K. Allen, and P. Styring. "Kinetic and economic analysis of reactive capture of dilute carbon dioxide with Grignard reagents." Faraday Discussions 183 (2015): 47–65. http://dx.doi.org/10.1039/c5fd00049a.
Full textBelgamwar, Rajesh, Ayan Maity, Tisita Das, Sudip Chakraborty, Chathakudath P. Vinod, and Vivek Polshettiwar. "Lithium silicate nanosheets with excellent capture capacity and kinetics with unprecedented stability for high-temperature CO2 capture." Chemical Science 12, no. 13 (2021): 4825–35. http://dx.doi.org/10.1039/d0sc06843h.
Full textWang, Xueyuan, Ting He, Junhua Hu, and Min Liu. "The progress of nanomaterials for carbon dioxide capture via the adsorption process." Environmental Science: Nano 8, no. 4 (2021): 890–912. http://dx.doi.org/10.1039/d0en01140a.
Full textGuo, Zunmin, Feng Li, Yurou Celine Xiao, et al. "Efficient Amino-Acid-Based Reactive Capture via Catalyst and System Designs." ECS Meeting Abstracts MA2025-01, no. 41 (2025): 2248. https://doi.org/10.1149/ma2025-01412248mtgabs.
Full textXie, Ke, and Edward Hartley Sargent. "Electrified Reactive Capture: System and Catalyst Designs." ECS Meeting Abstracts MA2024-02, no. 62 (2024): 4237. https://doi.org/10.1149/ma2024-02624237mtgabs.
Full textBains, Praveen, Peter Psarras, and Jennifer Wilcox. "CO 2 capture from the industry sector." Progress in Energy and Combustion Science 63 (November 2017): 146–72. http://dx.doi.org/10.1016/j.pecs.2017.07.001.
Full textKnowles, Gregory P., Zhijian Liang, and Alan L. Chaffee. "Shaped polyethyleneimine sorbents for CO 2 capture." Microporous and Mesoporous Materials 238 (January 2017): 14–18. http://dx.doi.org/10.1016/j.micromeso.2016.03.019.
Full textTanner, John. "CO2 air-capture costs." Physics Today 76, no. 2 (2023): 12. http://dx.doi.org/10.1063/pt.3.5170.
Full textDu, Yang, Ye Yuan, and Gary T. Rochelle. "Volatility of amines for CO 2 capture." International Journal of Greenhouse Gas Control 58 (March 2017): 1–9. http://dx.doi.org/10.1016/j.ijggc.2017.01.001.
Full textSafina, O. R., R. V. Bikbulatov, A. R. Khusnutdinov, and A. A. Charki. "CO₂ CAPTURE FROM FLUE GASES OF GAS TURBINE POWER PLANTS." Petroleum Engineering 22, no. 4 (2024): 181–89. http://dx.doi.org/10.17122/ngdelo-2024-4-181-189.
Full textMorsi, Badie, Bingyun Li, Husain Ashkanani, and Rui Wang. "TEA of a Unique Two-Pathways Process for Post-Combustion CO2 Capture." Journal of Energy and Power Technology 04, no. 04 (2022): 1–25. http://dx.doi.org/10.21926/jept.2204033.
Full textJacobson, Mark Z. "The health and climate impacts of carbon capture and direct air capture." Energy & Environmental Science 12, no. 12 (2019): 3567–74. http://dx.doi.org/10.1039/c9ee02709b.
Full textAnantharaman, Rahul, Thijs Peters, Wen Xing, Marie-Laure Fontaine, and Rune Bredesen. "Dual phase high-temperature membranes for CO2 separation – performance assessment in post- and pre-combustion processes." Faraday Discussions 192 (2016): 251–69. http://dx.doi.org/10.1039/c6fd00038j.
Full textZhang, Zhien, Tohid Borhani, Muftah El-Naas, Salman Soltani, and Yunfei Yan. "Gas Capture Processes." Processes 8, no. 1 (2020): 70. http://dx.doi.org/10.3390/pr8010070.
Full textSinton, David. "(Invited) Electrochemical CO2 Capture." ECS Meeting Abstracts MA2025-01, no. 40 (2025): 2140. https://doi.org/10.1149/ma2025-01402140mtgabs.
Full textWang, Wenjing, Mi Zhou, and Daqiang Yuan. "Carbon dioxide capture in amorphous porous organic polymers." Journal of Materials Chemistry A 5, no. 4 (2017): 1334–47. http://dx.doi.org/10.1039/c6ta09234a.
Full textBhattacharyya, Debangsu, and David C. Miller. "Post-combustion CO 2 capture technologies — a review of processes for solvent-based and sorbent-based CO 2 capture." Current Opinion in Chemical Engineering 17 (August 2017): 78–92. http://dx.doi.org/10.1016/j.coche.2017.06.005.
Full textSmit, Berend. "Carbon Capture and Storage: introductory lecture." Faraday Discussions 192 (2016): 9–25. http://dx.doi.org/10.1039/c6fd00148c.
Full textSun, Siyu, Rui Kai Miao, Yurou Celine Xiao, and David Sinton. "Identifying an Optimal Post-Capture pH for Hydroxide-Based Reactive Capture in Industrial Applications." ECS Meeting Abstracts MA2024-02, no. 62 (2024): 4242. https://doi.org/10.1149/ma2024-02624242mtgabs.
Full textA.Y., Iorliam, Opukumo A.W., and Anum B. "Carbon Capture Potential in Waste Modified Soils: A Review." International Journal of Mechanical and Civil Engineering 5, no. 1 (2022): 25–38. http://dx.doi.org/10.52589/ijmce-x4j0etuu.
Full textKeeling, Ralph F., Andrew C. Manning, and Manvendra K. Dubey. "The atmospheric signature of carbon capture and storage." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1943 (2011): 2113–32. http://dx.doi.org/10.1098/rsta.2011.0016.
Full textHamed, Ali Mahmoud, Tengku Nordayana Akma Tuan Kamaruddin, Nabilah Ramli, and Mohd Firdaus Abdul Wahab. "Design and simulate an amine-based CO2 capture process for a steam methane reforming hydrogen production plant." IOP Conference Series: Earth and Environmental Science 1281, no. 1 (2023): 012048. http://dx.doi.org/10.1088/1755-1315/1281/1/012048.
Full textLiu, Shijie, Jinqiang Zhang, Feng Li, et al. "Direct Air Capture of CO2 via Cyclic Viologen Electrocatalysis." ECS Meeting Abstracts MA2025-01, no. 39 (2025): 2082. https://doi.org/10.1149/ma2025-01392082mtgabs.
Full textDe Oliveira Maciel, Ayanne, Paul Christakopoulos, Ulrika Rova, and Io Antonopoulou. "Enzyme-accelerated CO2 capture and storage (CCS) using paper and pulp residues as co-sequestrating agents." RSC Advances 14, no. 9 (2024): 6443–61. http://dx.doi.org/10.1039/d3ra06927c.
Full textbinti Mudzarol, Nor Haleeda, and Wan Norlinda Roshana binti Mohd Nawi. "Carbon Dioxide (CO<sub>2</sub>) Capture and Utilization Targeting." Key Engineering Materials 974 (February 16, 2024): 173–78. http://dx.doi.org/10.4028/p-p2vqwr.
Full textPatel, Hasmukh A., and Cafer T. Yavuz. "Highly optimized CO2 capture by inexpensive nanoporous covalent organic polymers and their amine composites." Faraday Discussions 183 (2015): 401–12. http://dx.doi.org/10.1039/c5fd00099h.
Full text