Academic literature on the topic 'Carbon stock on soil'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbon stock on soil.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Carbon stock on soil"
Ťupek, Boris, Carina A. Ortiz, Shoji Hashimoto, Johan Stendahl, Jonas Dahlgren, Erik Karltun, and Aleksi Lehtonen. "Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status." Biogeosciences 13, no. 15 (August 10, 2016): 4439–59. http://dx.doi.org/10.5194/bg-13-4439-2016.
Full textBarančíková, G., J. Makovníková, R. Skalský, Z. Tarasovičová, M. Nováková, J. Halás, M. Gutteková, and Š. Koco. "Simulation of soil organic carbon changes in Slovak arable land and their environmental aspects." Soil and Water Research 7, No. 2 (May 18, 2012): 45–51. http://dx.doi.org/10.17221/38/2011-swr.
Full textAssad, E. D., H. S. Pinto, S. C. Martins, J. D. Groppo, P. R. Salgado, B. Evangelista, E. Vasconcellos, et al. "Changes in soil carbon stocks in Brazil due to land use: paired site comparisons and a regional pasture soil survey." Biogeosciences Discussions 10, no. 3 (March 21, 2013): 5499–533. http://dx.doi.org/10.5194/bgd-10-5499-2013.
Full textReyna-Bowen, Lizardo, Jarosław Lasota, Lenin Vera-Montenegro, Baly Vera-Montenegro, and Ewa Błońska. "Distribution and Factors Influencing Organic Carbon Stock in Mountain Soils in Babia Góra National Park, Poland." Applied Sciences 9, no. 15 (July 29, 2019): 3070. http://dx.doi.org/10.3390/app9153070.
Full textAssad, E. D., H. S. Pinto, S. C. Martins, J. D. Groppo, P. R. Salgado, B. Evangelista, E. Vasconcellos, et al. "Changes in soil carbon stocks in Brazil due to land use: paired site comparisons and a regional pasture soil survey." Biogeosciences 10, no. 10 (October 1, 2013): 6141–60. http://dx.doi.org/10.5194/bg-10-6141-2013.
Full textGhanbari Motlagh, Mohadeseh, Sasan Babaie Kafaky, Asadollah Mataji, Reza Akhavan, and Behzad Amraei. "An introduction to the distribution of carbon stocks in temperate broadleaf forests of northern Iran." Journal of Forest Science 66, No. 2 (February 28, 2020): 70–79. http://dx.doi.org/10.17221/149/2019-jfs.
Full textHolmes, Karen W., Andrew Wherrett, Adrian Keating, and Daniel V. Murphy. "Meeting bulk density sampling requirements efficiently to estimate soil carbon stocks." Soil Research 49, no. 8 (2011): 680. http://dx.doi.org/10.1071/sr11161.
Full textBarančíková, G., J. Halás, M. Gutteková, J. Makovníková, M. Nováková, R. Skalský, and Z. Tarasovičová. "Application of RothC model to predict soil organic carbon stock on agricultural soils of Slovakia." Soil and Water Research 5, No. 1 (February 26, 2010): 1–9. http://dx.doi.org/10.17221/23/2009-swr.
Full textLukina, Natalia, Anastasia Kuznetsova, Elena Tikhonova, Vadim Smirnov, Maria Danilova, Aleksey Gornov, Olga Bakhmet, et al. "Linking Forest Vegetation and Soil Carbon Stock in Northwestern Russia." Forests 11, no. 9 (September 10, 2020): 979. http://dx.doi.org/10.3390/f11090979.
Full textArmitage, A. R., and J. W. Fourqurean. "Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment." Biogeosciences 13, no. 1 (January 15, 2016): 313–21. http://dx.doi.org/10.5194/bg-13-313-2016.
Full textDissertations / Theses on the topic "Carbon stock on soil"
Pereira, Osvaldo José Ribeiro. "Mapping soil organic carbon storage in deep soil horizons of Amazonian Podzols." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/64/64135/tde-14062016-113621/.
Full textOs Espodossolos podem ser divididos em zonais e intrazonais de acordo com área onde ocorrem. Os Espodossolos zonais são típicos de áreas boreais e taiga, delimitados por condições climáticas. Já os intrazonais não são condicionados pelo clima. Os Espodossolo intrazonais brasileiros ocupam uma grande extensão da alta bacia amazônica, tendo sua formação atribuída à ocorrência de lençóis freáticos suspensos associados à acumulação de complexos organometálicos em ambientes ácidos redutores. Esses solos tem a capacidade de estocar grandes quantidades de carbono orgânico em horizontes espódicos profundos (Bh), em profundidades que podem variar de 1,5m a 5m. Pesquisas atuais relacionadas ao estoque de carbono em solos amazônicos, não levam em consideração os estoques encontrados no horizonte Bh (abaixo de 1m de profundidade). Sendo assim, o principal objetivo da presente pesquisa foi quantificar e mapear o estoque de carbono nos solos da bacia do Rio Negro, tendo-se em vista aquele estocado no primeiro metro de solo, bem como o carbono armazenado em até 3m de profundidade. A quantidade de carbono orgânico estocado nos solos da bacia do Rio Negro foi estimada em diferentes escalas de mapeamento, desde mapas locais até a escala da bacia do Rio Negro. Imagens de sensoriamento remoto de alta resolução espacial e espectral foram essenciais para viabilizar o mapeamento dos solos nas áreas estudadas e permitir a estimativa do estoque de carbono. Uma análise multisensor foi adotada buscando-se gerar informações biofísicas indiretamente associadas à variação lateral dos tipos de solo. Após o mapeamento do estoque de carbono em escala regional, partiu-se para a estimativa na escala da bacia do Rio Negro, com base em análise geoestatística (krigagem por regressão linear), imagens de sensoriamento remoto e base de dados de domínio público. Após o mapeamento do estoque de carbono na escala da bacia, constatou-se que os Espodossolos têm um estoque médio de 18 kg C m-2, para 1m de profundidade, valor similar ao observado em solos adjacentes (Latossolos e Argissolos) os quais tem um estoque de 15 kg C m-2. Quando são considerados os estoques profundos, até 3m, a quantidade de carbono dos Espodossolos é superior com valores variando de 55 kg C m-2 a 82 kg C m-2. Estoque relativamente maior que aquele observado em solos adjacentes para esta profundidade (18 kg C m-2 a 25 kg C m-2). Portanto, o estoque de carbono profundo dos Espodossolos, não deve ser negligenciado levando-se em conta cenários futuros de mudanças climáticas
Tifafi, Marwa. "Different soil study tools to better understand the dynamics of carbon in soils at different spatial scales, from a single soil profile to the global scale." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLV021/document.
Full textSoils are the major components ofthe terrestrial ecosystems and the largest organiccarbon reservoir on Earth, being very reactive tohuman disturbance and climate change. Despiteits importance within the carbon reservoirs, soilcarbon dynamics is an important source ofuncertainties for future climate predictions. Theaim of the thesis was to explore different aspectsof soil carbon studies (Experimentalmeasurements, modeling, and databaseevaluation) at different spatial scales (from thescale of a profile to the global scale). Wehighlighted that the estimation of the global soilcarbon stocks is still quite uncertain.Consequently, the role of soil carbon in theclimate dynamics becomes one of the majoruncertainties in the Earth system models (ESMs)used to predict future climate change. Thesecond part of thesis deals with the presentationof a new version of the IPSL-Land SurfaceModel called ORCHIDEE-SOM, incorporatingthe 14C dynamics in the soil. Several tests doneassume that model improvements should focusmore on a depth dependent parameterization,mainly for the diffusion, in order to improve therepresentation of the global carbon cycle inLand Surface Models, thus helping to constrainthe predictions of the future soil organic carbonresponse to global warming
Veronesi, Fabio. "3D advance mapping of soil properties." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7848.
Full textLongbottom, Todd L. M. S. "Climatic and topographic controls on soil carbon storage and dynamics in the Indian Himalaya: Potential carbon cycle and climate change feedbacks." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1342106746.
Full textFerreira, Tiago Lima. "Relações causais em sistemas de produção agrícola e agropecuária." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/178354.
Full textThe aim of this research was to understand agricultural and integrated crop-livestock production systems by the species diversity, functionality and spatial-temporal dynamics evaluation, as well as of the variation pattern of soil quality and factors that determine then. For this, four no-tillage production systems were evaluated on the "Agropecuária Guajuvira" located in São Miguel das Missões county in southern Brazil. The production systems were: 1- Traditional agricultural system, representing the succession soybean/wheat and soybean/black oat widely practiced in the region; 2- Irrigated agricultural system, similar to the previous one, but, with recent insertion of corn in the summer; 3 - Integrated crop-livestock system 1, representing the succession of soybean /grazed ryegrass and 4 - Integrated crop-livestock system 2, representing a mixed system due changes in species composition during winter by succession of soybean/grazed black oat, soybean/no-grazed black oat and soybean/forage radish/wheat The carbon stock (CS), soil aggregate stability (SAS) and carbon management index (CMI) were chosen as systemic soil quality indicators. Their variation patterns were understood by the integration of chemical, physical and biological soil attributes, as well as by landscape variables inherent to the sampling units. The factors that characterized the production systems and the path analysis utilization allowed a greater understanding of complex agricultural and integrated crop-livestock production systems in the field.
Ros, Mesa Ignacio. "Stochastic modelling of soil carbon stocks under different land uses: a case study in South Africa." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97097.
Full textENGLISH ABSTRACT: The research was conducted in the Kwa-Zulu Natal midlands, South Africa. The vertical distribution of soil organic carbon (SOC) stocks were successfully predicted by stochastic exponential models developed for the three main land uses in the area, which are farmlands, forestry plantations and grasslands. These models, in combination with regular surface sampling, may be used for monitoring SOC dynamics in the area and mapping SOC stocks. Bulk density measurements are needed in combination with SOC content (%wt) to calculate such SOC stocks. Considering the disadvantages of bulk density sampling and measurement, an effort was made to determine if one of the commonly-used existing stochastic models could be used to successfully predict bulk densities for soils with known texture and SOC content to replace direct measurements, taking into account that different managements might affect final results. Statistica software was used to correlate the Saxton & Rawls model predictions and associated regressions with measured values for the study area. A clear distribution trend was achieved using Statistica and the correlations were fair with r2 values close to 0.5 for individual regressions and substantially higher for area averages. However, considering the depth-stratified averages and correcting for the effects of particle density changes for soils with high soil organic matter, high correlations for 2 of the 3 studied land uses were achieved (r2 values of 0.99 and 0.81 in forests and grasslands respectively). Therefore, although Saxton and Rawls (2006) predictions of bulk density may be used, it is preferable to conduct direct bulk density determinations. The proposed models to calculate the vertical distribution of SOC would substantially reduce the cost of soil carbon inventories to 1m soil depth in the study area by limiting observations to the soil surface. Triplicate 5cm-deep soil core samples would be collected at the soil surface per observation point for determination of ρb (bulk density) and Corg (organic carbon). On average, the accuracy of the normalized depth-distribution model is rather high for grasslands and forests/forest plantations (R2 = 0.98), but somewhat lower for cultivated lands (R2 = 0.96) due to mixing of the plough layer to cultivation depth. Carbon stocks to 1m depth were calculated as an integral of the normalized exponential distribution, multiplied by the value of Corg observed at the soil surface and expressed on volume basis as carbon density (Cv, kg∙m-3). The resulting stock assessment was compared to the observed values using piece-integration for sampled depth increments to give SOC stocks on an area basis (kg∙m-2). The estimated prediction error on average was 1.2 (9%) and 3.7 kg∙m-2 (21.6%) in grasslands and forests respectively, while for cultivated lands the error was 1.3 kg.m-2 (9.5%). Further improvement to reduce these errors may be achieved by introducing the soil type as variable and grouping the functions by soil type rather than land uses. The results of this work were presented at the seminar of the department of Soil Science, Stellenbosch University (Ros et al., 2014), the combined congress of the South African Soil Science, Horticulture and Agronomy societies (Rozanov et al., 2015), the First Global Soil Map conference, France (Wiese et al., 2013), the 20th International Congress of Soil Science, Korea (Wiese et al. 2014) and were submitted for publication in Geoderma special issue dedicated to digital soil mapping of soil organic carbon following the presentation at the 20th ICSS, Korea (Wiese et al., 2014).
AFRIKAANSE OPSOMMING: Hierdie navorsing is in die Kwa-Zulu Natalse middellande van Suid-Afrika gedoen. Die vertikale verspreiding van grondorganiese koolstof (GOK) is suksesvol voorspel deur middel van stogastiese eksponensiële modelle wat vir die drie hoof landsgebruike ontwikkel is. In kombinasie met roetine monsterneming by die grondoppervlak kan hierdie modelle suksesvol aangewend word vir die monitering van GOK dinamika in die studiegebied, sowel as kartering van GOK voorraad. Bulkdigtheidsmetings word tesame met GOK inhoud (%massa) benodig om die GOK voorraad te bereken. Weens die nadele van monsterneming vir bulkdigtheidsbepalings is ‘n poging aangewend om te bepaal of een van die mees algemeen gebruikte bestaande stogastiese modelle (Saxton & Rawls 2006) gebruik kan word om die bulkdigtheid van gronde suksesvol vanaf tekstuur en GOK inhoud te voorspel en sodoende direkte metings te vervang. Statistica sagteware is gebruik om die voorspellings met behulp van die Saxton & Rawls modelle en gevolglike regressies met gemete waardes vanuit die studiegebied te korreleer en ‘n duidelike verspreidingstendens is hierdeur opgelewer. Die korrelasies vir individuele regressies was redelik met r2 waardes naby 0.5 en merkwaardig hoër waardes vir area gemiddeldes. Hoë korrelasies is egter behaal vir 2 van die 3 bestudeerde landsgebruike (r2 waardes van 0.99 en 0.81 in bosbou en grasveld onderskeidelik) wanneer die gemiddelde dieptestratifikasies gebruik en gekorrigeer word vir die verandering in deeltjiedigtheid vir gronde met hoë grondorganiese material. Alhoewel die Saxton and Rawls (2006) voorspellings van bulkdigtheid gebruik kan word, behoort bulkdigtheidsbepalings egter verkieslik direk gedoen te word. Die voorgestelde modelle vir die bepaling van vertikale GOK verspreiding tot 1m gronddiepte sou die koste van grondkoolstof opnames in die studiegebied dramaties verlaag deur grondmetings tot die grondoppervlak te beperk. Grondmonsters sal in triplikaat per waarnemingspunt met 5cm diep silinders op die grondoppervlak geneem word vir ρb (bulkdigtheid) and Corg (organiese koolstof) bepalings. Die gemiddelde akkuraatheid van die genormaliseerde diepteverspreidingsmodel is hoog vir grasveld en woude/bosbou plantasies (R2 = 0.98), maar ietwat laer vir bewerkte landerye (R2 = 0.96) as gevolg van die vermenging van die ploeglaag tot op die diepte van bewerking. Koolstof voorraad tot 1m gronddiepte is bepaal deur middel van die integraal van die genormaliseerde eksponensiele verspreiding, vermenigvuldig met die waarde van Corg op die grondoppervlak en op ‘n volume basis uitgedruk as koolstofdigtheid (Cv, kg∙m-3). Die gevolglike voorraadopname is met gemete waardes vergelyk deur middel van ‘n stuksgewyse integrasie van die gemonsterde diepteinkremente om GOK voorraad per area (kg∙m-2) te lewer. Die gemiddelde geskatte fout van voorspelling was 1.2 (9%) en 3.7 kg∙m-2 (21.6%) in grasveld and plantasies onderskeidelik en 1.3 kg.m-2 (9.5%) in bewerkte landerye. Verdere verbetering van die modelle en ‘n verlaging in hierdie foute kan verkry word deur die grondtipe inligting as veranderlike in te bring en die funksies volgens grondtipe eerder as landsgebruik te groepeer. Resultate van hierdie werk is reeds aangebied tydens ‘n seminar by die department Grondkunde, Stellenbosch Universiteit (Ros Mesa et al., 2014), die gesamentlike kongres vir die Suid-Afrikaanse Verenigings vir Grondkunde, Hortologie, Onkruidwetenskap en Gewasproduksie (Rozanov et al. 2015), die Eerste Global Soil Map konferensie, Frankryk (Wiese et al, 2013), die 20ste Internasionale Grondkunde Kongres, Korea (Wiese et al. 2014) en is ingehandig vir publikasie in ‘n spesiale uitgawe van Geoderma wat, na aanleiding van die aanbieding by die 20ste Internasionale Grondkunde Kongres, Korea (Wiese et al., 2014), fokus op digitale grondkartering van grondorganiese koolstof.
Wong, Vanessa Ngar Lai. "The effects of salinity and sodicity on soil organic carbon stocks and fluxes /." View thesis entry in Australian Digital Theses Program, 2007. http://thesis.anu.edu.au/public/adt-ANU20080428.223144/index.html.
Full textWong, Vanessa, and u2514228@anu edu au. "The effects of salinity and sodicity on soil organic carbon stocks and fluxes." The Australian National University. Faculty of Science, 2007. http://thesis.anu.edu.au./public/adt-ANU20080428.223144.
Full textEstrela, Sílvia Regina Marques Faria. "Wildfire effects on forest soil organic matter stocks and losses by runoff." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/19151.
Full textO solo é considerado o maior reservatório de carbono (C) global e, um importante sumidouro de CO2 atmosférico. Os incêndios florestais são um fenómeno frequente nos ecossistemas mediterrânicos, em especial em Portugal. Nas últimas décadas verificou-se um aumento do número de incêndios e os cenários de alterações climáticas sugerem que os regimes de incêndios se poderão intensificar no futuro. Os incêndios florestais podem provocar efeitos importantes a curto e médio prazo em fatores chave da qualidade do solo, tais como a quantidade e qualidade da matéria orgânica (SOM). Devido à grande quantidade de carbono (C) armazenado no solo, mesmo pequenas mudanças na SOM poderão ter um efeito significativo sobre os ciclos biogeoquímicos e, consequentemente, sobre o clima global. Embora existam vários estudos que documentam os efeitos pós-fogo sobre os processos hidrológicos e de erosão, em termos de impactos sobre a quantidade (em termos de stocks e perdas de carbono orgânico (OC) por escorrência superficial), qualidade da SOM e sedimentos exportados, bem como a sua recuperação pós-fogo tem sido pouco estudados. Estes foram os principais objetivos deste estudo, realizado em plantações de eucalipto (Eucalyptus globulus), um dos tipos de vegetação florestal mais suscetíveis ao fogo no centro-norte de Portugal. O efeito dos incêndios florestais na qualidade da SOM do solo foi avaliado na camada superficial do solo (0-2 cm) em 4 períodos de amostragem, imediatamente antes das primeiras chuvas até dois anos após o incêndio. Para tal, foram utilizadas várias técnicas analíticas, tais como a deteção e caraterização de biomarcadores lipídicos por cromatografia gasosa/espetrometria de massa (GC-MS), caraterização de SOM por pirólise acoplada à cromatografia gasosa e à espetrometria de massa (Py-GC/MS) e, por ressonância magnética nuclear 13C de estado sólido (13C NMR). As exportações pós-fogo de OC por escorrência superficial e as respetivas contribuições das frações de carbono orgânico dissolvido (DOC), carbono orgânico particulado (POC) e carbono inorgânico dissolvido (DIC) foram também determinados em amostras de escorrência superficial recolhidas em intervalos de 1 a 2 semanas ao longo do primeiro ano após o incêndio. Os resultados mostraram que o incêndio provocou mudanças consideráveis na quantidade e qualidade da SOM. Estas incluíram a degradação térmica e quebra de compostos de n-alquilo. Aumentaram os rácios das cadeias curto-longo de n-alcanos e das cadeias de n- FAMEs, assim como a alteração dos respetivos índices. Além disso, a abundância relativa de certos biomarcadores específicos de determinadas plantas foram modificados, especialmente diminuição de terpenóides, tais como epiglobulol, ledol e globulol que são característicos do Eucalyptus globulus. Outras diferenças observadas no solo queimado foram a presença de levoglucosano, um marcador típico para a alteração térmica de polissacarídeos, maior abundância relativa de compostos derivados da lenhina (vanilina e metoxifenol) e a presença de estruturas de N-heteroaromáticos. Os espetros de 13C NMR também indicaram que o fogo produziu um aumento considerável na aromaticidade e condensação aromática da SOM. Estas diferenças verificaram-se durante o período de estudo, sugerindo uma lenta recuperação das propriedades do solo, possivelmente influenciadas, quer por uma recuperação limitada da vegetação, quer pela intensificação das perda de solo após o incêndio. O presente trabalho abordou também um tema pouco estudado como são os efeitos pós-fogo nas perdas de OC no solo por escorrência superficial. Os principais resultados apontaram para (i) uma maior quantidades de cinzas na encosta orientada a norte do que na encosta orientada a sul, enquanto que para a quantidade total de carbono orgânico (TOC) nas cinzas, estas não apresentaram diferenças; (ii) quer a perda total de sedimentos, quer a quantidade TOC do solo apresentouse maior na encosta orientada a norte do que a sul; (iii) a fração de OC que apresentou as maiores perdas, para ambas as encostas, foi a particulada. A quantificação das perdas de OC pós-fogo podem contribuir de forma relevante para a proteção dos ecossistemas, nomeadamente em termos da fertilidade do solo.
Soil is considered the largest carbon reservoir and an important global sink for atmospheric CO2. Wildfires are frequent in Mediterranean ecosystems, especially in Portugal. In recent decades there has been an increase in the number of fires and climate change scenarios suggest that the fire regimes are likely to increase in the future. Forest fires can have important short−to long−term implications for key aspects of soil quality, such as the quantity and quality of soil organic matter (SOM). Due to high amount of carbon (C) stored in soil, even slight alterations of SOM can affect significantly biogeochemical cycles, hence, affecting the whole global climate. Although numerous studies have documented the effects of wildfires on hydrological and erosion processes, the effects of fire on the quantity (in terms of stocks and losses of OC content by overland flow) and quality of SOM and in the sediments eroded, as well on postfire SOM recovery, have received considerably less research attention. These were the principal goals of the present study conducted on eucalypt plantations, one of the most fire-prone forest types in northcentral Portugal. The effects of wildfires on quality of SOM was evaluated in topsoil samples (0-2 cm) on four sampling occasions, starting immediately after the first post-fire rain till two years later. It was necessary a combination of multi-analytical techniques, such as lipid-biomarker analysis by gas chromatography-mass spectrometry (GC-MS), SOM characterization by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and solid state 13C nuclear magnetic resonance (13C NMR) spectroscopy. Post-fire OC exports by overland flow and the contributions of the dissolved organic carbon (DOC), particulate organic carbon (POC) and dissolved inorganic carbon (DIC) fractions were measured in runoff samples collected at 1- to 2- weekly intervals during the first year after the wildfire. The results showed that wildfire produced substantial changes in the quantity and quality of SOM. These included the thermal breakdown and cracking of n-alkyl compounds. Ratios of short-to-long n-alkanes and n-fatty acid methyl esters (FAMEs) increased and typical carbon number predominance indexes for n-alkanes (odd-to-even) and n-FAMEs (evento- odd) were altered. Furthermore, the relative abundances of certain markers, which are plantspecies specific were modified, especially by decreasing terpenoids such as epiglobulol, ledol and globulol, which are characteristic of Eucalyptus globulus. Other differences observed in the burnt soil were the appearance of levoglucosan, a typical marker for the thermal alteration of polysaccharides, larger relative abundances of lignin-derived compounds (vanillin and methoxyphenols) and the presence of N-heteroaromatic structures. The 13C NMR spectra also indicated that the wildfire produced a considerable increase in the aromaticity and aromatic condensation of the topsoil SOM. The continuation of these differences in SOM quality during the period of this study, suggested a slow recovery of soil properties, possibly influenced by a limited recovery of the vegetation after the fire combined with the fire-enhanced losses of soil. The present work also evaluated post-fire soil OC losses by overland flow in recently two burnt eucalypt plantations, addressing a topic that has seldom been investigated. The main findings were that: (i) the amount of deposited ashes was higher at the NW slope than at the SE slope, while ashes total organic carbon (TOC) content revealed no differences; (ii) total sediment losses and also the TOC export were higher at the NW slope than at the SE slope; (iii) particulate organic carbon fraction showed the highest loss at the both topsoil sites. In addition, this study provides some insight into post-fire organic carbon losses in the recently burnt areas, which is crucial information for ecosystem management, especially in terms of soil fertility.
Kroll, Jeffrey T. "LANDUSE AND SOIL ORGANIC CARBON VARIABILITY IN THE OLD WOMAN CREEK WATERSHED OF NORTH CENTRAL OHIO." Miami University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=miami1165431813.
Full textBooks on the topic "Carbon stock on soil"
Agus, Fahmuddin. Measuring carbon stock in peat soils: Practical guidelines. Bogor, Jawa Barat, Indonesia: World Agroforestry Centre, 2010.
Find full textJu, Weimin. Distribution of soil carbon stocks in Canada's wetland and upland forests simulated based on drainage class, topography and remote sensing. Ottawa: National Library of Canada, 2002.
Find full textHartemink, Alfred E., and Kevin McSweeney, eds. Soil Carbon. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4.
Full textKutsch, Werner L., Michael Bahn, and Andreas Heinemeyer, eds. Soil Carbon Dynamics. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511711794.
Full textIndia, Forest Survey of. Carbon stock in India's forests. Dehradun: Forest Survey of India, Ministry of Environment & Forests, 2012.
Find full textP, Koohafkan, Antoine Jacques, and Food and Agriculture Organization of the United Nations., eds. Assessing carbon stocks and modelling win-win scenarios of carbon sequestration through land-use changes. Rome: Food and Agriculture Organization of the United Nations, 2004.
Find full textJensen, Earl H. Soil survey of Carbon area, Utah. [Washington, D.C.?]: The Service, 1988.
Find full textVercammen, James. Dynamic economic modeling of soil carbon. [Ottawa]: Agriculture and Agri-Food Canada, 2002.
Find full textJandl, Robert, Mirco Rodeghiero, and Mats Olsson, eds. Soil Carbon in Sensitive European Ecosystems. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119970255.
Full textDatta, Rahul, Ram Swaroop Meena, Shamina Imran Pathan, and Maria Teresa Ceccherini, eds. Carbon and Nitrogen Cycling in Soil. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-7264-3.
Full textBook chapters on the topic "Carbon stock on soil"
Lorenz, Klaus, and Rattan Lal. "Soil Carbon Stock." In Carbon Sequestration in Agricultural Ecosystems, 39–136. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92318-5_2.
Full textOgeh, Joseph S. "Soil Organic Carbon Stocks Under Plantation Crops and Forest in the Rainforest Zone of Nigeria." In Soil Carbon, 467–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_46.
Full textXie, Zubin, Gang Liu, Qicheng Bei, Chunmei Chen, Georg Cadisch, Qi Liu, Zhibin Lin, Hasegawa Toshihiro, and Jianguo Zhu. "Soil Organic Carbon Stocks, Changes and CO2 Mitigation Potential by Alteration of Residue Amendment Pattern in China." In Soil Carbon, 457–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_45.
Full textGrüneberg, Erik, Ingo Schöning, Winfried Riek, Daniel Ziche, and Jan Evers. "Carbon Stocks and Carbon Stock Changes in German Forest Soils." In Ecological Studies, 167–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15734-0_6.
Full textSaiz, Gustavo, and Alain Albrecht. "Methods for Smallholder Quantification of Soil Carbon Stocks and Stock Changes." In Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture, 135–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29794-1_7.
Full textChiti, Tommaso, Costantino Sirca, Mirco Rodeghiero, Donatella Spano, and Riccardo Valentini. "Soil Carbon Stocks and Fluxes." In The Greenhouse Gas Balance of Italy, 119–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-32424-6_8.
Full textGärdenäs, Annemieke I., Per-Erik Jansson, Erik Karltun, Leif Klemendtsson, Aleksi Lehtonen, Carina A. Ortiz, Taru Palosuo, and Magnus Svensson. "Estimating Soil Carbon Stock Changes by Process-Based Models and Soil Inventories - Uncertainties and Complementarities." In Soil Carbon in Sensitive European Ecosystems, 239–66. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119970255.ch10.
Full textJjagwe, Aisha, Vincent Kakembo, and Barasa Bernard. "Land Use Cover Types and Forest Management Options for Carbon in Mabira Central Forest Reserve." In African Handbook of Climate Change Adaptation, 2733–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_145.
Full textOwoade, Folasade Mary, Samuel Godfried Kwasi Adiku, Christopher John Atkinson, and Dilys Sefakor MacCarthy. "Differential Impact of Land Use Types on Soil Productivity Components in Two Agro-ecological Zones of Southern Ghana." In African Handbook of Climate Change Adaptation, 1721–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_144.
Full textLal, Rattan. "Climate Change and the Global Soil Carbon Stocks." In Soil and Climate, 419–26. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2018. | Series: Advances in soil science: CRC Press, 2018. http://dx.doi.org/10.1201/b21225-16.
Full textConference papers on the topic "Carbon stock on soil"
"A meta-model for soil carbon stock in agricultural soils." In 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2011. http://dx.doi.org/10.36334/modsim.2011.b1.luo.
Full textButlers, Aldis, and Andis Lazdins. "Carbon stock in litter and organic soil in drained and naturally wet forest lands in Latvia." In Research for Rural Development 2020. Latvia University of Life Sciences and Technologies, 2020. http://dx.doi.org/10.22616/rrd.26.2020.007.
Full textR., Nur Aqlili Riana, and Sahibin A. R. "Soil carbon stock and soil characteristics at Tasik Chini Forest Reserve, Pahang, Malaysia." In THE 2015 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4931212.
Full textLupikis, Ainars, and Andis Lazdins. "Soil carbon stock changes in transitional mire drained for forestry in Latvia: a case study." In Research for Rural Development, 2017. Latvia University of Agriculture, 2017. http://dx.doi.org/10.22616/rrd.23.2017.008.
Full text"Measurement of Carbon Stock and Soil Characteristics Reviewed from Coastline in the Mangrove Wonorejo Forest, Surabaya." In Seminar Nasional Magister Agroteknologi Fakultas Pertanian UPN “Veteran” Jawa Timur. Galaxy Science, 2020. http://dx.doi.org/10.11594/nstp.2020.0614.
Full textBobric, Elena Diana. "A COMPARISON OF SOIL ORGANIC CARBON STOCKS IN PASTORAL, CROPPING AND FOREST SOILS." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/32/s14.091.
Full textTang, Jie, Nan Zhang, Zhaoyang Li, and Bo Yang. "Variation of Soil Organic Carbon Stock under Land Use and Land Cover Changes in Farming-Pastoral Ecotone over the Past Century in Zhenlai, China." In 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB). IEEE, 2012. http://dx.doi.org/10.1109/icbeb.2012.465.
Full text"Estimating soil organic carbon stocks using machine learning methods in the semi-arid rangelands of New South Wales." In 22nd International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2017. http://dx.doi.org/10.36334/modsim.2017.g1.wang.
Full textZhang, Lei, Peng Zhang, Mukui Yu, and Tonggui Wu. "Soil organic carbon content and stocks in an age-sequence of Metasequoia glyptostroboides plantations in coastal area, East China." In 2015 4th International Conference on Sustainable Energy and Environmental Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icseee-15.2016.178.
Full textZhan, Jinyan, Nana Shi, Xiangzheng Deng, Hongbo Su, and Dongsheng Qiu. "Interpolating the Information of Site-based Soil Organic Carbon Stocks into Surface: a Case Study in the North China Plain." In IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2008. http://dx.doi.org/10.1109/igarss.2008.4779842.
Full textReports on the topic "Carbon stock on soil"
Wielopolski, Lucian, G. Hendrey, I. Orion, S. Prior, H. Rogers, B. Runion, and A. Torbert. NON-DESTRUCTIVE SOIL CARBON ANALYZER. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/15007355.
Full textAndress, D. Soil carbon changes for bioenergy crops. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/834706.
Full textMontz, A., V. R. Kotamarthi, and H. Bellout. Soil carbon response to rising temperature. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1051236.
Full textSawyer, John E., Mahdi Al-Kaisi, Daniel W. Barker, and Weston Dittmer. Soil Nitrogen and Carbon Management Project. Ames: Iowa State University, Digital Repository, 2002. http://dx.doi.org/10.31274/farmprogressreports-180814-1507.
Full textZinke, P. J., A. G. Stangenberger, W. M. Post, W. R. Emanual, and J. S. Olson. Worldwide organic soil carbon and nitrogen data. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/543663.
Full textFancher, J. D. Carbon tetrachloride ERA soil-gas baseline monitoring. Office of Scientific and Technical Information (OSTI), July 1994. http://dx.doi.org/10.2172/10167614.
Full textSmith, James E., Linda S. Heath, and Michael C. Nichols. US forest carbon calculation tool: forest-land carbon stocks and net annual stock change. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station, 2007. http://dx.doi.org/10.2737/nrs-gtr-13.
Full textLarson, Steven, Ryan Busby, W. Andy Martin, Victor Medina, Peter Seman, Christopher Hiemstra, Umakant Mishra, and Tom Larson. Sustainable carbon dioxide sequestration as soil carbon to achieve carbon neutral status for DoD lands. Engineer Research and Development Center (U.S.), November 2017. http://dx.doi.org/10.21079/11681/25406.
Full textAl-Kaisi, Mahdi. Long-term Tillage and Crop Rotation Effects on Soil Carbon and Soil Productivity. Ames: Iowa State University, Digital Repository, 2010. http://dx.doi.org/10.31274/farmprogressreports-180814-810.
Full textAl-Kaisi, Mahdi. Long-Term Tillage and Crop Rotation Effects on Soil Carbon and Soil Productivity. Ames: Iowa State University, Digital Repository, 2008. http://dx.doi.org/10.31274/farmprogressreports-180814-914.
Full text