Journal articles on the topic 'Carbon Capture Processes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Carbon Capture Processes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wall, Terry F. "Combustion processes for carbon capture." Proceedings of the Combustion Institute 31, no. 1 (2007): 31–47. http://dx.doi.org/10.1016/j.proci.2006.08.123.
Full textAgrawal, Aatish Dhiraj. "Carbon Capture and Storage." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (2021): 1891–94. http://dx.doi.org/10.22214/ijraset.2021.38294.
Full textBenson, Sally M., and Franklin M. Orr. "Carbon Dioxide Capture and Storage." MRS Bulletin 33, no. 4 (2008): 303–5. http://dx.doi.org/10.1557/mrs2008.63.
Full textHan, Yang, and W. S. Winston Ho. "Moving beyond 90% Carbon Capture by Highly Selective Membrane Processes." Membranes 12, no. 4 (2022): 399. http://dx.doi.org/10.3390/membranes12040399.
Full textJones, Christopher W, and Edward J Maginn. "Materials and Processes for Carbon Capture and Sequestration." ChemSusChem 3, no. 8 (2010): 863–64. http://dx.doi.org/10.1002/cssc.201000235.
Full textRitchie, Sean. "Atmospheric carbon capture." Boolean 2022 VI, no. 1 (2022): 191–96. http://dx.doi.org/10.33178/boolean.2022.1.31.
Full textMaitland, G. C. "Carbon Capture and Storage: concluding remarks." Faraday Discussions 192 (2016): 581–99. http://dx.doi.org/10.1039/c6fd00182c.
Full textAndreoli, Enrico. "Materials and Processes for Carbon Dioxide Capture and Utilisation." C 3, no. 4 (2017): 16. http://dx.doi.org/10.3390/c3020016.
Full textNimmanterdwong, Prathana, Benjapon Chalermsinsuwan, and Pornpote Piumsomboon. "Emergy analysis of three alternative carbon dioxide capture processes." Energy 128 (June 2017): 101–8. http://dx.doi.org/10.1016/j.energy.2017.03.154.
Full textDella Moretta, Davide, and Jonathan Craig. "Carbon capture and storage (CCS)." EPJ Web of Conferences 268 (2022): 00005. http://dx.doi.org/10.1051/epjconf/202226800005.
Full textAhmed, Abu Saleh, Md Rezaur Rahman, and Muhammad Khusairy Bin Bakri. "A Review Based on Low- and High-Stream Global Carbon Capture and Storage (CCS) Technology and Implementation Strategy." Journal of Applied Science & Process Engineering 8, no. 1 (2021): 722–37. http://dx.doi.org/10.33736/jaspe.3157.2021.
Full textLiu, Lei, Chang-Ce Ke, Tian-Yi Ma, and Yun-Pei Zhu. "When Carbon Meets CO2: Functional Carbon Nanostructures for CO2 Utilization." Journal of Nanoscience and Nanotechnology 19, no. 6 (2019): 3148–61. http://dx.doi.org/10.1166/jnn.2019.16590.
Full textDowson, G. R. M., I. Dimitriou, R. E. Owen, D. G. Reed, R. W. K. Allen, and P. Styring. "Kinetic and economic analysis of reactive capture of dilute carbon dioxide with Grignard reagents." Faraday Discussions 183 (2015): 47–65. http://dx.doi.org/10.1039/c5fd00049a.
Full textFavre, Eric. "Membrane processes and postcombustion carbon dioxide capture: Challenges and prospects." Chemical Engineering Journal 171, no. 3 (2011): 782–93. http://dx.doi.org/10.1016/j.cej.2011.01.010.
Full textD'Alessandro, Deanna M., and Thomas McDonald. "Toward carbon dioxide capture using nanoporous materials." Pure and Applied Chemistry 83, no. 1 (2010): 57–66. http://dx.doi.org/10.1351/pac-con-10-09-18.
Full textOrr, Franklin M. "Carbon Capture, Utilization, and Storage: An Update." SPE Journal 23, no. 06 (2018): 2444–55. http://dx.doi.org/10.2118/194190-pa.
Full textPeres, Christiano B., Pedro M. R. Resende, Leonel J. R. Nunes, and Leandro C. de Morais. "Advances in Carbon Capture and Use (CCU) Technologies: A Comprehensive Review and CO2 Mitigation Potential Analysis." Clean Technologies 4, no. 4 (2022): 1193–207. http://dx.doi.org/10.3390/cleantechnol4040073.
Full textHandogo, Renanto. "Carbon Capture and Storage System Using Pinch Design Method." MATEC Web of Conferences 156 (2018): 03005. http://dx.doi.org/10.1051/matecconf/201815603005.
Full textCapocelli, Mauro, and Marcello De Falco. "Generalized penalties and standard efficiencies of carbon capture and storage processes." International Journal of Energy Research 46, no. 4 (2021): 4808–24. http://dx.doi.org/10.1002/er.7474.
Full textKuramochi, Takeshi, Andrea Ramírez, Wim Turkenburg, and André Faaij. "Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes." Progress in Energy and Combustion Science 38, no. 1 (2012): 87–112. http://dx.doi.org/10.1016/j.pecs.2011.05.001.
Full textTan, Yuting, Worrada Nookuea, Hailong Li, Eva Thorin, and Jinyue Yan. "Property impacts on Carbon Capture and Storage (CCS) processes: A review." Energy Conversion and Management 118 (June 2016): 204–22. http://dx.doi.org/10.1016/j.enconman.2016.03.079.
Full textBOUNACEUR, R., N. LAPE, D. ROIZARD, C. VALLIERES, and E. FAVRE. "Membrane processes for post-combustion carbon dioxide capture: A parametric study." Energy 31, no. 14 (2006): 2556–70. http://dx.doi.org/10.1016/j.energy.2005.10.038.
Full textXiao, Penny, Simon Wilson, Gongkui Xiao, Ranjeet Singh, and Paul Webley. "Novel adsorption processes for carbon dioxide capture within a IGCC process." Energy Procedia 1, no. 1 (2009): 631–38. http://dx.doi.org/10.1016/j.egypro.2009.01.083.
Full textBelaissaoui, B., D. Willson, and E. Favre. "Post–combustion Carbon Dioxide Capture using Membrane Processes: A Sensitivity Analysis." Procedia Engineering 44 (2012): 1191–95. http://dx.doi.org/10.1016/j.proeng.2012.08.721.
Full textYong, Joel K. J., Geoff W. Stevens, Frank Caruso, and Sandra E. Kentish. "The use of carbonic anhydrase to accelerate carbon dioxide capture processes." Journal of Chemical Technology & Biotechnology 90, no. 1 (2014): 3–10. http://dx.doi.org/10.1002/jctb.4502.
Full textAresta, Michele, Angela Dibenedetto, and Antonella Angelini. "The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1996 (2013): 20120111. http://dx.doi.org/10.1098/rsta.2012.0111.
Full textFavre, Eric. "Membrane Separation Processes and Post-Combustion Carbon Capture: State of the Art and Prospects." Membranes 12, no. 9 (2022): 884. http://dx.doi.org/10.3390/membranes12090884.
Full textAgarwal, Naimish. "Carbon Capture and Sequestration: A comprehensive Review." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (2021): 578–94. http://dx.doi.org/10.22214/ijraset.2021.37993.
Full textRegufe, Maria João, Ana Pereira, Alexandre F. P. Ferreira, Ana Mafalda Ribeiro, and Alírio E. Rodrigues. "Current Developments of Carbon Capture Storage and/or Utilization–Looking for Net-Zero Emissions Defined in the Paris Agreement." Energies 14, no. 9 (2021): 2406. http://dx.doi.org/10.3390/en14092406.
Full textCarpenter, Chris. "Study Reviews Carbon-Capture Methods in Steelmaking Plants." Journal of Petroleum Technology 74, no. 07 (2022): 81–83. http://dx.doi.org/10.2118/0722-0081-jpt.
Full textLi, Angze, and Yiran Li. "Carbon Dioxide Capture in Metal-Organic Framework." Highlights in Science, Engineering and Technology 6 (July 27, 2022): 136–45. http://dx.doi.org/10.54097/hset.v6i.955.
Full textKhdary, Nezar H., Alhanouf S. Alayyar, Latifah M. Alsarhan, Saeed Alshihri, and Mohamed Mokhtar. "Metal Oxides as Catalyst/Supporter for CO2 Capture and Conversion, Review." Catalysts 12, no. 3 (2022): 300. http://dx.doi.org/10.3390/catal12030300.
Full textHaddad Haddad and Montero-Martínez. "The ‘Carbon Capture’ Metaphor: An English-Arabic Terminological Case Study." Languages 4, no. 4 (2019): 77. http://dx.doi.org/10.3390/languages4040077.
Full textFull, Johannes, Steffen Merseburg, Robert Miehe, and Alexander Sauer. "A New Perspective for Climate Change Mitigation—Introducing Carbon-Negative Hydrogen Production from Biomass with Carbon Capture and Storage (HyBECCS)." Sustainability 13, no. 7 (2021): 4026. http://dx.doi.org/10.3390/su13074026.
Full textSeo, Kyeongjun, Calvin Tsay, Thomas F. Edgar, Mark A. Stadtherr, and Michael Baldea. "Economic Optimization of Carbon Capture Processes Using Ionic Liquids: Toward Flexibility in Capture Rate and Feed Composition." ACS Sustainable Chemistry & Engineering 9, no. 13 (2021): 4823–39. http://dx.doi.org/10.1021/acssuschemeng.1c00066.
Full textMostafavi, Ehsan, Omid Ashrafi, and Philippe Navarri. "Assessment of process modifications for amine-based post-combustion carbon capture processes." Cleaner Engineering and Technology 4 (October 2021): 100249. http://dx.doi.org/10.1016/j.clet.2021.100249.
Full textWilcox, Jennifer, Reza Haghpanah, Erik C. Rupp, Jiajun He, and Kyoungjin Lee. "Advancing Adsorption and Membrane Separation Processes for the Gigaton Carbon Capture Challenge." Annual Review of Chemical and Biomolecular Engineering 5, no. 1 (2014): 479–505. http://dx.doi.org/10.1146/annurev-chembioeng-060713-040100.
Full textMaia, J. L. P., and M. T. L. De Barros. "Equivalent Carbon Dioxide Capture and Storage Processes in Offshore Petroleum Production Facilities." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32, no. 2 (2009): 180–88. http://dx.doi.org/10.1080/15567030802467571.
Full textWelch, Alex J., Emily Dunn, Joseph S. DuChene, and Harry A. Atwater. "Bicarbonate or Carbonate Processes for Coupling Carbon Dioxide Capture and Electrochemical Conversion." ACS Energy Letters 5, no. 3 (2020): 940–45. http://dx.doi.org/10.1021/acsenergylett.0c00234.
Full textGao, Wanlin, Tuantuan Zhou, Yanshan Gao, and Qiang Wang. "Enhanced water gas shift processes for carbon dioxide capture and hydrogen production." Applied Energy 254 (November 2019): 113700. http://dx.doi.org/10.1016/j.apenergy.2019.113700.
Full textLi, Ziang, Zhengtao Ding, Meihong Wang, and Eni Oko. "Model-free adaptive control for MEA-based post-combustion carbon capture processes." Fuel 224 (July 2018): 637–43. http://dx.doi.org/10.1016/j.fuel.2018.03.096.
Full textHerslund, Peter Jørgensen, Kaj Thomsen, Jens Abildskov, and Nicolas von Solms. "Modelling of tetrahydrofuran promoted gas hydrate systems for carbon dioxide capture processes." Fluid Phase Equilibria 375 (August 2014): 45–65. http://dx.doi.org/10.1016/j.fluid.2014.04.031.
Full textHerslund, Peter Jørgensen, Kaj Thomsen, Jens Abildskov, and Nicolas von Solms. "Modelling of cyclopentane promoted gas hydrate systems for carbon dioxide capture processes." Fluid Phase Equilibria 375 (August 2014): 89–103. http://dx.doi.org/10.1016/j.fluid.2014.04.039.
Full textHasan, Md Shamim, and Md Mahmud. "Atmospheric CO2 Capture by Microalgae Culturing: A Critical Review." GUB Journal of Science and Engineering 8, no. 1 (2022): 29–35. http://dx.doi.org/10.3329/gubjse.v8i1.62329.
Full textPires, José, and Ana Gonçalves. "Special Issue on Carbon Capture and Utilization." Applied Sciences 13, no. 2 (2023): 725. http://dx.doi.org/10.3390/app13020725.
Full textRillig, Matthias C., Eva Leifheit, and Johannes Lehmann. "Microplastic effects on carbon cycling processes in soils." PLOS Biology 19, no. 3 (2021): e3001130. http://dx.doi.org/10.1371/journal.pbio.3001130.
Full textJackson, Steven, and Eivind Brodal. "Optimization of the Energy Consumption of a Carbon Capture and Sequestration Related Carbon Dioxide Compression Processes." Energies 12, no. 9 (2019): 1603. http://dx.doi.org/10.3390/en12091603.
Full textAlnouri, Sabla Y., and Dhabia M. Al-Mohannadi. "Exploring Tradeoffs in Merged Pipeline Infrastructure for Carbon Dioxide Integration Networks." Sustainability 12, no. 7 (2020): 2678. http://dx.doi.org/10.3390/su12072678.
Full textLeonzio, Grazia, Paul S. Fennell, and Nilay Shah. "Analysis of Technologies for Carbon Dioxide Capture from the Air." Applied Sciences 12, no. 16 (2022): 8321. http://dx.doi.org/10.3390/app12168321.
Full textJiang, Haixin, Xianchun Tang, Yexuan Wen, Yi He, and Hongbin Chen. "Carbon capture for blackwater: chemical enhanced high-rate activated sludge process." Water Science and Technology 80, no. 8 (2019): 1494–504. http://dx.doi.org/10.2166/wst.2019.400.
Full text