Academic literature on the topic 'Caputo fractional derivative'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Caputo fractional derivative.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Caputo fractional derivative"
Guswanto, Bambang Hendriya, Leony Rhesmafiski Andini, and Triyani Triyani. "On Conformable, Riemann-Liouville, and Caputo fractional derivatives." Bulletin of Applied Mathematics and Mathematics Education 2, no. 2 (December 19, 2022): 59–64. http://dx.doi.org/10.12928/bamme.v2i2.7072.
Full textLi, Changpin, Deliang Qian, and YangQuan Chen. "On Riemann-Liouville and Caputo Derivatives." Discrete Dynamics in Nature and Society 2011 (2011): 1–15. http://dx.doi.org/10.1155/2011/562494.
Full textOliveira, Daniela S., and Edmundo Capelas de Oliveira. "On a Caputo-type fractional derivative." Advances in Pure and Applied Mathematics 10, no. 2 (April 1, 2019): 81–91. http://dx.doi.org/10.1515/apam-2017-0068.
Full textAgarwal, Ravi, Snezhana Hristova, and Donal O’Regan. "Generalized Proportional Caputo Fractional Differential Equations with Noninstantaneous Impulses: Concepts, Integral Representations, and Ulam-Type Stability." Mathematics 10, no. 13 (July 1, 2022): 2315. http://dx.doi.org/10.3390/math10132315.
Full textParmikanti, Kankan, and Endang Rusyaman. "Grundwald-Letnikov Operator and Its Role in Solving Fractional Differential Equations." EKSAKTA: Berkala Ilmiah Bidang MIPA 23, no. 03 (September 15, 2022): 223–30. http://dx.doi.org/10.24036/eksakta/vol23-iss03/331.
Full textRosales García, J. Juan, J. David Filoteo, and Andrés González. "A comparative analysis of the RC circuit with local and non-local fractional derivatives." Revista Mexicana de Física 64, no. 6 (October 31, 2018): 647. http://dx.doi.org/10.31349/revmexfis.64.647.
Full textFeng, Xue, Baolin Feng, Ghulam Farid, Sidra Bibi, Qi Xiaoyan, and Ze Wu. "Caputo Fractional Derivative Hadamard Inequalities for Stronglym-Convex Functions." Journal of Function Spaces 2021 (April 21, 2021): 1–11. http://dx.doi.org/10.1155/2021/6642655.
Full textSene, Ndolane, and José Francisco Gómez Aguilar. "Fractional Mass-Spring-Damper System Described by Generalized Fractional Order Derivatives." Fractal and Fractional 3, no. 3 (July 7, 2019): 39. http://dx.doi.org/10.3390/fractalfract3030039.
Full textAlipour, Mohsen, and Dumitru Baleanu. "Approximate Analytical Solution for Nonlinear System of Fractional Differential Equations by BPs Operational Matrices." Advances in Mathematical Physics 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/954015.
Full textYoussef, Hamdy M., Alaa A. El-Bary, and Eman A. N. Al-Lehaibi. "Characterization of the Quality Factor Due to the Static Prestress in Classical Caputo and Caputo–Fabrizio Fractional Thermoelastic Silicon Microbeam." Polymers 13, no. 1 (December 23, 2020): 27. http://dx.doi.org/10.3390/polym13010027.
Full textDissertations / Theses on the topic "Caputo fractional derivative"
Hejazi, Hala Ahmad. "Finite volume methods for simulating anomalous transport." Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/81751/1/Hala%20Ahmad_Hejazi_Thesis.pdf.
Full textFeng, Libo. "Numerical investigation and application of fractional dynamical systems." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/126980/1/Libo_Feng_Thesis.pdf.
Full textYang, Qianqian. "Novel analytical and numerical methods for solving fractional dynamical systems." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/35750/1/Qianqian_Yang_Thesis.pdf.
Full textKárský, Vilém. "Modelování LTI SISO systémů zlomkového řádu s využitím zobecněných Laguerrových funkcí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316278.
Full textHnaien, Dorsaf. "Equations aux dérivées fractionnaires : propriétés et applications." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS038.
Full textOur objective in this thesis is the study of nonlinear differential equations involving fractional derivatives in time and/or in space. First, we are interested in the study of two nonlinear time and/or space fractional systems. Our second interest is devoted to the analysis of a time fractional differential equation. More exactly for the first part, the question concerning the global existence and the asymptotic behavior of a nonlinear system of differential equations involving time and space fractional derivatives is addressed. The used techniques rest on estimates obtained for the fundamental solutions and the comparison of some fractional inequalities. In addition, we study a nonlinear system of reaction-diffusion equations with space fractional derivatives. The local existence and the uniqueness of the solutions are proved using the Banach fixed point theorem. We show that the solutions are bounded and analyze their large time behavior. The second part is dedicated to the study of a nonlinear time fractional differential equation. Under some conditions on the initial data, we show that the solution is global while under others, it blows-up in a finite time. In this case, we give its profile as well as bilateral estimates of the blow-up time. While for the global solution we study its asymptotic behavior
Kadlčík, Libor. "Efektivní použití obvodů zlomkového řádu v integrované technice." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-432494.
Full textOti, Vincent Bediako. "Numerické metody pro řešení počátečních úloh zlomkových diferenciálních rovnic." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445462.
Full textTeodoro, Graziane Sales 1990. "Cálculo fracionário e as funções de Mittag-Leffler." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306995.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-24T12:52:57Z (GMT). No. of bitstreams: 1 Teodoro_GrazianeSales_M.pdf: 8150080 bytes, checksum: 07ef5ddebc25d941750b2dee59bd4022 (MD5) Previous issue date: 2014
Resumo: O cálculo fracionário, nomenclatura utilizada para cálculo de ordem não inteira, tem se mostrado importante e, em muitos casos, imprescindível na discussão de problemas advindos de diversas áreas da ciência, como na matemática, física, engenharia, economia e em muitos outros campos. Neste contexto, abordamos a integral fracionária e as derivadas fracionárias, segundo Caputo e segundo Riemann-Liouville. Dentre as funções relacionadas ao cálculo fracionário, uma das mais importantes é a função de Mittag-Leffler, surgindo naturalmente na solução de várias equações diferenciais fracionárias com coeficientes constantes. Tendo em vista a importância dessa função, a clássica função de Mittag-Leffler e algumas de suas várias generalizações são apresentadas neste trabalho. Na aplicação resolvemos a equação diferencial associada ao problema do oscilador harmônico fracionário, utilizando a transformada de Laplace e a derivada fracionária segundo Caputo
Abstract: The fractional calculus, which is the nomenclature used to the non-integer order calculus, has important applications due to its direct involvement in problem resolution and discussion in many fields, such as mathematics, physics, engineering, economy, applied sciences and many others. In this sense, we studied the fractional integral and fractional derivates: one proposed by Caputo and the other by Riemann-Liouville. Among the fractional calculus's functions, one of most important is the Mittag-Leffler function. This function naturally occurs as the solution for fractional order differential equations with constant coeficients. Due to the importance of the Mittag-Leffler functions, various properties and generalizations are presented in this dissertation. We also presented an application in fractional calculus, in which we solved the differential equation associated the with fractional harmonic oscillator. To solve this fractional oscillator equation, we used the Laplace transform and Caputo fractional derivate
Mestrado
Matematica Aplicada
Mestra em Matemática Aplicada
Oliveira, Daniela dos Santos de 1990. "Derivada fracionária e as funções de Mittag-Leffler." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306994.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T00:53:38Z (GMT). No. of bitstreams: 1 Oliveira_DanieladosSantosde_M.pdf: 3702602 bytes, checksum: c0b05792ff3ac3c5bdd5fad1b7586dd5 (MD5) Previous issue date: 2014
Resumo: Neste trabalho apresentamos um estudo sobre as funções de Mittag-Leffler de um, dois e três parâmetros. Apresentamos a função de Mittag-Leffler como uma generalização da função exponencial bem como a relação que esta possui com outras funções especiais, tais como as funções beta, gama, gama incompleta e erro. Abordamos, também, a integração fracionária que se faz necessária para introduzir o conceito de derivação fracionária. Duas formulações para a derivada fracionária são estudadas, as formulações proposta por Riemann-Liouville e por Caputo. Investigamos quais regras clássicas de derivação são estendidas para estas formulações. Por fim, como uma aplicação, utilizamos a metodologia da transformada de Laplace para resolver a equação diferencial fracionária associada ao problema do oscilador harmônico fracionário
Abstract: This work presents a study about the one- two- and three-parameters Mittag-Leffler functions. We show that the Mittag-Leffler function is a generalization of the exponential function and present its relations to other special functions beta, gamma, incomplete gamma and error functions. We also approach fractional integration, which is necessary to introduce the concept of fractional derivatives. Two formulations for the fractional derivative are studied, the formulations proposed by Riemann-Liouville and by Caputo. We investigate which classical derivatives rules can be extended to these formulations. Finally, as an application, using the Laplace transform methodology, we discuss the fractional differential equation associated with the harmonic oscillator problem
Mestrado
Matematica Aplicada
Mestra em Matemática Aplicada
Ncube, Mahluli Naisbitt. "The natural transform decomposition method for solving fractional differential equations." Diss., 2018. http://hdl.handle.net/10500/25348.
Full textMathematical Sciences
M. Sc. (Applied Mathematics)
Book chapters on the topic "Caputo fractional derivative"
Georgiev, Svetlin G. "The Caputo Fractional Δ-Derivative on Time Scales." In Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales, 301–10. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73954-0_7.
Full textGeorgiev, Svetlin G. "Cauchy-Type Problems with the Caputo Fractional Δ-Derivative." In Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales, 311–19. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73954-0_8.
Full textAchar, B. N. Narahari, Carl F. Lorenzo, and Tom T. Hartley. "The Caputo Fractional Derivative: Initialization Issues Relative to Fractional Differential Equation." In Advances in Fractional Calculus, 27–42. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6042-7_3.
Full textMathobo, Mashudu, and Abdon Atangana. "Analysis of General Groundwater Flow Equation within a Confined Aquifer Using Caputo Fractional Derivative and Caputo–Fabrizio Fractional Derivative." In Mathematical Analysis of Groundwater Flow Models, 199–221. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003266266-12.
Full textAtangana, Abdon, and Sania Qureshi. "Mathematical Modeling of an Autonomous Nonlinear Dynamical System for Malaria Transmission Using Caputo Derivative." In Fractional Order Analysis, 225–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2020. http://dx.doi.org/10.1002/9781119654223.ch9.
Full textKıymaz, İ. O., P. Agarwal, S. Jain, and A. Çetinkaya. "On a New Extension of Caputo Fractional Derivative Operator." In Trends in Mathematics, 261–75. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4337-6_11.
Full textDimitrov, Yuri, Venelin Todorov, Radan Miryanov, Stefka Fidanova, and Jan Rusinek. "Generating Functions and Approximations of the Caputo Fractional Derivative." In Communications in Computer and Information Science, 48–66. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25088-0_4.
Full textApostolov, Stoyan, Yuri Dimitrov, and Venelin Todorov. "Constructions of Second Order Approximations of the Caputo Fractional Derivative." In Large-Scale Scientific Computing, 31–39. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97549-4_3.
Full textSene, Ndolane. "Fractional SIRI Model with Delay in Context of the Generalized Liouville–Caputo Fractional Derivative." In Mathematical Modeling and Soft Computing in Epidemiology, 107–25. First edition. | Boca Raton, FL : CRC Press, 2021. |: CRC Press, 2020. http://dx.doi.org/10.1201/9781003038399-6.
Full textMartínez-Guerra, Rafael, and Claudia Alejandra Pérez-Pinacho. "Estimators for a Class of Commensurate Fractional-Order Systems with Caputo Derivative." In Advances in Synchronization of Coupled Fractional Order Systems, 71–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93946-9_6.
Full textConference papers on the topic "Caputo fractional derivative"
Narahari Achar, B. N., Carl F. Lorenzo, and Tom T. Hartley. "Initialization Issues of the Caputo Fractional Derivative." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84348.
Full textTrigeassou, J.-C., N. Maamri, and A. Oustaloup. "Automatic initialization of the Caputo fractional derivative." In 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011). IEEE, 2011. http://dx.doi.org/10.1109/cdc.2011.6160624.
Full textBaleanu, Dumitru, Om P. Agrawal, and Sami I. Muslih. "Lagrangians With Linear Velocities Within Hilfer Fractional Derivative." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47953.
Full textHartley, Tom T., and Carl F. Lorenzo. "The Error Incurred in Using the Caputo-Derivative Laplace-Transform." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87648.
Full textBiswas, Raj Kumar, and Siddhartha Sen. "Fractional Optimal Control Within Caputo’s Derivative." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48045.
Full textLi, Changpin, and Fengrong Zhang. "Equivalent Same-Order System for Multi-Rational-Order Fractional Differential System With Caputo Derivative." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47204.
Full textLorenzo, Carl F., and Tom T. Hartley. "On Self-Consistent Operators With Application to Operators of Fractional Order." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86730.
Full textBiswas, Raj Kumar, and Siddhartha Sen. "Numerical Method for Solving Fractional Optimal Control Problems." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87008.
Full textLi, Xuhao, Qinxu Ding, and Patricia J. Y. Wong. "High Order Approximation of Generalized Caputo Fractional Derivative and its Application." In 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE, 2022. http://dx.doi.org/10.1109/icarcv57592.2022.10004253.
Full textLi, Changpin, Zhengang Zhao, and YangQuan Chen. "Numerical Approximation and Error Estimation of a Time Fractional Order Diffusion Equation." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86693.
Full text