Academic literature on the topic 'Carbon dioxide'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbon dioxide.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Carbon dioxide"
Zolotareva, O. K. "BIOCATALYTIC CARBON DIOXIDE CAPTURE PROMOTED BY CARBONIC ANHYDRASE." Biotechnologia Acta 16, no. 5 (October 31, 2023): 5–21. http://dx.doi.org/10.15407/biotech16.05.005.
Full textPimpare, Dr Meena M. "Correlation between End-Tidal Carbon Dioxide Pressure and Arterial Carbon Dioxide Partial Pressure in Patients Undergoing Craniotomy." Journal of Medical Science And clinical Research 05, no. 03 (March 7, 2017): 18525–33. http://dx.doi.org/10.18535/jmscr/v5i3.43.
Full textNAKAGAWA, Kameichiro. "Compacting Carbon Dioxide : Carbon Dioxide Geological Storage." Journal of the Society of Mechanical Engineers 113, no. 1099 (2010): 412–13. http://dx.doi.org/10.1299/jsmemag.113.1099_412.
Full textS, Damdinsuren, and Ariuntuya N. "Changes in the Concentration of Carbon Dioxide in the Air." Физик сэтгүүл 23, no. 455 (March 15, 2022): 1–4. http://dx.doi.org/10.22353/physics.v23i455.758.
Full text&NA;. "Carbon dioxide." Reactions Weekly &NA;, no. 1386 (January 2012): 14. http://dx.doi.org/10.2165/00128415-201213860-00046.
Full text&NA;. "Carbon dioxide." Reactions Weekly &NA;, no. 1311 (July 2010): 18. http://dx.doi.org/10.2165/00128415-201013110-00061.
Full text&NA;. "Carbon dioxide." Reactions Weekly &NA;, no. 1342 (March 2011): 11. http://dx.doi.org/10.2165/00128415-201113420-00036.
Full text&NA;. "Carbon dioxide." Reactions Weekly &NA;, no. 1347 (April 2011): 15–16. http://dx.doi.org/10.2165/00128415-201113470-00044.
Full textBenarie, Michel. "Carbon dioxide." Science of The Total Environment 41, no. 2 (February 1985): 199–201. http://dx.doi.org/10.1016/0048-9697(85)90193-7.
Full textGünel, Gökçe. "What Is Carbon Dioxide? When Is Carbon Dioxide?" PoLAR: Political and Legal Anthropology Review 39, no. 1 (May 2016): 33–45. http://dx.doi.org/10.1111/plar.12129.
Full textDissertations / Theses on the topic "Carbon dioxide"
Ferrufino, Gretta Larisa Aurora Arce [UNESP]. "Uma modelagem de sequestro e armazenamento de dióxido de carbono atmosférico." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/99319.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O dióxido de carbono (CO2) é um importante gás de efeito estufa. No entanto, um aumento gradual ameaça substancialmente o clima. Um dos principais desafios do planejamento ambiental é identificar um modelo que vincule todos os fatores do ciclo de carbono, ou seja, oceano – ecossistema terrestre – emissão antropogênica – atmosfera. Princípios básicos de Termodinâmica podem ser aplicados em uma modelagem estatística com bases em séries históricas para obter concentrações de CO2 na atmosfera, possibilitando a construção de cenários para uma melhor tomada de decisões. Por este motivo, foi desenvolvido no trabalho um modelo que interliga todos os fatores do ciclo de carbono, focalizando em quatro zonas térmicas ou climáticas (Boreal, Temperada, Tropical, Polar), para cálculos de armazenamento de CO2 atmosférico. Os resultados mostram que no ano 2100 se atingirá uma concentração de CO2 quatro vezes maior do que antes do período pré-industrial. A zona temperada emite quase a metade de dióxido de carbono à atmosfera na atualidade; para o ano 2100, essa emissão aumentará a quinze vezes mais que a zona tropical. A China será responsável em uma proporção de vinte quatro a onze com relação aos Estados Unidos. A estabilização das concentrações de CO2 na atmosfera será obtida quando as emissões de dióxido de carbono antropogênico tiverem uma diminuição de mais do que trinta e quatro por cento para o ano 2100 na zona temperada.
Carbon dioxide (CO2) is the most important greenhouse gas. A gradual increase on its atmospheric concentration threatens significantly the climate. One of the main challenges of environment planning is to identify a model that connects all factors that determine the carbon cycle, that is, ocean – terrestrial ecosystem – anthropogenic emissions – atmosphere. Basic thermodynamic principles can be applied in a statistical modeling with historic time series to obtain atmospheric CO2 concentration, creating the possibility of construction of scenarios that will help decision making. A model that links all carbon cycle factors was developed in this dissertation work, focusing in four thermal of climatic zones (Boreal, Temperate, Tropical, and Polar) for calculations of atmospheric CO2 storage. Results show that in 2100, the atmospheric CO2 concentration will reach a value four times higher than that of the pre-industrial period. The temperate zone already emits almost half of the carbon dioxide to the atmosphere; by 2100, this emission will increase 15 times more than that corresponding to the tropical zone. China will be responsible for emissions in a proportion of 24 to 11 in comparison to that of the United States. Stabilization of CO2 concentrations in the atmosphere will be obtained when the anthropogenic carbon dioxide emissions attain a decrease of at least 34% in 2100 in the temperate zone.
Ferrufino, Gretta Larisa Aurora Arce. "Uma modelagem de sequestro e armazenamento de dióxido de carbono atmosférico /." Guaratinguetá : [s.n.], 2009. http://hdl.handle.net/11449/99319.
Full textAbstract: Carbon dioxide (CO2) is the most important greenhouse gas. A gradual increase on its atmospheric concentration threatens significantly the climate. One of the main challenges of environment planning is to identify a model that connects all factors that determine the carbon cycle, that is, ocean - terrestrial ecosystem - anthropogenic emissions - atmosphere. Basic thermodynamic principles can be applied in a statistical modeling with historic time series to obtain atmospheric CO2 concentration, creating the possibility of construction of scenarios that will help decision making. A model that links all carbon cycle factors was developed in this dissertation work, focusing in four thermal of climatic zones (Boreal, Temperate, Tropical, and Polar) for calculations of atmospheric CO2 storage. Results show that in 2100, the atmospheric CO2 concentration will reach a value four times higher than that of the pre-industrial period. The temperate zone already emits almost half of the carbon dioxide to the atmosphere; by 2100, this emission will increase 15 times more than that corresponding to the tropical zone. China will be responsible for emissions in a proportion of 24 to 11 in comparison to that of the United States. Stabilization of CO2 concentrations in the atmosphere will be obtained when the anthropogenic carbon dioxide emissions attain a decrease of at least 34% in 2100 in the temperate zone.
Orientador: João Andrade de Carvalho Junior
Coorientador: Luiz Fernando Costa Nascimento
Banca: José Antonio Perrella Balestieri
Banca: Maria Paulete Pereira Martins Jorge
Mestre
Jankhah, Sepideh. "Reformage de l'éthanol au dioxyde de carbone Ethanol reforming with carbon dioxide /." [S.l. : s.n.], 2007.
Find full textSirokman, Gergely. "(N-heterocyclic-carbene)Copper(I)-catalyzed carbon-carbon bond formation using carbon dioxide." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39584.
Full textVita.
Includes bibliographical references.
This thesis presents work towards the development of a new catalytic C-C bond forming reaction. Alkynes and olefins insert into [(IPr)CuH]2 (IPr = N,N-bis-(2,6-diisopropylphenyl)-1,3-imidazol-2-ylidene) to give copper vinyl and copper alkyl complexes. These copper complexes insert CO2 into the Cu-C bond to form copper acrylate and copper carboxylate complexes. Acrylic and carboxylic acids can be isolated by hydrolysis. A catalytic cycle based on (IPr)copper(I) was developed. Alkynes undergo reductive carboxylation to give acrylic acids in moderate yields. Unexpected interactions between several components of the catalytic system led to a number of side reaction, most importantly between [(IPr)CuH]2 and the product silyl acrylate. The use of silylcarbonate salts to desylilate the product enhanced yield. In addition, silylcarbonates can also serve as a source of CO2.
by Gergely Sirokman.
Ph.D.
Carney, Kevin. "Supercritical Carbon Dioxide Extraction." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1755.
Full textFerrufino, Gretta Larisa Aurora Arce [UNESP]. "Análise de propostas de sequestro mineral de carbono para usinas termoelétricas no Brasil." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/106453.
Full textAcordos internacionais sobre o aquecimento global têm identificado a urgente necessidade por uma tecnologia que capture e sequestre carbono em grande escala para reduzir as emissões de dióxido de carbono (CO2) antrópico. O sequestro e captura do CO2 por carbonatação mineral (CCSM) é uma tecnologia que tem potencial para reduzir bilhões de toneladas de CO2 por ano. O principal foco deste trabalho foi avaliar o efeito ambiental do requerimento energético relacionada à produção de carbonatos utilizando os minerais silicatos, com a finalidade de sequestrar emissões de CO2 provenientes de usinas termelétricas no Brasil. Esta pesquisa foi realizada mediante o uso do LCA - Life Cycle Assessment (NBR 14040) identificando quatro subsistemas (processos de mineração, transporte do mineral, usina termelétrica e processos de carbonatação mineral) na produção de carbonatos. Consideraram-se dois processos de carbonatação mineral: mediante o ácido clorídrico (HCl) e sais de amônia (NH4HSO4) integrados a dois tipos de usinas termelétricas (carvão e gás natural), adotando quatro cenários nos quais foram avaliados o requerimento energético, emissões de CO2 e os custos envolvidos de cada um deles, as quais utilizaram a matéria prima com maior potencial de carbonatação (mineral silicato). O presente estudo foi estruturado visando responder os seguintes assuntos: (a) O melhor mineral silicato como matéria prima para processo de carbonatação mineral, (b) A quantidade de matéria prima para a sequestro de 1 tonelada de CO2, (c) O requerimento energético do processo de carbonatação mineral para sequestrar 1 tonelada de CO2, (d) A quantidade de CO2 evitada derivada da produção de carbonatos e (e) Comparação do resultado do LCA dos processos de carbonatação mineral considerados no estudo. Os resultados amostram...
International concerns over global warming have identified the urgent need for a technology to capture and sequester carbon in large-scale to reduce anthropic carbon dioxide (CO2) emissions. Carbon dioxide capture and sequestration by mineral carbonation (CCSM) is a technology that can potentially reduce billions of tonnes of CO2 per year. The main focus of this work was to evaluate the environmental effects of energy usage related to carbonate production using mineral silicates in order to sequester CO2 emissions from Brazilian power plants. This investigation was realized using a LCA - Life Cycle Assessment (ISO14040) identified 4 subsystems (mining process, mineral transport, power plant and mineral carbonation process) on carbonate production. Two mineral carbonation processes are considered: using chloride acid (HCl) and ammonium salts (NH4HSO4) applied to two types of power plants (coal and natural gas) with the best feedstock (mineral silicate) supporting four scenarios which evaluate energy requirement, CO2 emissions and costs. This work addresses the following import issues: a) the best mineral silicate used as feedstock for mineral carbonation process, b) the amount of this mineral silicate for sequestration 1 ton CO2, c) the energy requirements of mineral carbonate process to sequester 1 ton of CO2, d) the amount of CO2 avoided derived from carbonate production and e) comparison of LCA results of the two mineral carbonation process. The LCA results shows that the best feedstock to sequester CO2 emissions from power plants in Brazil is serpentinito located in Goiâs state, the mineral carbonation process using ammonium salts is a feasible option for the less energy requirement (0,75 kW/kgCO2SEQ). The amount of CO2 avoided was 0,578 tCO2AVOIDED/tCO2SEQ, this avoided CO2 emissions can be traded as carbon... (Complete abstract click electronic access below)
Ferrufino, Gretta Larisa Aurora Arce. "Análise de propostas de sequestro mineral de carbono para usinas termoelétricas no Brasil /." Guaratinguetá, 2013. http://hdl.handle.net/11449/106453.
Full textBanca: Jose Antonio Perella Balestieri
Banca: Maria Angelica Martins Costa
Banca: Turíbio Gomes Soares Neto
Banca: Christian Jeremi Coronado Rodriguez
Resumo: Acordos internacionais sobre o aquecimento global têm identificado a urgente necessidade por uma tecnologia que capture e sequestre carbono em grande escala para reduzir as emissões de dióxido de carbono (CO2) antrópico. O sequestro e captura do CO2 por carbonatação mineral (CCSM) é uma tecnologia que tem potencial para reduzir bilhões de toneladas de CO2 por ano. O principal foco deste trabalho foi avaliar o efeito ambiental do requerimento energético relacionada à produção de carbonatos utilizando os minerais silicatos, com a finalidade de sequestrar emissões de CO2 provenientes de usinas termelétricas no Brasil. Esta pesquisa foi realizada mediante o uso do LCA - Life Cycle Assessment (NBR 14040) identificando quatro subsistemas (processos de mineração, transporte do mineral, usina termelétrica e processos de carbonatação mineral) na produção de carbonatos. Consideraram-se dois processos de carbonatação mineral: mediante o ácido clorídrico (HCl) e sais de amônia (NH4HSO4) integrados a dois tipos de usinas termelétricas (carvão e gás natural), adotando quatro cenários nos quais foram avaliados o requerimento energético, emissões de CO2 e os custos envolvidos de cada um deles, as quais utilizaram a matéria prima com maior potencial de carbonatação (mineral silicato). O presente estudo foi estruturado visando responder os seguintes assuntos: (a) O melhor mineral silicato como matéria prima para processo de carbonatação mineral, (b) A quantidade de matéria prima para a sequestro de 1 tonelada de CO2, (c) O requerimento energético do processo de carbonatação mineral para sequestrar 1 tonelada de CO2, (d) A quantidade de CO2 evitada derivada da produção de carbonatos e (e) Comparação do resultado do LCA dos processos de carbonatação mineral considerados no estudo. Os resultados amostram... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: International concerns over global warming have identified the urgent need for a technology to capture and sequester carbon in large-scale to reduce anthropic carbon dioxide (CO2) emissions. Carbon dioxide capture and sequestration by mineral carbonation (CCSM) is a technology that can potentially reduce billions of tonnes of CO2 per year. The main focus of this work was to evaluate the environmental effects of energy usage related to carbonate production using mineral silicates in order to sequester CO2 emissions from Brazilian power plants. This investigation was realized using a LCA - Life Cycle Assessment (ISO14040) identified 4 subsystems (mining process, mineral transport, power plant and mineral carbonation process) on carbonate production. Two mineral carbonation processes are considered: using chloride acid (HCl) and ammonium salts (NH4HSO4) applied to two types of power plants (coal and natural gas) with the best feedstock (mineral silicate) supporting four scenarios which evaluate energy requirement, CO2 emissions and costs. This work addresses the following import issues: a) the best mineral silicate used as feedstock for mineral carbonation process, b) the amount of this mineral silicate for sequestration 1 ton CO2, c) the energy requirements of mineral carbonate process to sequester 1 ton of CO2, d) the amount of CO2 avoided derived from carbonate production and e) comparison of LCA results of the two mineral carbonation process. The LCA results shows that the best feedstock to sequester CO2 emissions from power plants in Brazil is serpentinito located in Goiâs state, the mineral carbonation process using ammonium salts is a feasible option for the less energy requirement (0,75 kW/kgCO2SEQ). The amount of CO2 avoided was 0,578 tCO2AVOIDED/tCO2SEQ, this avoided CO2 emissions can be traded as carbon... (Complete abstract click electronic access below)
Doutor
Marszewska, Jowita E. "Development of microporosity in carbons for carbon dioxide adsorption." Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1492043634249216.
Full textBagga, Rajinder S. "Biological sequestration of carbon dioxide." Ohio : Ohio University, 2000. http://www.ohiolink.edu/etd/view.cgi?ohiou1171386594.
Full textSawalha, Samer. "Carbon Dioxide in Supermarket Refrigeration." Doctoral thesis, Stockholm : Energiteknik, Energy Technology, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4753.
Full textBooks on the topic "Carbon dioxide"
Gopalan, Aravamudan S., Chien M. Wai, and Hollie K. Jacobs, eds. Supercritical Carbon Dioxide. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0860.
Full textRobert, Marc, Cyrille Costentin, and Kim Daasbjerg, eds. Carbon Dioxide Electrochemistry. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788015844.
Full textCenti, Gabriele, and Siglinda Perathoner, eds. Green Carbon Dioxide. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118831922.
Full textStan, Cornel. Energy versus Carbon Dioxide. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64162-0.
Full textHashimoto, Koji. Global Carbon Dioxide Recycling. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8584-1.
Full textLu, Xiao-Bing, ed. Carbon Dioxide and Organometallics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22078-9.
Full textAresta, Michele, and Angela Dibenedetto. The Carbon Dioxide Revolution. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59061-1.
Full textBalaban, Murat O., and Giovanna Ferrentino, eds. Dense Phase Carbon Dioxide. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118243350.
Full textBalaban, Murat O., and Giovanna Ferrentino. Dense phase carbon dioxide. Hoboken, N.J: Wiley-Blackwell, 2012.
Find full textSchütze, Michael, Bernd Isecke, and Roman Bender. Corrosion protection against carbon dioxide. Frankfurt: DECHEMA, 2011.
Find full textBook chapters on the topic "Carbon dioxide"
Bährle-Rapp, Marina. "Carbon Dioxide." In Springer Lexikon Kosmetik und Körperpflege, 90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_1661.
Full textMcCollom, Thomas. "Carbon Dioxide." In Encyclopedia of Astrobiology, 239–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1737.
Full textGooch, Jan W. "Carbon Dioxide." In Encyclopedic Dictionary of Polymers, 116. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_1927.
Full textPrice, Debra J. "Carbon Dioxide." In Hamilton & Hardy's Industrial Toxicology, 305–8. Hoboken, New Jersey: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118834015.ch42.
Full textHay, William W. "Carbon Dioxide." In Experimenting on a Small Planet, 474–504. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27404-1_21.
Full textMcCollom, Thomas. "Carbon Dioxide." In Encyclopedia of Astrobiology, 365–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1737.
Full textHay, William W. "Carbon Dioxide." In Experimenting on a Small Planet, 620–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28560-8_20.
Full textBauman, Yoram, and Grady Klein. "Carbon Dioxide." In The Cartoon Introduction to Climate Change, 39–50. Washington, DC: Island Press/Center for Resource Economics, 2014. http://dx.doi.org/10.5822/978-1-61091-570-0_4.
Full textHess-Kosa, Kathleen. "Carbon Dioxide." In Indoor Air Quality, 177–84. Third edition. | Boca Raton : CRC Press/Taylor & Francis, 2019.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315098180-10.
Full textWilley, Neil. "Carbon Dioxide." In Environmental Plant Physiology, 51–76. New York, NY : Garland Science, 2016.: Garland Science, 2018. http://dx.doi.org/10.1201/9781317206231-3.
Full textConference papers on the topic "Carbon dioxide"
De Figueiredo, Mark, Lisa Bacanskas, and Michael Kolian. "Greenhouse Gas Reporting for Geologic Sequestration of Carbon Dioxide." In Carbon Management Technology Conference. Carbon Management Technology Conference, 2012. http://dx.doi.org/10.7122/151426-ms.
Full textLau, Hon Chung, Chaobin Zhao, and Samuel W. Lau. "Coalbed Methane Recovery By Injection of Hot Carbon Dioxide." In Carbon Management Technology Conference. Carbon Management Technology Conference, 2017. http://dx.doi.org/10.7122/485492-ms.
Full textWang, Shuoshi, Mohannad Kadhum, Qingwang Yuan, Bor-Jier Shiau, and Jeffrey H. Harwell. "Carbon Dioxide in Situ Generation for Enhanced Oil Recovery." In Carbon Management Technology Conference. Carbon Management Technology Conference, 2017. http://dx.doi.org/10.7122/486365-ms.
Full textCoelho, Raphael, Maria Barrufet, and Berna Hascakir. "Effect of Impurities in Carbon Dioxide Stream on Phase Behavior for Geological Storage of Carbon Dioxide in Low API Gravity Oil Reservoirs." In Carbon Management Technology Conference. Carbon Management Technology Conference, 2015. http://dx.doi.org/10.7122/439524-ms.
Full textIbrahim, Ahmed Abdullah. "Carbon Dioxide and Carbon Monoxide Level Detector." In 2018 21st International Conference of Computer and Information Technology (ICCIT). IEEE, 2018. http://dx.doi.org/10.1109/iccitechn.2018.8631933.
Full textWattana, P., A. Thivasasith, W. Nunthakitgoson, C. Rodaum, and C. Wattanakit. "Carbon Dioxide Conversion To Advanced Carbon Nanotubes." In ADIPEC. SPE, 2024. http://dx.doi.org/10.2118/222792-ms.
Full textHovorka, Susan. "Monitoring CO2 EOR Projects To Document Storage Permanence." In ACI’s 4th Carbon Dioxide Utilization Conference San Antonio, TX February 2015. US DOE, 2015. http://dx.doi.org/10.2172/1749868.
Full textTsui, K. H. "Room temperature carbon dioxide lasers." In International Conference on Optoelectronic Science and Engineering '90. SPIE, 1990. http://dx.doi.org/10.1117/12.2294749.
Full textBlunt, M., R. Qi, and T. LaForce. "Design of carbon dioxide storage." In BHS 3rd International Conference. British Hydrological Society, 2010. http://dx.doi.org/10.7558/bhs.2010.ic43.
Full textKucerovsky. "Computer controlled carbon dioxide laser." In Proceedings of Canadian Conference on Electrical and Computer Engineering CCECE-94. IEEE, 1994. http://dx.doi.org/10.1109/ccece.1994.405765.
Full textReports on the topic "Carbon dioxide"
Skone, Timothy J. Carbon Dioxide Dehydration. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1509004.
Full textMartin, Olga. Carbon Dioxide Decomposition. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1054236.
Full textTrabalka, J. Atmospheric carbon dioxide and the global carbon cycle. Office of Scientific and Technical Information (OSTI), December 1985. http://dx.doi.org/10.2172/6048470.
Full textKennel, Elliot, and Robert Statnik. Carbon Dioxide Utilization for Plasma Nanosynthesis of Carbon. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1615509.
Full textGerth, Wayne A. Chamber Carbon Dioxide and Ventilation. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada442939.
Full textWagonner, R. C. Carbon Dioxide for pH Control. Office of Scientific and Technical Information (OSTI), August 2001. http://dx.doi.org/10.2172/785010.
Full textK.A.M. Gasem, Jr R.L. Robinson, and L.R. Radovic. SEQUESTERING CARBON DIOXIDE IN COALBEDS. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/812557.
Full textK.A.M. Gasem, Jr R.L. Robinson, and L.R. Radovic. SEQUESTERING CARBON DIOXIDE IN COALBEDS. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/812558.
Full textK.A.M. Gasem, Jr R.L. Robinson, and L.R. Radovic. SEQUESTERING CARBON DIOXIDE IN COALBEDS. Office of Scientific and Technical Information (OSTI), December 2001. http://dx.doi.org/10.2172/812559.
Full textK.A.M. Gasem, Jr R.L. Robinson, and L.R. Radovic. SEQUESTERING CARBON DIOXIDE IN COALBEDS. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/812560.
Full text