Academic literature on the topic 'Carbamylation of the collagen triple helix'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbamylation of the collagen triple helix.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Carbamylation of the collagen triple helix"

1

Brodsky, Barbara, and John A. M. Ramshaw. "The collagen triple-helix structure." Matrix Biology 15, no. 8-9 (1997): 545–54. http://dx.doi.org/10.1016/s0945-053x(97)90030-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Newberry, Robert W., Brett VanVeller, and Ronald T. Raines. "Thioamides in the collagen triple helix." Chemical Communications 51, no. 47 (2015): 9624–27. http://dx.doi.org/10.1039/c5cc02685g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Fei, Zhe Yu, Beibei Wang, and Bor-Sen Chiou. "Changes in Structures and Properties of Collagen Fibers during Collagen Casing Film Manufacturing." Foods 12, no. 9 (2023): 1847. http://dx.doi.org/10.3390/foods12091847.

Full text
Abstract:
Collagen casing is an edible film, which is widely used in the industrial production of sausages. However, the detailed changes in the collagen fibers, from the raw material to the final collagen film, have rarely been reported. In this research, the changes in the collagen fibers during the manufacturing process, including the fiber arrangement, the triple-helix structure and the thermal stability, were investigated using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR)
APA, Harvard, Vancouver, ISO, and other styles
4

Sato, Daisuke, Hitomi Goto, Yui Ishizaki, Tetsuya Narimatsu, and Tamaki Kato. "Design, Synthesis, and Photo-Responsive Properties of a Collagen Model Peptide Bearing an Azobenzene." Organics 3, no. 4 (2022): 415–29. http://dx.doi.org/10.3390/org3040027.

Full text
Abstract:
Collagen is a vital component of the extracellular matrix in animals. Collagen forms a characteristic triple helical structure and plays a key role in supporting connective tissues and cell adhesion. The ability to control the collagen triple helix structure is useful for medical and conformational studies because the physicochemical properties of the collagen rely on its conformation. Although some photo-controllable collagen model peptides (CMPs) have been reported, satisfactory photo-control has not yet been achieved. To achieve this objective, detailed investigation of the isomerization be
APA, Harvard, Vancouver, ISO, and other styles
5

Fujii, Kazunori K., Yuki Taga, Yusuke K. Takagi, Ryo Masuda, Shunji Hattori, and Takaki Koide. "The Thermal Stability of the Collagen Triple Helix Is Tuned According to the Environmental Temperature." International Journal of Molecular Sciences 23, no. 4 (2022): 2040. http://dx.doi.org/10.3390/ijms23042040.

Full text
Abstract:
Triple helix formation of procollagen occurs in the endoplasmic reticulum (ER) where the single-stranded α-chains of procollagen undergo extensive post-translational modifications. The modifications include prolyl 4- and 3-hydroxylations, lysyl hydroxylation, and following glycosylations. The modifications, especially prolyl 4-hydroxylation, enhance the thermal stability of the procollagen triple helix. Procollagen molecules are transported to the Golgi and secreted from the cell, after the triple helix is formed in the ER. In this study, we investigated the relationship between the thermal st
APA, Harvard, Vancouver, ISO, and other styles
6

Boryskina, O. P., T. V. Bolbukh, M. A. Semenov, and V. Ya Maleev. "Physical factors of collagen triple helix stability." Biopolymers and Cell 22, no. 6 (2006): 458–67. http://dx.doi.org/10.7124/bc.00074d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Horng, Jia-Cherng, Andrew J. Hawk, Qian Zhao, Eric S. Benedict, Steven D. Burke, and Ronald T. Raines. "Macrocyclic Scaffold for the Collagen Triple Helix." Organic Letters 8, no. 21 (2006): 4735–38. http://dx.doi.org/10.1021/ol061771w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Baker, A. T., J. A. M. Ramshaw, D. Chan, W. G. Cole та J. F. Bateman. "Changes in collagen stability and folding in lethal perinatal osteogenesis imperfecta. The effect of α1(I)-chain glycine-to-arginine substitutions". Biochemical Journal 261, № 1 (1989): 253–57. http://dx.doi.org/10.1042/bj2610253.

Full text
Abstract:
The effect of glycine-to-arginine mutations in the alpha 1 (I)-chain on collagen triple-helix structure in lethal perinatal osteogenesis imperfecta was studied by determination of the helix denaturation temperature and by computerized molecular modelling. Arginine substitutions at glycine residues 391 and 667 resulted in similar small decreases in helix stability. Molecular modelling suggested that the glycine-to-arginine-391 mutant resulted in only a relatively small localized disruption to the helix structure. Thus the glycine-to-arginine substitutions may lead to only a small structural abn
APA, Harvard, Vancouver, ISO, and other styles
9

Kubyshkin, Vladimir, and Nediljko Budisa. "Promotion of the collagen triple helix in a hydrophobic environment." Organic & Biomolecular Chemistry 17, no. 9 (2019): 2502–7. http://dx.doi.org/10.1039/c9ob00070d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mizuno, Kazunori, Toshihiko Hayashi, David H. Peyton, and Hans Peter Bächinger. "Hydroxylation-induced Stabilization of the Collagen Triple Helix." Journal of Biological Chemistry 279, no. 36 (2004): 38072–78. http://dx.doi.org/10.1074/jbc.m402953200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Carbamylation of the collagen triple helix"

1

Msoili, Zara. "DYNAMYC : DécrYptage Numérique de processus de vieillissement biologique : Application à la carbaMYlation de la triple hélice des Collagènes." Electronic Thesis or Diss., Reims, 2024. http://www.theses.fr/2024REIMS048.

Full text
Abstract:
La population mondiale vieillit de plus en plus ; ainsi les problématiques de compréhension des mécanismes du vieillissement sont devenus une priorité pour l’OMS.La matrice extracellulaire (MEC) joue un rôle clé encore peu connu dans le vieillissement, et ce en raison de son architecture 3D complexe et de sa composition qui inclut des protéines de grandes tailles tels les collagènes. Ces derniers sont des composants clés de l'intégrité, de la structure et des propriétés physico-chimiques de la MEC puisqu’ils forment des assemblages supramoléculaires qui contribuent à l’architecture des tissus.
APA, Harvard, Vancouver, ISO, and other styles
2

鄭隆峰 and Lung-fung Cheng. "Modelling and sequence analysis of the collagen triple helix." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31969914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cheng, Lung-fung. "Modelling and sequence analysis of the collagen triple helix." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B2373615X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dai, Nan. "I. Collagen-like polypeptides. II. Helix-turn-helix peptides and turn mimetics." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/28411.

Full text
Abstract:
Collagen is one of the most important and abundant proteins in mammals. It consists of three left-handed PPII helixes coiled along a common axis to form a very compact right-handed super helix. The primary structure is shown to be (Gly-Xaa-Yaa)n repeats with high content of prolyl residues at both Xaa and Yaa positions. <i>Cis-trans</i> isomerization of the prolyl amide bonds is one of the rate-limiting steps during collagen triple helix folding. The conformationally locked alkene isosteres Fmoc-Gly-Ψ[(E)CH=C]-Pro-Hyp(tBu)-OH and Fmoc-Pro-Ψ[(E)CH=C]-Pro-OH were designed and synthesized. The s
APA, Harvard, Vancouver, ISO, and other styles
5

Ip, Wency Wan Sze. "Collagen triple helix repeat containing 1 increases melanoma cell migration, adhesion and survival through modulation of the actin cytoskeleton." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/8929.

Full text
Abstract:
Background: Collagen Triple Helix Repeat Containing 1 (CTHRC1) is a recently discovered extracellular protein that can bind and activate Wnt signaling pathway. In previous gene expression profiling experiments, it was found to be aberrantly upregulated in metastatic melanoma and its expression level was correlated with melanoma progression and metastasis. Objective: The purpose of this study is to understand the functional impact of CTHRC1 on cancer using melanoma cell lines as a model. Experimental Methods: We transfected two melanoma cell lines, MMAN and MMRU, with plasmid vectors t
APA, Harvard, Vancouver, ISO, and other styles
6

Rahgoshay, Keyvan. "Incorporation de prolines et pseudoprolines fluorées dans des chaînes peptidiques, conséquences conformationnelles et applications." Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1037.

Full text
Abstract:
Cette thèse porte sur la synthèse d’analogues fluorés de mimes de collagène synthétique et sur l’étude de leurs caractéristiques thermodynamiques, cinétiques et structurales. Notre laboratoire a récemment mis au point la synthèse d'acides aminés fluorés mimes de la proline (pseudoprolines). Dans un premier temps, une étude préliminaire a été effectuée sur des triplets monomériques modèles afin de confirmer l'aptitude de nos mimes fluorés à stabiliser les conformations pré-requises pour la structuration en triple hélice du collagène. Une fois celles-ci confirmées, nous avons ensuite mis au poin
APA, Harvard, Vancouver, ISO, and other styles
7

Lalande, Mathieu. "Processus induits par l'irradiation de modèles peptidiques de la triple hélice du collagène en phase gazeuse." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC235/document.

Full text
Abstract:
Le collagène est la protéine la plus abondante dans les mammifères, et le constituant principal de la matrice extracellulaire du cartilage. Les propriétés mécaniques de ce tissu sont dues à la structure particulière du collagène : la triple hélice. Lors de cette thèse, nous nous sommes intéressés à des peptides modèles de la triple hélice du collagène en phase gazeuse, ce qui permet l’étude de leurs propriétés intrinsèques, dont les processus fondamentaux induits par des rayonnements ionisants. Une étude structurale de ces systèmes par spectrométrie de mobilité ionique a permis de s’assurer qu
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Chia-Ching, та 陳佳青. "Study of Cation-π interactions in the stability and self-assembly of collagen triple helix". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/50835071376218003030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Elfert, Susanne Claudia [Verfasser]. "Correlation between triple helix stability of collagen VII and skin fragility in dystrophic epidermolysis bullosa / vorgelegt von Susanne Claudia Elfert." 2009. http://d-nb.info/993806457/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jenkins, Cara Lee. "Insights into the determinants of collagen triple helix stability : II. inhibition of RNase A by analogs of 3-prime-uridinemonophosphate /." 2004. http://www.library.wisc.edu/databases/connect/dissertations.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Carbamylation of the collagen triple helix"

1

Engel, Jürgen, and Hans Peter Bächinger. "Structure, Stability and Folding of the Collagen Triple Helix." In Topics in Current Chemistry. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b103818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chow, Wing Ying. "Investigation of Triple-Helix Collagen Hydroxylation by Solid-State NMR Spectroscopy." In Methods in Molecular Biology. Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9095-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shoulders, Matthew D., and Ronald T. Raines. "Modulating Collagen Triple-Helix Stability with 4-Chloro, 4-Fluoro, and 4-Methylprolines." In Advances in Experimental Medicine and Biology. Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-73657-0_115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kusebauch, Ulrike, Lisa Lorenz, Sergio A. Cadamuro, et al. "Light-Switchable Folding/Unfolding of the Collagen Triple Helix with Azobenzene-Containing Model Peptides." In Advances in Experimental Medicine and Biology. Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-73657-0_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rump, Erik T., Dirk T. S. Rijkers, Philip G. de Groot, and Rob M. J. Liskamp. "Stabilization of the Triple Helix of Collagen Peptides Using Fluoroproline and/or Triacid Scaffolds." In Peptides: The Wave of the Future. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0464-0_175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kaur, Prerna, Hanying Bai, and Hiroshi Matsui. "Genetically Modified Collagen-like Triple Helix Peptide as Biomimetic Template THIS CHAPTER HAS BEEN RETRACTED." In Hybrid Nanomaterials. John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118003497.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Yujia. "Thermal Stability of Collagen Triple Helix." In Methods in Enzymology. Elsevier, 2009. http://dx.doi.org/10.1016/s0076-6879(09)66009-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brodsky, Barbara, and Anton V. Persikov. "Molecular Structure of the Collagen Triple Helix." In Fibrous Proteins: Coiled-Coils, Collagen and Elastomers. Elsevier, 2005. http://dx.doi.org/10.1016/s0065-3233(05)70009-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Premachandra, Jagath K., and Chandima Kumudinie Jayasuriya. "Collagen." In Polymer Data Handbook. Oxford University PressNew York, NY, 2009. http://dx.doi.org/10.1093/oso/9780195181012.003.0018.

Full text
Abstract:
Abstract Class Polypeptides and proteins Structure The most common type of collagen, Collagen I, is composed of two kinds of polypeptide helices, α1 and α2, in a 2:1 ratio respectively, to form a triple helix. The α1 and α2 chains of tropocollagen have a regularly repeating sequence of amino acid residues in which glycine is found at every third residue. This sequence can be written (GLY–X–Y)n , where X and Y are often proline and hydroxyproline respectively.(1) Functions An extracellular protein, which is responsible for the strength and flexibility of connective tissue. Accounts for 25–30% o
APA, Harvard, Vancouver, ISO, and other styles
10

"Collagen and Skin Structure." In Tanning Chemistry: The Science of Leather, 2nd ed. The Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788012041-00001.

Full text
Abstract:
In order to understand the principles that underpin the conversion of hide or skin to leather, it is necessary to know the fundamental structure of the raw material and how that structure might be modified chemically. The chemistry of collagen defines not only the sequencing of its amino acid constituents but also the physical nature of its structure and how it creates levels of structure or a hierarchy. This depends on the chains creating a triple helix as the basic unit of structure. The chemical properties of collagen are defined by the sidechains on the helices, which may be charged, depen
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Carbamylation of the collagen triple helix"

1

Deniset-Besseau, A., P. De Sa Peixoto, J. Duboisset, et al. "Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals." In BiOS, edited by Ammasi Periasamy, Peter T. C. So, and Karsten König. SPIE, 2010. http://dx.doi.org/10.1117/12.840873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wyatt, Karla E. K., Jonathan W. Bourne, and Peter A. Torzilli. "Deformation-Dependent Enzyme Cleavage of Collagen." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176502.

Full text
Abstract:
Collagen degradation is a mechanism for normal musculoskeletal development and extracellular matrix (ECM) maintenance, and in response to trauma, disease and inflammation. Matrix metalloproteinases (MMP-1, 8, and 13, the collagenases) are the primary enzymes that act to degrade collagen. These MMPs gain access to the collagen triple helix by binding to the enzyme’s attachment domain along the α-chains, followed by separation (unwinding) of the α-chains to expose the 3/4–1/4 cleavage site, and then cleavage of the α-chain by the enzyme’s catalytic domain [3, 5].
APA, Harvard, Vancouver, ISO, and other styles
3

Deniset-Besseau, A., J. Duboisset, C. Loison, et al. "Second order hyperpolarizability of the collagen triple helix: Measurement and determination of its physical origin." In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5194760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rawal, Atul, Kristen L. Rhinehardt, and Ram V. Mohan. "Mechanical Behavior of Collagen Mimetic Peptides Under Fraying Deformation via Molecular Dynamics." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11492.

Full text
Abstract:
Abstract Collagen is a pervasive, triple helical, extracellular matrix (ECM) protein, found in human body from skin and bones to blood vessels and lungs, making it biocompatible, biodegradable, capable of cell attachment, and relevant for applications in bio-polymers, tissue engineering and a plethora of other bio-medical fields. Natural collagen’s extraction from natural sources is time consuming, sometimes costly, and it is difficult to render, and could present undesired biological and pathogenic changes. Nanoscale collagen mimetic peptides (Synthetic Collagen), without the unwanted biologi
APA, Harvard, Vancouver, ISO, and other styles
5

Zareian, Ramin, Kelli P. Church, and Jeffrey W. Ruberti. "Influence of Mechanical Load on the Degradation of Corneal Collagen." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193036.

Full text
Abstract:
Collagen is one of the most important structural proteins in vertebrate animals. Over 25 different types of collagen have been identified, but type I collagen is the most abundant fibril forming collagen and contributes to the structural performance numerous connective tissues including ligaments, tendons and cornea [1]. In addition to collagen self-assembly, collagen degradation is an important step in the development, remodeling, homeostasis and pathology of load-bearing ECM. Matrix Metalloproteinase (MMP) types I and VIII, bacterial collagenase and cathepsin are the best known enzymes capab
APA, Harvard, Vancouver, ISO, and other styles
6

Taylor, Phillip. "Computational design of collagen-like-peptides (CLP) for desired CLP triple helix melting transition and assembled structure." In Proposed for presentation at the 2022 CINT Annual User Conference held September 20-22, 2022 in Albuquerque , NM. US DOE, 2022. http://dx.doi.org/10.2172/2004798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rahgoshay, Keyvan, Anas Terrien, Nathalie Lensen, Thierry Brigaud, Emeric Miclet, and Grégory Chaume. "Use of Trifluoromethylated Pseudoprolines for the Design of Collagen Triple Helix containing Unusual C(5)-Substituted Proline Surrogates." In 35th European Peptide Symposium. Prompt Scientific Publishing, 2018. http://dx.doi.org/10.17952/35eps.2018.206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Swickrath, Michael J., Kevin Dorfman, Yoav Segal, and Victor H. Barocas. "The Effect of Composition and Inter- and Intrafibrillar Interactions on the Structure of Collagen IV Networks in the Computer-Simulated Glomerular Basement Membrane." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-205518.

Full text
Abstract:
The glomerular basement membrane of the kidney, responsible for performing ultrafiltration blood plasma, is largely comprised of type-IV collagen and laminin. Type-IV collagen self-assembles into a heterotrimer composed of three distinct domains (fig. 1A): (1) the globular non-collagenous NCl domain of ∼10 nm in diameter, (2) the non-collagenous 7S domain ∼30 nm in length and ∼3nm in diameter, and (3) the collagenous triple helix of ∼370 nm in length and ∼3 nm in diameter composed of a repeating Gly-X-Y subunit [1]. The heterotrimers associate with remarkable specificity from six genetically d
APA, Harvard, Vancouver, ISO, and other styles
9

Sun-Hee, Leem, Kang Tae-Hong, Chung Jin Woong, Hwang Yeonsil, Kim Seokho, and Koh Sang Seok. "Abstract A85: Collagen triple helix repeat containing-1 enhances the aggressiveness of pancreatic tumor by increased cancer cell motility and adhesiveness." In Abstracts: AACR Special Conference on Pancreatic Cancer: Innovations in Research and Treatment; May 18-21, 2014; New Orleans, LA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.panca2014-a85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cezo, James D., Nicholas Anderson, Eric Kramer, Kenneth D. Taylor, Mark E. Rentschler, and Virginia L. Ferguson. "Tissue Hydration Influences Bursting Pressure of Fused Arteries." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14724.

Full text
Abstract:
Tissue fusion is a complex thermally driven reaction which, through the application of heat and pressure, bonds the extracellular matrix (ECM) of neighboring tissues together. While the mechanism of this reaction is unknown, several theories do exist. Collagen is largely thought to be responsible for the formation of the fusion bond [1–3]. During tissue fusion, as the tissue temperature is elevated (&gt; 100 °C) [4–5], collagen denatures and water is forcibly evaporated out of the tissue [6–11]. Collagen in arterial tissue is comprised of a tightly wound triple helix held in place by crosslink
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!