Academic literature on the topic 'Carbon dopin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbon dopin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Carbon dopin"
López-Salas, Nieves, María C. Gutiérrez, Conchi O. Ania, José Luís G. Fierro, M. Luisa Ferrer, and Francisco del Monte. "Efficient nitrogen-doping and structural control of hierarchical carbons using unconventional precursors in the form of deep eutectic solvents." J. Mater. Chem. A 2, no. 41 (2014): 17387–99. http://dx.doi.org/10.1039/c4ta03266g.
Full textChen, Xiang, Xiao-Ru Chen, Ting-Zheng Hou, Bo-Quan Li, Xin-Bing Cheng, Rui Zhang, and Qiang Zhang. "Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes." Science Advances 5, no. 2 (February 2019): eaau7728. http://dx.doi.org/10.1126/sciadv.aau7728.
Full textZhao, Chun Xia, Yun Xia Yang, Wen Chen, Paul A. Webley, Xiao Yu Li, Jin Qiao Cao, and Jing Jing Du. "Characterization and Electrochemical Properties of Nitrogen-Doped Ordered Microporous Carbons Containing Well-Dispersed Platinum Nanoparticles." Advanced Materials Research 284-286 (July 2011): 875–79. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.875.
Full textAhiduzzaman, Md, and A. K. M. Sadrul Islam. "PREPARATION OF CONDUCTING CARBON FROM RICE HUSK CHAR." Journal of Mechanical Engineering 43, no. 1 (July 22, 2013): 29–32. http://dx.doi.org/10.3329/jme.v43i1.15776.
Full textMestre, Ana S., and Ana P. Carvalho. "Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac, and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review." Molecules 24, no. 20 (October 15, 2019): 3702. http://dx.doi.org/10.3390/molecules24203702.
Full textZhou, Jin, and Shu Ping Zhuo. "Capacitive Performance of Ordered Mesoporous Carbons in Ionic Liquids." Advanced Materials Research 284-286 (July 2011): 2086–89. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.2086.
Full textPriyono, Slamet. "The Effect of Al2O3 Doped and Carbon Coated Li4Ti5O12 on Structures, Morphology and Electrochemical Performance." Journal of Technomaterials Physics 2, no. 1 (February 28, 2020): 57–62. http://dx.doi.org/10.32734/jotp.v2i1.5266.
Full textLázaro, M. J., C. Alegre, M. J. Nieto-Monge, D. Sebastián, M. E. Gálvez, E. Pastor, and R. Moliner. "Nitrogen Doped and Functionalized Carbon Materials as Supports for Catalysts in Electro-Oxidation of Methanol." Advances in Science and Technology 93 (October 2014): 41–49. http://dx.doi.org/10.4028/www.scientific.net/ast.93.41.
Full textBandosz, Teresa J. "Beyond Adsorption: The Effect of Sulfur Doping on Emerging Applications of Nanoporous Carbons." Eurasian Chemico-Technological Journal 18, no. 4 (February 18, 2017): 233. http://dx.doi.org/10.18321/ectj466.
Full textReis, Glaydson Simões dos, Helinando Pequeno de Oliveira, Sylvia H. Larsson, Mikael Thyrel, and Eder Claudio Lima. "A Short Review on the Electrochemical Performance of Hierarchical and Nitrogen-Doped Activated Biocarbon-Based Electrodes for Supercapacitors." Nanomaterials 11, no. 2 (February 7, 2021): 424. http://dx.doi.org/10.3390/nano11020424.
Full textDissertations / Theses on the topic "Carbon dopin"
Wang, Qingyang. "Fabrication et propriétés physiques de conducteurs multifilamentaires MgB2 dopés au carbone." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00950672.
Full textKleinsorge, Britta Yvonne. "Doping of amorphous carbon." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621744.
Full textRIBEIRO, MARIO LUIS PIRES GONCALVES. "CARBON DOPING IN INAIAS EPITAXIAL LAYERS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=2651@1.
Full textERICSSON DO BRASIL
É reconhecido o potencial de usar carbono como um dopante tipo p em InAlAs devido a obtenção de elevados níveis de dopagem [1,2]. Entretanto, níveis elevados de dopagem só são alcançados em baixas temperaturas de crescimento (Tg inferiores a 600°C). Nessas temperaturas, as camadas crescidas apresentam qualidade ótica inferior quando comparadas com camadas crescidas em temperaturas mais altas, o que é prejudicial para dispositivos de optoeletrônica. Neste trabalho, é apresentada uma investigação sistemática das propriedades de transporte e óticas em camadas de InAlAs dopadas com carbono para diferentes temperaturas de crescimento. É observado que quanto mais baixa for a Tg maior será a incorporação de carbono e maior a atividade elétrica. Este resultado indica que o carbono é incorporado de diversas maneiras, bem como um aceitador raso. O carbono também pode ser incorporado como um doador raso, pois é um dopante anfotérico. Entretanto, este fato, não é suficiente para explicar os resultados de transporte. A diferença entre a concentração Hall e a concentração CV indica a incorporação de doadores profundos. Provavelmente, o carbono participa na formação desses doadores profundos, uma vez que a concentração de doador profundo varia linearmente com a densidade atômica de carbono, determinada pela técnica SIMS. Por outro lado, centros não radiativos são mais facilmente incorporados em baixas Tg e a eficiência da fotoluminescência é reduzida. Essa degradação da fotoluminescência é independente da concentração de carbono, consequentemente, pode-se concluir que essa redução na eficiência da fotoluminescência não está associada à presença de doadores profundos. Com a finalidade de obter um incremento na atividade elétrica do carbono e melhoria na qualidade ótica das camadas, as amostras foram submetidas a tratamentos térmicos. Os tratamentos térmicos aumentaram a concentração de buracos mas não influenciaram na densidade de doadores profundos ou na qualidade ótica das camadas. Para a utilização de InAlAs dopado com carbono em dispositivos, deve-se obter simultaneamente uma boa qualidade ótica e elevada atividade elétrica das camadas.Então, deve-se identificar o doador profundo, que está associado ao carbono, com o objetivo de reduzí-lo ou eliminá-lo e consequentemente, obter um incremento na atividade elétrica das camadas. Desta forma as camadas podem ser crescidas a temperaturas mais altas adequadas para uma emissão de fotoluminescência eficiente. Cálculos teóricos são apresentados de modo a ajudar essa identificação. Outra possibilidade é usar diferentes fontes de arsina em que as moléculas se dissociem em temperaturas mais baixas.
The potential of using carbon as a p-type dopant for InAlAs has already been recognized due to the achievable high hole concentration [1,2]. However, high doping levels are reached only for low growth teperatures (Tg below 600°C). These temperatures produce layers with poor optical quality as compared to those grown at higher temperatures, which can be detrimental for optoeletronic device. In this work we present crystal, transport and optical properties of such layers grown at different temperatures. We find that the lower Tg, the more efficient the carbon incorporation and its electrical activity are. This result indicates that carbon is incorporated in forms different from a shallow acceptor, as well. Carbon can also be incorporated as a shallow donor since it is an amphoteric dopant. However, this alone does not explain the transport results. The difference between the net free charge density determined from capacitance measurements indicates that a deep donor is also incorporated. Carbon most likely participates in the deep donor formation since the inferred deep donor concentration varies linearly with the carbon atomic density measured by SIMS. On the other hand, non- radiative deep levels are more efficiently incorporated as Tg is reduced degrading the photoluminescence characteristics. Such degration is independent of the carbon doping. Therefore, one concludes that the decrease in the photoluminescence efficiency cannot be related to the presence of the deep donor mentioned in the previous paragraph. To further probe the carbon electrical activity and its effect on the optical properties of the layers, the samples have been subjected to a heat-treatment. Annealing the samples increases the hole concentration, but neither affects the deep donor density nor improves the layers optical quality. In order to use carbon doped InAlAs in devices which simultaneously require good optical quality and high electrical activity of the layers, one should identify the deep donor involving carbon in order to try to reduce its concentration or even eliminate it, consequently improving the electrical activity of the layers. In such a way the layers can be grown at higher temperatures, adequate for an efficient photoluminescence emission. Theoretical calculations are being carried out to help with such identification. Another possibility is to use other arsine sources which crack at lower temperatures.
Alluqmani, Saleh Marzoq B. "Growth and doping of carbon nanotubes and graphene." Thesis, Durham University, 2015. http://etheses.dur.ac.uk/10949/.
Full textSanwick, Alexis. "Heteroatom-Doped Chemical Vapor Deposition Carbon Ultramicroelectrodes." Digital Commons @ East Tennessee State University, 2020. https://dc.etsu.edu/honors/592.
Full textLiang, Meng Suan. "Carbon doping in GaAs, AlGaAs, InGaAs and distributed Bragg reflectors." Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399255.
Full textSojoudi, Hossein. "The synthesis, doping, and characterization of graphene films." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/50125.
Full textPinto, Hugo Manuel. "Defects and dopants in carbon related materials." Thesis, University of Exeter, 2012. http://hdl.handle.net/10036/3601.
Full textAshourirad, Babak. "HETEROATOM-DOPED NANOPOROUS CARBONS: SYNTHESIS, CHARACTERIZATION AND APPLICATION TO GAS STORAGE AND SEPARATION." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/4062.
Full textAnwar, Abdul Waheed. "Investigation of doping and photoexcitation in carbon nanotubes using Raman spectroscopy." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1156/.
Full textRaman spectroscopy is a non-invasive characterization technique suitable for the study of carbon nanotubes. Differences in the spectral shift of the Raman D and G bands are observed when heating carbon nanotubes through intense photon irradiation and by varying the temperature in a thermostat. These spectral changes in D mode are attributed to the variation of the electronic band structure by excitons creation. The investigation of the influence of doping and photoexcitation on the Raman G and D band of carbon nanotubes show that Raman spectroscopy can be used as a diagnostic tool. The spectral bands broaden and up shifts for nitrogen doped multi walled carbon nanotubes (MWCNT). The up shift for sulphuric acid doped double wall carbon nanotubes (DWCNT) synthesized from catalytic chemical vapor deposition method (CCVD) is attributed to charge transfer and strain in the lattice. We have combined sulphuric acid doping and high pressure Raman spectroscopy to investigate the properties of DWCNT. The DWCNT doped with different concentrations of sulphuric acid are explored under high pressure suggesting an effect of the molecular ordering around carbon nanotubes at higher acid concentrations. Raman spectra of individual double wall carbon nanotubes on silica show a splitting of the G band due to contributions of the inner and outer tube when using a excitation energy in resonance with the inner metallic tube and outer semiconducting tube. The spectral line widths are comparable to what has been observed for individual single wall carbon nanotubes (SWCNT) or graphene. Increased laser power shifts the G band of the outer tube to higher energies and modifies its line shape
Books on the topic "Carbon dopin"
Bulyarskiy, Sergey, and Alexandr Saurov, eds. Doping of Carbon Nanotubes. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7.
Full textBulyarskiy, Sergey, and Alexandr Saurov. Doping of Carbon Nanotubes. Springer, 2018.
Find full textSaito, R., A. Jorio, J. Jiang, K. Sasaki, G. Dresselhaus, and M. S. Dresselhaus. Optical properties of carbon nanotubes and nanographene. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.1.
Full textBook chapters on the topic "Carbon dopin"
Saurov, Alexandr. "Adsorption and Doping as Methods for the Electronic Regulation Properties of Carbon Nanotubes." In Doping of Carbon Nanotubes, 1–6. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_1.
Full textBulyarskiy, Sergey, and Alexandr S. Basaev. "Thermodynamics and Kinetics of Adsorption and Doping of a Graphene Plane of Carbon nanotubes and Graphene." In Doping of Carbon Nanotubes, 7–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_2.
Full textBulyarskiy, Sergey, Alexandr S. Basaev, and Darya A. Bogdanova. "Interaction of Hydrogen with a Graphene Plane of Carbon Nanotubes and Graphene." In Doping of Carbon Nanotubes, 57–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_3.
Full textBulyarskiy, Sergey, Alexandr S. Basaev, Darya A. Bogdanova, and Alexandr Pavlov. "Oxygen Interaction with Electronic Nanotubes." In Doping of Carbon Nanotubes, 103–13. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_4.
Full textSaurov, Alexandr, Sergey Bulyarskiy, Darya A. Bogdanova, and Alexandr Pavlov. "Nitrogen Interaction with Carbon Nanotubes: Adsorption and Doping." In Doping of Carbon Nanotubes, 115–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_5.
Full textSaurov, Alexandr, Sergey Bulyarskiy, and Alexandr Pavlov. "Carbon Nanotube Doping by Acceptors. The p–п Junction Formation." In Doping of Carbon Nanotubes, 171–82. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55883-7_6.
Full textSusi, Toma, and Paola Ayala. "Doping Carbon Nanomaterials with Heteroatoms." In Carbon Nanomaterials for Advanced Energy Systems, 133–61. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118980989.ch4.
Full textHu, Yating. "Nitrogen Doping of Mesoporous Carbon Materials." In Springer Theses, 35–47. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8342-6_3.
Full textMitura, Stanisław, Jan Szmidt, and Aleksandra Sokołowska. "Doping of Diamond-Like Carbon Films." In Wide Band Gap Electronic Materials, 235–42. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0173-8_23.
Full textHatakeyama, Rikizo, Toshiaki Kato, Yongfeng Li, and Toshiro Kaneko. "Plasma Doping Processes for CNT Devices." In Frontiers of Graphene and Carbon Nanotubes, 143–63. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55372-4_11.
Full textConference papers on the topic "Carbon dopin"
O’Hayre, Ryan, Yingke Zhou, Robert Pasquarelli, Joe Berry, and David Ginley. "Enhancement of Pt-Based Catalysts via N-Doped Carbon Supports." In ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/enic2008-53078.
Full textZhou, Yingke, Robert Pasquarelli, Joe Berry, David Ginley, and Ryan O’Hayre. "Improving PEM Fuel Cell Catalysts Using Nitrogen-Doped Carbon Supports." In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65172.
Full textCzerw, R. "Substitutional Doping of Carbon Nanotubes." In STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XVI International Winterschool on Electronic Properties of Novel Materials. AIP, 2002. http://dx.doi.org/10.1063/1.1514080.
Full textYoung Hee Lee. "Carbon nanotube transistor: Doping and ambipolarity." In 8th International Vacuum Electron Sources Conference and Nanocarbon (2010 IVESC). IEEE, 2010. http://dx.doi.org/10.1109/ivesc.2010.5644345.
Full textArmandi, Marco, Barbara Bonelli, and Edoardo Garrone. "Synthesis and Characterization of Mesoporous and Microporous Carbons With Potential Applications as Hydrogen Storage Media." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95740.
Full textHaddad, H., L. Forbes, P. Burke, and W. Richling. "Carbon Doping Effects on Hot Electron Trapping." In 28th International Reliability Physics Symposium. IEEE, 1990. http://dx.doi.org/10.1109/irps.1990.363535.
Full textKnoch, Joachim, Thomas Grap, and Marcel Muller. "Gate-controlled doping in carbon-based FETs." In 2013 IFIP/IEEE 21st International Conference on Very Large Scale Integration (VLSI-SoC). IEEE, 2013. http://dx.doi.org/10.1109/vlsi-soc.2013.6673269.
Full textHan, Baoguo, Xun Yu, and Jinping Ou. "Effects of CNT Doping Level and Water/Cement Ratio on the Piezoresistivity of CNTS/Cement Composites." In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3629.
Full textÖzmen, Yılmaz. "Tribological Behavior of Carbon Based Materials." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50233.
Full textTian, Z., N. R. Quick, and A. Kar. "Laser doping of silicon carbon and pin diode fabrication." In ICALEO® 2004: 23rd International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2004. http://dx.doi.org/10.2351/1.5060324.
Full textReports on the topic "Carbon dopin"
Moll, Amy Jo. Carbon doping of III-V compound semiconductors. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10196996.
Full textSpeck, James S. Systematic Studies of Carbon Doping in High Quality GaN Grown by Molecular Beam Epitaxy. Fort Belvoir, VA: Defense Technical Information Center, December 2004. http://dx.doi.org/10.21236/ada430009.
Full textLiu, Jie. Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping. Office of Scientific and Technical Information (OSTI), February 2011. http://dx.doi.org/10.2172/1004174.
Full text