To see the other types of publications on this topic, follow the link: Carbon stock on soil.

Journal articles on the topic 'Carbon stock on soil'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Carbon stock on soil.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ťupek, Boris, Carina A. Ortiz, Shoji Hashimoto, Johan Stendahl, Jonas Dahlgren, Erik Karltun, and Aleksi Lehtonen. "Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status." Biogeosciences 13, no. 15 (August 10, 2016): 4439–59. http://dx.doi.org/10.5194/bg-13-4439-2016.

Full text
Abstract:
Abstract. Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem–atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.
APA, Harvard, Vancouver, ISO, and other styles
2

Barančíková, G., J. Makovníková, R. Skalský, Z. Tarasovičová, M. Nováková, J. Halás, M. Gutteková, and Š. Koco. "Simulation of soil organic carbon changes in Slovak arable land and their environmental aspects." Soil and Water Research 7, No. 2 (May 18, 2012): 45–51. http://dx.doi.org/10.17221/38/2011-swr.

Full text
Abstract:
One of the key goals of the Thematic Strategy for Soil Protection is to maintain and improve soil organic carbon (SOC) stocks. A decline of SOC stocks is politically perceived as a serious threat to soil quality and functions. A suitable tool for acquiring the information on SOC stock changes is modelling. The RothC-26.3 model was applied for long-term modelling (1970–2007) of the SOC stock in the topsoil of croplands of Slovakia. Simulation results show a gradual increase in the SOC stock in the first phase of modelling (1970–1995) mainly due to higher carbon input in the soil. A significant linear correlation (r = 0.4**, n = 275) was found between carbon input and the final simulation of SOC stock. A close relationship between the SOC stock and soil production potential index representing the official basis for soil quality assessment in Slovakia was also determined and a polynomial relationship was found which describes the relation at the 95% confidence level. We have concluded from the results that balanced or positive changes in the SOC stock dynamics that are important for sustainable use of soils could be influenced positively or negatively in Slovakia by political decisions concerning the soil management. Moreover, the soil production potential index can be used as soil quality information support for such decision-making.
APA, Harvard, Vancouver, ISO, and other styles
3

Assad, E. D., H. S. Pinto, S. C. Martins, J. D. Groppo, P. R. Salgado, B. Evangelista, E. Vasconcellos, et al. "Changes in soil carbon stocks in Brazil due to land use: paired site comparisons and a regional pasture soil survey." Biogeosciences Discussions 10, no. 3 (March 21, 2013): 5499–533. http://dx.doi.org/10.5194/bgd-10-5499-2013.

Full text
Abstract:
Abstract. In this paper we calculated soil carbon stocks in Brazil using 17 paired sites where soil stocks were determined in native vegetation, pastures and crop-livestock systems (CPS), and in other regional samplings encompassing more than 100 pasture soils, from 6.58° S to 31.53° S, involving three major Brazilian biomes: Cerrado, Atlantic Forest, and the Pampa. The average native vegetation soil carbon stocks at 10 and 30 cm soil depth were equal to approximately 33 and 65 Mg ha−1, respectively. In the paired sites, carbon losses of 7.5 Mg ha−1 and 11.9 Mg ha−1 in CPS systems were observed at 10 cm and 30 cm soil depth averages, respectively. In pasture soils, carbon losses were similar and equal to 8.3 Mg ha−1 and 12.2 Mg ha−1 at 10 cm and 30 cm soil depths, respectively. The average soil δ13C under native vegetation at 10 and 30 cm depth were equal to −25.4‰ and −24.0‰, increasing to −19.6 ‰ and −17.7‰ in CPS, and to −18.9‰, and −18.3‰ in pasture soils, respectively; indicating an increasing contribution of C4 carbon in these agrosystems. In the regional survey of pasture soils, the soil carbon stock at 30 cm was equal to approximately 51 Mg ha−1, with an average δ13C value of −19.6‰. Key controllers of soil carbon stock at pasture sites were sand content and mean annual temperature. Collectively, both could explain approximately half of the variance of soil carbon stocks. When pasture soil carbon stocks were compared with the average soil carbon stocks of native vegetation estimated for Brazilian biomes and soil types by Bernoux et al. (2002) there was a carbon gain of 6.7 Mg ha−1, which is equivalent to a carbon gain of 15% compared to the carbon soil stock of the native vegetation. The findings of this study are consistent with differences found between regional comparisons like our pasture sites and local paired study sites in estimating soil carbon stocks changes due to land use changes.
APA, Harvard, Vancouver, ISO, and other styles
4

Reyna-Bowen, Lizardo, Jarosław Lasota, Lenin Vera-Montenegro, Baly Vera-Montenegro, and Ewa Błońska. "Distribution and Factors Influencing Organic Carbon Stock in Mountain Soils in Babia Góra National Park, Poland." Applied Sciences 9, no. 15 (July 29, 2019): 3070. http://dx.doi.org/10.3390/app9153070.

Full text
Abstract:
The objective of this study was to determine the soil organic carbon stock (T-SOC stock) in different mountain soils in the Babia Góra National Park (BNP). Environmental factors, such as the topography, parent material, and vegetation, were examined for their effect on carbon stock. Fifty-nine study plots in different BNP locations with diverse vegetation were selected for the study. In each study plot, organic carbon stock was calculated, and its relationships with different site factors were determined. The results reveal that the SOC stocks in the mountain soils of the BNP are characterized by high variability (from 50.10 to 905.20 t ha − 1 ). The general linear model (GLM) analysis indicates that the soil type is an important factor of soil organic carbon stock. Topographical factors influence soil conditions and vegetation, which results in a diversity in carbon accumulation in different mountain soils in the BNP. The highest carbon stock was recorded in histosols (>550 t C ha − 1 ), which are located in the lower part of the BNP in the valleys and flat mountain areas.
APA, Harvard, Vancouver, ISO, and other styles
5

Assad, E. D., H. S. Pinto, S. C. Martins, J. D. Groppo, P. R. Salgado, B. Evangelista, E. Vasconcellos, et al. "Changes in soil carbon stocks in Brazil due to land use: paired site comparisons and a regional pasture soil survey." Biogeosciences 10, no. 10 (October 1, 2013): 6141–60. http://dx.doi.org/10.5194/bg-10-6141-2013.

Full text
Abstract:
Abstract. In this paper we calculated soil carbon stocks in Brazil studying 17 paired sites where soil stocks were determined in native vegetation, pastures and crop-livestock systems (CPS), and in other regional samplings encompassing more than 100 pasture soils, from 6.58 to 31.53° S, involving three major Brazilian biomes: Cerrado, Atlantic Forest, and the Pampa. The average native vegetation soil carbon stocks at 10, 30 and 60 cm soil depth were equal to approximately 29, 64, and 92 Mg ha−1, respectively. In the paired sites, carbon losses of 7.5 Mg ha−1 and 11.6 Mg ha−1 in CPS systems were observed at 10 cm and 30 cm soil depths, respectively. In pasture soils, carbon losses were similar and equal to 7.5 Mg ha−1 and 11.0 Mg ha−1 at 10 cm and 30 cm soil depths, respectively. Differences at 60 cm soil depth were not significantly different between land uses. The average soil δ13C under native vegetation at 10 and 30 cm depth were equal to −25.4‰ and −24.0‰, increasing to −19.6‰ and −17.7‰ in CPS, and to −18.9‰, and −18.3‰ in pasture soils, respectively; indicating an increasing contribution of C4 carbon in these agrosystems. In the regional survey of pasture soils, the soil carbon stock at 30 cm was equal to approximately 51 Mg ha−1, with an average δ13C value of −19.67‰. Key controllers of soil carbon stock in pasture sites were sand content and mean annual temperature. Collectively, both could explain approximately half of the variance of soil carbon stocks. When pasture soil carbon stocks were compared with the average soil carbon stocks of native vegetation estimated for Brazilian biomes and soil types by Bernoux et al. (2002) there was a carbon gain of 6.7 Mg ha−1, which is equivalent to a carbon gain of 15% compared to the carbon soil stock of the native vegetation. The findings of this study are consistent with differences found between regional comparisons like our pasture sites and plot-level paired study sites in estimating soil carbon stocks changes due to land use changes.
APA, Harvard, Vancouver, ISO, and other styles
6

Ghanbari Motlagh, Mohadeseh, Sasan Babaie Kafaky, Asadollah Mataji, Reza Akhavan, and Behzad Amraei. "An introduction to the distribution of carbon stocks in temperate broadleaf forests of northern Iran." Journal of Forest Science 66, No. 2 (February 28, 2020): 70–79. http://dx.doi.org/10.17221/149/2019-jfs.

Full text
Abstract:
Northern forests of Iran are among the most important plant communities in Iran due to their dynamic and diverse vegetation composition and fertile soils. There is little information about carbon stocks of these forests. In the present study, above- and belowground carbon stocks of trees, litter, herbs and soil organic carbon stock at three selected sites of these forests were calculated using random plots and non-destructive sampling. The FAO method was used for carbon estimation of trees and Walkley-Black method was used for soil carbon stock and carbon coefficient was estimated directly. The results showed that both the tree carbon stocks and soil carbon stocks increased from east to west with increasing altitude, showing significant differences. The results also indicate that these forests have a high carbon sequestration potential as a green belt across the northern slopes of the Alborz Mountains, when the contribution of the aboveground section was greater than that of the belowground section (soil and roots) at all sites.
APA, Harvard, Vancouver, ISO, and other styles
7

Holmes, Karen W., Andrew Wherrett, Adrian Keating, and Daniel V. Murphy. "Meeting bulk density sampling requirements efficiently to estimate soil carbon stocks." Soil Research 49, no. 8 (2011): 680. http://dx.doi.org/10.1071/sr11161.

Full text
Abstract:
Estimation of soil organic carbon stocks requires bulk density (BD) measurements. Variability in BD contributes to carbon stock uncertainty, in turn affecting how large a change in stock can be observed over time or space. However, BD is difficult and time-consuming to measure, and sample collection is further complicated by extremely dry field conditions, coarse-textured soils, and high coarse-fragment content, which are common in southern Australia and other semi-arid and Mediterranean-type climates. Two alternatives to reduce BD sampling effort are to take fewer BD samples at a site (i.e. volumetric rings or clod), and to use more time-efficient methods (i.e. gamma–neutron density meter, NDM). We evaluate these options in the context of a soil carbon stock survey in agricultural land in the south-west of Australia. The BD values within a monitoring site measured with conventional and NDM methods were statistically different when assessed using large sample sizes; the measurements diverged where the coarse fraction volume was >20%. However, carbon stocks were equivalent, reflecting the much larger relative variability in carbon percentage, which contributed 84–99% of the uncertainty in carbon stocks compared with <5% from BD. Given the maximum variability measured, soil carbon stock changes in southern Australia should be monitored on a decadal scale.
APA, Harvard, Vancouver, ISO, and other styles
8

Barančíková, G., J. Halás, M. Gutteková, J. Makovníková, M. Nováková, R. Skalský, and Z. Tarasovičová. "Application of RothC model to predict soil organic carbon stock on agricultural soils of Slovakia." Soil and Water Research 5, No. 1 (February 26, 2010): 1–9. http://dx.doi.org/10.17221/23/2009-swr.

Full text
Abstract:
Soil organic matter (SOM) takes part in many environmental functions and, depending on the conditions, it can be a source or a sink of the greenhouse gases. Presently, the changes in soil organic carbon (SOC) stock can arise because of the climatic changes or changes in the land use and land management. A promising method in the estimation of SOC changes is modelling, one of the most used models for the prediction of changes in soil organic carbon stock on agricultural land being the RothC model. Because of its simplicity and availability of the input data, RothC was used for testing the efficiency to predict the development of SOC stock during 35-year period on agricultural land of Slovakia. The received data show an increase of SOC stock during the first (20 years) phase and no significant changes in the course of the second part of modelling. The increase of SOC stock in the first phase can be explained by a high carbon input of plant residues and manure and a lower temperature in comparison with the second modelling part.
APA, Harvard, Vancouver, ISO, and other styles
9

Lukina, Natalia, Anastasia Kuznetsova, Elena Tikhonova, Vadim Smirnov, Maria Danilova, Aleksey Gornov, Olga Bakhmet, et al. "Linking Forest Vegetation and Soil Carbon Stock in Northwestern Russia." Forests 11, no. 9 (September 10, 2020): 979. http://dx.doi.org/10.3390/f11090979.

Full text
Abstract:
Research Highlights: It was found that both tree species and ground vegetation affected soil carbon stock in boreal forests. Carbon stocks in the mineral layers were related negatively to the C/N ratio in the organic horizon and pine proportion in the growing stock volume, and positively to the share of herbaceous plants and the proportion of spruce. Background and Objectives: Existing research showed the effects of tree species on soil carbon stocks in organic horizons, but these effects were less clear in mineral horizons. Little is known about the effects of ground vegetation on soil carbon stock. This study aims to identify associations between the forest vegetation composition and soil carbon stocks in northwestern Russia. Materials and Methods: Research data from 109 pine, spruce and birch forests of different Cajander’s and Sukachev’s types with different functional compositions of ground vegetation at autonomous positions are discussed in this paper. The V-test was used to assess the impact of vegetation on soil carbon stocks. Results: Variations in Carbon stocks in the mineral layers were associated with the soil types and vegetation composition. Carbic Albic Podzols accumulated the least amount of carbon in the mineral profile. Carbon stock in the mineral layers in pine forests was considerably lower than in spruce and birch forests. Spruce forests with the highest share of herbaceous plants were characterised by the highest carbon stocks in the mineral layers, while pine forests with dwarf shrubs and green mosses accumulated more carbon in the organic layers, but carbon stocks in the mineral layers here were the lowest. Conclusions: Differences in soil carbon stocks between and within northern and middle taiga in northwestern Russia were associated not only with soil types but also with the proportions of forest types dominated by different tree species and ground vegetation functional groups.
APA, Harvard, Vancouver, ISO, and other styles
10

Armitage, A. R., and J. W. Fourqurean. "Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment." Biogeosciences 13, no. 1 (January 15, 2016): 313–21. http://dx.doi.org/10.5194/bg-13-313-2016.

Full text
Abstract:
Abstract. The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of long-term and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experiment embedded within a naturally occurring, long-term gradient of phosphorus availability within Florida Bay (USA). We measured organic carbon stocks in soils and above- and belowground seagrass biomass after 17 months of experimental nutrient addition. At the nutrient-limited sites, phosphorus addition increased the carbon stock in aboveground seagrass biomass by more than 300 %; belowground seagrass carbon stock increased by 50–100 %. Soil carbon content slightly decreased ( ∼ 10 %) in response to phosphorus addition. There was a strong but non-linear relationship between soil carbon and Thalassia testudinum leaf nitrogen : phosphorus (N : P) or belowground seagrass carbon stock. When seagrass leaf N : P exceeded an approximate threshold of 75 : 1, or when belowground seagrass carbon stock was less than 100 g m−2, there was less than 3 % organic carbon in the sediment. Despite the marked difference in soil carbon between phosphorus-limited and phosphorus-replete areas of Florida Bay, all areas of the bay had relatively high soil carbon stocks near or above the global median of 1.8 % organic carbon. The relatively high carbon content in the soils indicates that seagrass beds have extremely high carbon storage potential, even in nutrient-limited areas with low biomass or productivity.
APA, Harvard, Vancouver, ISO, and other styles
11

Armitage, A. R., and J. W. Fourqurean. "Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment." Biogeosciences Discussions 12, no. 19 (October 2, 2015): 16285–312. http://dx.doi.org/10.5194/bgd-12-16285-2015.

Full text
Abstract:
Abstract. The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of long-term and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experiment embedded within a naturally occurring, long-term gradient of phosphorus availability within Florida Bay (USA). We measured organic carbon stocks in soils and above- and belowground seagrass biomass after 17 months of experimental nutrient addition. At the nutrient-limited sites, phosphorus addition increased the carbon stock in aboveground seagrass biomass by more than 300 %; belowground seagrass carbon stock increased by 50–100 %. Soil carbon content slightly decreased (~ 10 %) in response to phosphorus addition. There was a strong but non-linear relationship between soil carbon and Thalassia testudinum leaf nitrogen: phosphorus (N : P) or belowground seagrass carbon stock. When seagrass leaf N : P exceeded a threshold of 75 : 1, or when belowground seagrass carbon stock was less than 100 g m−2, there was less than 3 % organic carbon in the sediment. Despite the marked difference in soil carbon between phosphorus-limited and phosphorus-replete areas of Florida Bay, all areas of the bay had relatively high soil carbon stocks near or above the global median of 1.8 % organic carbon. The relatively high carbon content in the soils indicates that seagrass beds have extremely high carbon storage potential, even in nutrient-limited areas with low biomass or productivity.
APA, Harvard, Vancouver, ISO, and other styles
12

Marques, Jean Dalmo de Oliveira, Flávio Jesus Luizão, Wenceslau Geraldes Teixeira, Claudia Marie Vitel, and Elizalane Moura de Araújo Marques. "SOIL ORGANIC CARBON, CARBON STOCK AND THEIR RELATIONSHIPS TO PHYSICAL ATTRIBUTES UNDER FOREST SOILS IN CENTRAL AMAZONIA." Revista Árvore 40, no. 2 (April 2016): 197–208. http://dx.doi.org/10.1590/0100-67622016000200002.

Full text
Abstract:
ABSTRACT The soil carbon under Amazonian forests has an important roles in global changing, making information on the soil content and depths of these stocks are considerable interest in efforts to quantify soil carbon emissions to the atmosphere.This study quantified the content and soil organic carbon stock under primary forest up to 2 m depth, at different topographic positions, at Cuieiras Biological Reserve, Manaus/ ZF2, km 34, in the Central Amazon, evaluating the soil attributes that may influence the permanence of soil carbon. Soil samples were collected along a transect of 850 m on topographic gradient Oxisol (plateau), Ultisol (slope) and Spodosol (valley). The stocks of soil carbon were obtained by multiplying the carbon content, soil bulk density and trickiness of soil layers. The watershed was delimited by using STRM and IKONOS images and the carbon contend obtained in the transects was extrapolated as a way to evaluate the potential for carbon stocks in an area of 2678.68 ha. The total SOC was greater in Oxisol followed by Spodosol and Ultisol. It was found direct correlations between the SOC and soil physical attributes. Among the clay soils (Oxisol and Ultisol), the largest stocks of carbon were observed in Oxisol at both the transect (90 to 175.5 Mg C ha-1) as the level of watershed (100.2 to 195.2 Mg C ha-1). The carbon stocks under sandy soil (Spodosol) was greater to clay soils along the transect (160-241 Mg C ha-1) and near them in the Watershed (96.90 to 146.01 Mg C ha-1).
APA, Harvard, Vancouver, ISO, and other styles
13

Dantas, Daniel, Marcela de Castro Nunes Santos Terra, Luiz Otávio Rodrigues Pinto, Natalino Calegario, and Sabrina Mandarano Maciel. "Above and belowground carbon stock in a tropical forest in Brazil." Acta Scientiarum. Agronomy 43 (November 5, 2020): e48276. http://dx.doi.org/10.4025/actasciagron.v43i1.48276.

Full text
Abstract:
An increase in atmospheric CO2 levels and global climate changes have led to an increased focus on CO2 capture mechanisms. The in situ quantification and spatial patterns of forest carbon stocks can provide a better picture of the carbon cycle and a deeper understanding of the functions and services of forest ecosystems. This study aimed to determine the aboveground (tree trunks) and belowground (soil and fine roots, at four depths) carbon stocks in a tropical forest in Brazil and to evaluate the spatial patterns of carbon in the three different compartments and in the total stock. Census data from a semideciduous seasonal forest were used to estimate the aboveground carbon stock. The carbon stocks of soil and fine roots were sampled in 52 plots at depths of 0-20, 20-40, 40-60, and 60-80 cm, combined with the measured bulk density. The total estimated carbon stock was 267.52 Mg ha-1, of which 35.23% was in aboveground biomass, 63.22% in soil, and 1.54% in roots. In the soil, a spatial pattern of the carbon stock was repeated at all depths analyzed, with a reduction in the amount of carbon as the depth increased. The carbon stock of the trees followed the same spatial pattern as the soil, indicating a relationship between these variables. In the fine roots, the carbon stock decreased with increasing depth, but the spatial gradient did not follow the same pattern as the soil and trees, which indicated that the root carbon stock was most likely influenced by other factors.
APA, Harvard, Vancouver, ISO, and other styles
14

Xiao, Ruihan, Xiuling Man, and Beixing Duan. "Carbon and Nitrogen Stocks in Three Types of Larix gmelinii Forests in Daxing’an Mountains, Northeast China." Forests 11, no. 3 (March 11, 2020): 305. http://dx.doi.org/10.3390/f11030305.

Full text
Abstract:
Studying carbon and nitrogen stocks in different types of larch forest ecosystems is of great significance for assessing the carbon sink capacity and nitrogen level in larch forests. To evaluate the effects of the differences of forest type on the carbon and nitrogen stock capacity of the larch forest ecosystem, we selected three typical types of larch forest ecosystems in the northern part of Daxing’an Mountains, which were the Rhododendron simsii-Larix gmelinii forest (RL), Ledum palustre-Larix gmelinii forest (LL) and Sphagnum-Bryum-Ledum palustre-Larix gmelinii forest (SLL), to determine the carbon and nitrogen stocks in the vegetation (trees and understories), litter and soil. Results showed that there were significant differences in carbon and nitrogen stocks among the three types of larch forest ecosystems, showing a sequence of SLL (288.01 Mg·ha−1 and 25.19 Mg·ha−1) > LL (176.52 Mg·ha−1 and 14.85 Mg·ha−1) > RL (153.93 Mg·ha−1 and 10.00 Mg·ha−1) (P < 0.05). The largest proportions of carbon and nitrogen stocks were found in soils, accounting for 83.20%, 72.89% and 64.61% of carbon stocks and 98.61%, 97.58% and 96.00% of nitrogen stocks in the SLL, LL and RL, respectively. Also, it was found that significant differences among the three types of larch forest ecosystems in terms of soil carbon and nitrogen stocks (SLL > LL > RL) (P < 0.05) were the primary reasons for the differences in the ecosystem carbon and nitrogen stocks. More than 79% of soil carbon and 51% of soil nitrogen at a depth of 0–100 cm were stored in the upper 50 cm of the soil pool. In the vegetation layer, due to the similar tree biomass carbon and nitrogen stocks, there were no significant differences in carbon and nitrogen stocks among the three types of larch forest ecosystems. The litter carbon stock in the SLL was significantly higher than that in the LL and RL (P < 0.05), but no significant differences in nitrogen stock were found among them (P > 0.05). These findings suggest that different forest types with the same tree layer and different understory vegetation can greatly affect the carbon and nitrogen stock capacity of the forest ecosystem. This indicates that understory vegetation may have significant effects on the carbon and nitrogen stocks in soil and litter, which highlights the need to consider the effects of understory in future research into the carbon and nitrogen stock capacity of forest ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
15

Ogunwole, Joshua O., Luis C. Timm, Evelyn O. Obidike-Ugwu, and Donald M. Gabriels. "State-Space Estimation of Soil Organic Carbon Stock." International Agrophysics 28, no. 2 (April 1, 2014): 185–94. http://dx.doi.org/10.2478/intag-2014-0007.

Full text
Abstract:
Abstract Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.
APA, Harvard, Vancouver, ISO, and other styles
16

Mehmood, Ayaz, Mohammad Akhtar, Shah Rukh, Muhammad Imran, Asma Hassan, Kashif Abbasi, Abdul Qayyum, et al. "Soil organic carbon stock variation with climate and land use in shale derived soils." Journal of the Serbian Chemical Society 83, no. 6 (2018): 785–93. http://dx.doi.org/10.2298/jsc171003115m.

Full text
Abstract:
Anthropogenic activities, urbanization and industrialization cause an increase in the atmospheric carbon dioxide. Current focus of the soil scientists and the environmentalists is to quantify the carbon stocks and its flow in the agroecological system which is one of the main causes of global warming and climate change. The information on the distribution of soil organic carbon (SOC) stocks in the soil profiles in relation with changing climate is barely sufficient. Objective of this study was to quantify the effect of climate and land on the equilibrium of SOC stocks in soil profiles with development. Murree soil series (Typic Hapludolls) in humid climate and under coniferous forest, and Tirnul soil series (Typic Haplustepts) in semiarid climate under cultivation, were selected. Triplicate soil profiles were selected for each of the soils and sampled at genetic horizons level. Cumulative SOC stocks in Typic Hapludolls soil profiles (95 Mg ha-1) were significantly greater than Typic Haplustepts (30 Mg ha-1). The Typic Hapludolls had significantly greater SOC stock at each horizon level under humid climate. This research concludes that soils under forest and humid climate had higher SOC stocks as compared to the soils under semiarid climate and cultivation.
APA, Harvard, Vancouver, ISO, and other styles
17

Melki, Melki, and Isnaini Isnaini. "Carbon Stocks in Mangrove Ecosystems of Musi and Banyuasin Estuarine, South Sumatra Province (Stok Karbon Ekosistem Mangrove di Estuarin Musi dan Banyuasin, Provinsi Sumatera Selatan)." ILMU KELAUTAN: Indonesian Journal of Marine Sciences 19, no. 3 (September 2, 2014): 131. http://dx.doi.org/10.14710/ik.ijms.19.3.131-138.

Full text
Abstract:
Hutan mangrove di daerah estuari mampu menghasilkan stok karbon yang sangat besar sebagai daerah perlindungan dan pemulihan yang efektif sebagai strategi mitigasi perubahan iklim yang efektif. Pemilihan ekosistem pesisir dalam strategi mitigasi memerlukan kuantifikasi stok karbon untuk menghitung emisi atau penyerapan berdasarkan waktu. Penelitian ini menghitung stok karbon pada ekosistem Musi Estuari Waters (MEW) dan Banyuasin Estuari Water (BEW), Provinsi Sumatera Selatan pada tipe vegetasi yang berbeda dan hubungan variabel lingkungan dengan stok karbon. Di tujuh lokasi dalam MEW dan BEW sampel vegetasi dan tanah. Hasil yang didapatkan adalah nilai yang lebih tinggi dari stok karbon di vegetasi dari lokasi III/MEW (7.600,92 mg.ha-1), stok karbon dalam tanah dari lokasi II/MEW (61.081,87 mg.ha-1) dan stok karbon di ekosistem dari lokasi II (64.548,54 mg.ha-1). Mangrove A. marina merupakan yang paling baik menyimpan stok carbon termasuk antara vegetasi dan tanah karena toleransi salinitas yang rendah. Kata kunci: mangrove, karbon, estuari, Musi, Banyuasin Mangrove forests in estuarines can have exceptionally large carbon stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies require quantification of carbon stocks in order to calculate emissions or sequestration through time. This study quantified the ecosystem carbon stocks of the Musi Estuarine Waters (MEW) and Banyuasin Estuarine Water (BEW), Province of South Sumatra into different vegetation types and examined relationships of environmental variables with carbon stocks. At seven sites within MEW and BEW of vegetation and soil samples. The results that the higher value of carbon stock in vegetation from Site III/MEW (7.600,92 mg.ha-1), the carbon stock in soil from Site II/MEW (61.081,87 mg.ha-1) and carbon stock in ecosystem from Site II (64.548,54 mg.ha-1). Mangrove of A. marina the best to explain carbon stocks included both vegetation and soil because they can tolerate lower salinity. Keywords: mangrove, carbon, estuarine, Musi, Banyuasin
APA, Harvard, Vancouver, ISO, and other styles
18

Miller, B. A., S. Koszinski, M. Wehrhan, and M. Sommer. "Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks." SOIL 1, no. 1 (March 4, 2015): 217–33. http://dx.doi.org/10.5194/soil-1-217-2015.

Full text
Abstract:
Abstract. The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m−2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
APA, Harvard, Vancouver, ISO, and other styles
19

Roxburgh, S. H., B. G. Mackey, C. Dean, L. Randall, A. Lee, and J. Austin. "Organic carbon partitioning in soil and litter in subtropical woodlands and open forests: a case study from the Brigalow Belt, Queensland." Rangeland Journal 28, no. 2 (2006): 115. http://dx.doi.org/10.1071/rj05015.

Full text
Abstract:
A woodland–open forest landscape within the Brigalow Belt South bioregion of Queensland, Australia, was surveyed for soil organic carbon, soil bulk density and soil-surface fine-litter carbon. Soil carbon stocks to 30 cm depth across 14 sites, spanning a range of soil and vegetation complexes, ranged from 10.7 to 61.8 t C/ha, with an overall mean of 36.2 t C/ha. Soil carbon stocks to 100 cm depth ranged from 19.4 to 150.5 t C/ha, with an overall mean of 72.9 t C/ha. The standing stock of fine litter ranged from 1.0 to 7.0 t C/ha, with a mean of 2.6 t C/ha, and soil bulk density averaged 1.4 g/cm3 at the soil surface, and 1.6 g/cm3 at 1 m depth. These results contribute to the currently sparse database of soil organic carbon and bulk density measurements in uncultivated soils within Australian open forests and woodlands. The estimates of total soil organic carbon stock calculated to 30 cm depth were further partitioned into resistant plant material (RPM), humus (HUM), and inert organic matter (IOM) pools using diffuse mid-infrared (MIR) analysis. Prediction of the HUM and RPM pools using the RothC soil carbon model agreed well with the MIR measurements, confirming the suitability of RothC for modelling soil organic carbon in these soils. Methods for quantifying soil organic carbon at landscape scales were also explored, and a new regression-based technique for estimating soil carbon stocks from simple field-measured soil attributes has been proposed. The results of this study are discussed with particular reference to the difficulties encountered in the collection of the data, their limitations, and opportunities for the further development of methods for quantifying soil organic carbon at landscape scales.
APA, Harvard, Vancouver, ISO, and other styles
20

Hombegowda, H. C., O. van Straaten, M. Köhler, and D. Hölscher. "On the rebound: soil organic carbon stocks can bounce back to near forest levels when agroforests replace agriculture in southern India." SOIL 2, no. 1 (January 18, 2016): 13–23. http://dx.doi.org/10.5194/soil-2-13-2016.

Full text
Abstract:
Abstract. Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is influenced by the type of the agroforestry system established, the soil and climatic conditions, and management. In this regional-scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): home garden, coffee, coconut and mango. In total we established 224 plots in 56 plot clusters across 4 climate zones in southern India. Each plot cluster consisted of four plots: a natural forest reference, an agriculture reference and two of the same AFS types of two ages (30–60 years and > 60 years). The conversion of forest to agriculture resulted in a large loss the original SOC stock (50–61 %) in the top meter of soil depending on the climate zone. The establishment of home garden and coffee AFSs on agriculture land caused SOC stocks to rebound to near forest levels, while in mango and coconut AFSs the SOC stock increased only slightly above the agriculture SOC stock. The most important variable regulating SOC stocks and its changes was tree basal area, possibly indicative of organic matter inputs. Furthermore, climatic variables such as temperature and precipitation, and soil variables such as clay fraction and soil pH were likewise all important regulators of SOC and SOC stock changes. Lastly, we found a strong correlation between tree species diversity in home garden and coffee AFSs and SOC stocks, highlighting possibilities to increase carbon stocks by proper tree species assemblies.
APA, Harvard, Vancouver, ISO, and other styles
21

Lee, Sunjeoung, Seunghyun Lee, Joonghoon Shin, Jongsu Yim, and Jinteak Kang. "Assessing the Carbon Storage of Soil and Litter from National Forest Inventory Data in South Korea." Forests 11, no. 12 (December 10, 2020): 1318. http://dx.doi.org/10.3390/f11121318.

Full text
Abstract:
Research Highlights: The estimation of soil and litter carbon stocks by the Land Use, Land-Use Changes, and Forestry (LULUCF) sectors has the potential to improve reports on national greenhouse gas (GHG) inventories. Background and Objectives: Forests are carbon sinks in the LULUCF sectors and therefore can be a comparatively cost-effective means and method of GHG mitigation. Materials and Methods: This study was conducted to assess soil at 0–30 cm and litter carbon stocks using the National Forest Inventory (NFI) data and random forest (RF) models, mapping their carbon stocks. The three main types of forest in South Kora were studied, namely, coniferous, deciduous, and mixed. Results: The litter carbon stocks (t C ha−1) were 4.63 ± 0.18 for coniferous, 3.98 ± 0.15 for mixed, and 3.28 ± 0.13 for deciduous. The soil carbon stocks (t C ha−1) were 44.11 ± 1.54 for deciduous, 35.75 ± 1.60 for mixed, and 33.96 ± 1.62 for coniferous. Coniferous forests had higher litter carbon stocks while deciduous forests contained higher soil carbon stocks. The carbon storage in the soil and litter layer increased as the forest grew older; however, a significant difference was found in several age classes. For mapping the soil and litter carbon stocks, we used four random forest models, namely RF1 to RF4, and the best performing model was RF2 (root mean square error (RMSE) (t C ha−1) = 1.67 in soil carbon stocks, 1.49 in soil and litter carbon stocks). Our study indicated that elevation, accessibility class, slope, diameter at breast height, height, and growing stock are important predictors of carbon stock. Soil and litter carbon stock maps were produced using the RF2 models. Almost all prediction values were appropriated to soil and litter carbon stocks. Conclusions: Estimating and mapping the carbon stocks in the soil and litter layer using the NFI data and random forest models could be used in future national GHG inventory reports. Additionally, the data and models can estimate all carbon pools to achieve an accurate and complete national GHG inventory report.
APA, Harvard, Vancouver, ISO, and other styles
22

Badgery, Warwick B., Aaron T. Simmons, Brian M. Murphy, Andrew Rawson, Karl O. Andersson, Vanessa E. Lonergan, and Remy van de Ven. "Relationship between environmental and land-use variables on soil carbon levels at the regional scale in central New South Wales, Australia." Soil Research 51, no. 8 (2013): 645. http://dx.doi.org/10.1071/sr12358.

Full text
Abstract:
The potential to change agricultural land use to increase soil carbon stocks has been proposed as a mechanism to offset greenhouse gas emissions. To estimate the potential carbon storage in the soil from regional surveys it is important to understand the influence of environmental variables (climate, soil type, and landscape) before land management can be assessed. A survey was done of 354 sites to determine soil organic carbon stock (SOC stock; Mg C/ha) across the Lachlan and Macquarie catchments of New South Wales, Australia. The influences of climate, soil physical and chemical properties, landscape position, and 10 years of land management information were assessed. The environmental variables described most of the regional variation compared with management. The strongest influence on SOC stock at 0–10 cm was from climatic variables, particularly 30-year average annual rainfall. At a soil depth of 20–30 cm, the proportion of silica (SiO2) determined by mid-infrared spectra (SiMIR) had a negative relationship with SOC stock, and sand and clay measured by particle size analysis also showed strong relationships at sites where measured. Of the difference in SOC stock explained by land use, cropping had lower soil carbon than pasture in rotation or permanent pasture at 0–10 cm. This relationship was consistent across a rainfall gradient, but once soil carbon was standardised per mm of average annual rainfall, there was a greater difference between cropping and permanent pasture with increasing SiMIR in soils. Land use is also regulated by climate, topography, and soil type, and the effect on SOC stock is better assessed in smaller land-management units to remove some variability due to climate and soil.
APA, Harvard, Vancouver, ISO, and other styles
23

Nyambo, Patrick, Chiduza Cornelius, and Tesfay Araya. "Carbon Dioxide Fluxes and Carbon Stocks under Conservation Agricultural Practices in South Africa." Agriculture 10, no. 9 (August 25, 2020): 374. http://dx.doi.org/10.3390/agriculture10090374.

Full text
Abstract:
Understanding the impacts of agricultural practices on carbon stocks and CO2 emission is imperative in order to recommend low emission strategies. The objective of this study was to investigate the effects of tillage, crop rotation, and residue management on soil CO2 fluxes, carbon stock, soil temperature, and moisture in the semi-arid conditions in the Eastern Cape of South Africa. The field trial was laid out as a split-split-plot design replicated three times. The main plots were tillage viz conventional tillage (CT) and no-till (NT). The sub-plots were allocated to crop rotations viz maize–fallow–maize (MFM), maize–oat–maize (MOM), and maize–vetch–maize (MVM). Crop residue management was in the sub-sub plots, viz retention (R+), removal (R−), and biochar (B). There were no significant interactions (p > 0.05) with respect to the cumulative CO2 fluxes, soil moisture, and soil temperature. Crop residue retention significantly increased the soil moisture content relative to residue removal, but was not different to biochar application. Soil tilling increased the CO2 fluxes by approximately 26.3% relative to the NT. The carbon dioxide fluxes were significantly lower in R− (2.04 µmoL m−2 s−1) relative to the R+ (2.32 µmoL m−2 s−1) and B treatments (2.36 µmoL m−2 s−1). The carbon dioxide fluxes were higher in the summer (October–February) months compared to the winter period (May–July), irrespective of treatment factors. No tillage had a significantly higher carbon stock at the 0-5 cm depth relative to CT. Amending the soils with biochar resulted in significantly lower total carbon stock relative to both R+ and R−. The results of the study show that NT can potentially reduce CO2 fluxes. In the short term, amending soils with biochar did not reduce the CO2 fluxes compared to R+, however the soil moisture increases were comparable.
APA, Harvard, Vancouver, ISO, and other styles
24

Schrumpf, M., E. D. Schulze, K. Kaiser, and J. Schumacher. "How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?" Biogeosciences Discussions 8, no. 1 (January 24, 2011): 723–69. http://dx.doi.org/10.5194/bgd-8-723-2011.

Full text
Abstract:
Abstract. Precise determination of changes in organic carbon (OC) stocks is prerequisite to understand the role of soils in the global cycling of carbon and to verify changes in stocks due to management. A large dataset was collected to form base to repeated soil inventories at 12 CarboEurope sites under different climate and land-use, and with different soil types. Concentration of OC, bulk density (BD), and fine earth fraction were determined to 60 cm depth at 100 sampling points per site. We investigated (1) time needed to detect changes in soil OC, assuming future re-sampling of 100 cores; (2) the contribution of different sources of uncertainties to OC stocks; (3) the effect of OC stock calculation on mass rather than volume base for change detection; and (4) the potential use of pedotransfer functions (PTF) for estimating BD in repeated inventories. The period of time needed for soil OC stocks to change strongly enough to be detectable depends on the spatial variability of soil properties, the depth increment considered, and the rate of change. Cropland sites, having small spatial variability, had lower minimum detectable differences (MDD) with 100 sampling points (105 ± 28 kg C m−2 for the upper 10 cm of the soil) than the grassland (206 ± 64 kg C m−2) and forest (246 ± 64 kg C m−2) sites. Expected general trends in soil OC indicate that changes could be detectable after 2–15 years with 100 samples if changes occurred in the upper 10 cm of stone-poor soils. Error propagation analyses showed that in undisturbed soils with low stone contents, OC concentrations contributed most to OC stock variability while BD and fine earth fraction were more important in upper soil layers of croplands and in stone rich soils. Though the calculation of OC stocks based on equivalent soil masses slightly decreases the chance to detect changes with time at most sites except for the croplands, it is still recommended to account for changing bulk densities with time. Application of PTF for the estimation of bulk densities caused considerable underestimation of total variances of OC stocks if the error associated with the PTF was not accounted for, which rarely is done in soil inventories. Direct measurement of all relevant parameters approximately every 10 years is recommended for repeated soil OC inventories.
APA, Harvard, Vancouver, ISO, and other styles
25

Schrumpf, M., E. D. Schulze, K. Kaiser, and J. Schumacher. "How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?" Biogeosciences 8, no. 5 (May 18, 2011): 1193–212. http://dx.doi.org/10.5194/bg-8-1193-2011.

Full text
Abstract:
Abstract. Precise determination of changes in organic carbon (OC) stocks is prerequisite to understand the role of soils in the global cycling of carbon and to verify changes in stocks due to management. A large dataset was collected to form base to repeated soil inventories at 12 CarboEurope sites under different climate and land-use, and with different soil types. Concentration of OC, bulk density (BD), and fine earth fraction were determined to 60 cm depth at 100 sampling points per site. We investigated (1) time needed to detect changes in soil OC, assuming future re-sampling of 100 cores; (2) the contribution of different sources of uncertainties to OC stocks; (3) the effect of OC stock calculation on mass rather than volume base for change detection; and (4) the potential use of pedotransfer functions (PTF) for estimating BD in repeated inventories. The period of time needed for soil OC stocks to change strongly enough to be detectable depends on the spatial variability of soil properties, the depth increment considered, and the rate of change. Cropland sites, having small spatial variability, had lower minimum detectable differences (MDD) with 100 sampling points (105 &amp;pm; 28 gC m−2 for the upper 10 cm of the soil) than grassland and forest sites (206 &amp;pm; 64 and 246 &amp;pm; 64 gC m−2 for 0–10 cm, respectively). Expected general trends in soil OC indicate that changes could be detectable after 2–15 yr with 100 samples if changes occurred in the upper 10 cm of stone-poor soils. Error propagation analyses showed that in undisturbed soils with low stone contents, OC concentrations contributed most to OC stock variability while BD and fine earth fraction were more important in upper soil layers of croplands and in stone rich soils. Though the calculation of OC stocks based on equivalent soil masses slightly decreases the chance to detect changes with time at most sites except for the croplands, it is still recommended to account for changing bulk densities with time. Application of PTF for the estimation of bulk densities caused considerable underestimation of total variances of OC stocks if the error associated with the PTF was not accounted for, which rarely is done in soil inventories. Direct measurement of all relevant parameters approximately every 10 yr is recommended for repeated soil OC inventories.
APA, Harvard, Vancouver, ISO, and other styles
26

Robertson, Fiona, Doug Crawford, Debra Partington, Ivanah Oliver, David Rees, Colin Aumann, Roger Armstrong, et al. "Soil organic carbon in cropping and pasture systems of Victoria, Australia." Soil Research 54, no. 1 (2016): 64. http://dx.doi.org/10.1071/sr15008.

Full text
Abstract:
Increasing soil organic carbon (SOC) storage in agricultural soils through changes to management may help to mitigate rising greenhouse gas emissions and sustain agricultural productivity and environmental conditions. However, in order to improve assessment of the potential for increasing SOC storage in the agricultural lands of Victoria, Australia, further information is required on current SOC levels and how they are related to environmental conditions, soil properties and agricultural management. Therefore, we measured stocks of SOC at 615 sites in pasture and cropping systems in Victoria, encompassing eight regions, five soil orders and four management classes (continuous cropping, crop–pasture rotation, sheep or beef pasture, and dairy pasture), and explored relationships between the C stocks and environment, soil and management. The results showed an extremely wide range in SOC, from 2 to 239 t C/ha (0–30 cm). Most of this variation was attributable to climate; almost 80% of the variation in SOC stock was related to annual rainfall or vapour pressure deficit (i.e. humidity). Texture-related soil properties accounted for a small, additional amount of variation in SOC. After accounting for climate, differences in SOC between management classes were small and often not significant. Management practices such as stubble retention, minimum cultivation, perennial pasture species, rotational grazing and fertiliser inputs were not significantly related to SOC stock. The relationships between SOC and environment, soil and management were scale-dependent. Within individual regions, the apparent influence of climate and soil properties on SOC stock varied, and in some regions, much of the variation in SOC stock remained unexplained. The results suggest that, across Victoria, there is a general hierarchy of influence on SOC stock: climate > soil properties > management class > management practices.
APA, Harvard, Vancouver, ISO, and other styles
27

Ma, Xuexi, Zhengzhong Jin, Yingju Wang, and Jiaqiang Lei. "Effects of Shelter Forests on Soil Organic Carbon of Irrigated Soils in the Taklimakan Desert." Sustainability 13, no. 8 (April 19, 2021): 4535. http://dx.doi.org/10.3390/su13084535.

Full text
Abstract:
An experiment was carried out to test the effects of artificial vegetation on soil organic carbon in sandy soil. The soils were collected from the Taklimakan desert highway shelter forests with different stand age (the stand ages are 5, 7, 10, 13, 16, respectively, and three shrubs named Calligonum mongolicunl, Tamarix chinensis and Haloxylon ammodendron were planted along the highway) in Xinjiang, northwest of China. The soil organic carbon stock in soil vertical layers were calculated. We measured four passive organic carbons (i.e., micro-aggregates organic carbon, humic organic carbon, acid-resistant organic carbon and antioxidant organic carbon). Furthermore, we analyzed the correlations and ratios among the different passive organic carbons. Finally, the chemical composition of humus was detected and the relative contents of C=O and CH groups were determined. The main results showed that, (1) the soil organic carbon and organic carbon stock were decreased with the increase of depth, mainly in 0–50 cm. (2) With the increase of stand age, only in Tamarix chinensis forest, the total soil organic carbon stock increased a little. (3) Total soil organic carbon had more closely correlation with contents of micro-aggregate organic carbon and humic organic carbon. (4) C=O/C-O-C increased a little after 10 years; CH/C-O-C had no obvious change with stand age; CH2/CH3 did not change obviously after 13 years. The Tamarix chinensis forest is the most helpful for carbon sequestration in sandy soil and stabilization in surface layer than Calligonum mongolicunl and Haloxylon ammodendron.
APA, Harvard, Vancouver, ISO, and other styles
28

Debbarma, Kabir. "Concept of soil organic carbon stock." INTERNATIONAL JOURNAL OF AGRICULTURAL SCIENCES 16, no. 2 (June 15, 2020): 290–94. http://dx.doi.org/10.15740/has/ijas/16.2/290-294.

Full text
Abstract:
Soil organic carbon (SOC) controls ecosystem and agro-ecosystem function, influencing soil fertility, water holding capacity and many other functions. The total amount of C stored in the surface soil is higher than sub surface soil area. It is estimated that the amount of C in the atmospheric pool is about 766 Pg C and about 566 Pg C in living vegetation. It is also of global importance because of its role in the global carbon cycle and therefore, the part it plays in the mitigation of atmospheric levels of greenhouse gases (GHGs). Different factors such as topography, climate, and soil physico-chemical properties also effect SOC stock in soil. Past long-term experimental studies have shown that soil organic C is highly sensitive to changes in land use, with changes from native ecosystems such as forest or grassland to agricultural systems almost always resulting in a loss of SOC. Land use change in different part of the world has also been observed to influence SOC stocks in different depth of the soil. Proper management of land use and land management practices and application of fertilizers, organic compost and manures could leads to greater C-storage in the soil, improves soil fertility and crop yield.
APA, Harvard, Vancouver, ISO, and other styles
29

Nurzakiah, Siti, Fahmuddin Agus, and Haris Syahbuddin. "Ameliorant Application on Variation of Carbon Stock and Ash Content on Peatland South Kalimantan." JOURNAL OF TROPICAL SOILS 18, no. 1 (March 11, 2013): 11. http://dx.doi.org/10.5400/jts.2013.v18i1.11-16.

Full text
Abstract:
Carbon stock on peatlands are large and will be easily emitted if the land is opened or drained, therefore the measurements of carbon stocks and ash content are important to know the amount of emissions and agricultural sustainability in peatlands. This study aimed to determine carbon stock and ash content on peatlands in the Indonesia Climate Change Trust Fund (ICCTF) located in South Kalimantan on the geographic position S. 03°25’52" and E. 114°47’6.5". The experiment consisted of six treatments of ameliorant materials namely; mineral soil, peat fertilizer A, peat fertilizer T, manure, ash, and control. The results showed that the variation of peat soil properties was very high at this location. Peat thickness ranged from 36-338 cm, and this led to high variations in carbon stocks ranged between 161.8 – 1142.2 Mg ha-1. Besides ash contents of the soil were also highly varied ranged from 3.4 – 28.5%. This natural variation greatly affected the ICCTF study design. Mineral soil treatment had a mean carbon stock (961.3 ± 61.5 Mg ha-1) which was higher and different from other treatments. High ash content was obtained in the ash treatment (18.6 ± 2.5%) and manure (15.7 ± 3.6%). It is recommended that the analysis of plant responses and greenhouse gas emissions using a single regression analysis and multiple regression with ash content as one of the independent variables are needed.Keywords: Ash content, carbon stock, peatland, peat thickness[How to Cite: Nurzakiah S, F Agus, and H Syahbuddin. 2013. Ameliorant Application on Variation of Carbon Stock and Ash Content on Peatland South Kalimantan J Trop Soils, 18 (1) : 11-16. doi: 10.5400/jts.2013.18.1.11][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.11]
APA, Harvard, Vancouver, ISO, and other styles
30

Kadovic, Ratko, Snezana Belanovic, Milan Knezevic, Milorad Danilovic, Olivera Kosanin, and Jelena Beloica. "Organic carbon stock in some forest soils in Serbia." Bulletin of the Faculty of Forestry, no. 105 (2012): 81–98. http://dx.doi.org/10.2298/gsf111230002k.

Full text
Abstract:
The content of organic carbon (C) was researched in topsoil layers (0-20 cm) in the most represented soils of forest ecosystems in central Serbia: eutric ranker, eutric cambisol and dystric cambisol. The soils were sampled during 2003, 2004 and 2010. Laboratory analyses included the soil physical and chemical properties necessary for the quantification of the soil organic carbon in organic and mineral layers. Mean values of the soil organic carbon (SOC) stores in organic horizons of the study soils varied between: 1.01?0.4 kg(C).m-2 (dystric cambisol), 0.90?0.41 kg(C).m-2 (eutric ranker) and 0.94?0.36 kg(C).m-2 (eutric cambisol). Average values of organic carbon in mineral layers (0-20 cm) ranged between: 3.83?1.70 kg(C).m-2 (dystric cambisol), 6.26?3.41 kg(C).m-2 (eutric ranker) and 4.36?1.91 kg(C).m-2 (eutric cambisol). The average value of total organic carbon stock in the study soils (both organic and mineral layers) was 5.77 kg(C).m-2. This paper addresses the methodological aspects of regional estimation of soil organic carbon content as the potential to be applied in the National Forest Inventory Program.
APA, Harvard, Vancouver, ISO, and other styles
31

Hábová, Magdalena, Lubica Pospíšilová, Petr Hlavinka, Miroslav Trnka, Gabriela Barančíková, Zuzana Tarasovičová, Jozef Takáč, Štefan Koco, Ladislav Menšík, and Pavel Nerušil. "Carbon pool in soil under organic and conventional farming systems." Soil and Water Research 14, No. 3 (May 27, 2019): 145–52. http://dx.doi.org/10.17221/71/2018-swr.

Full text
Abstract:
Changes in the agricultural management and climatic changes within the past 25 years have had a serious impact on soil organic matter content and contribute to different carbon storage in the soil. Prediction of soil carbon pool, validation, and quantification of different models is important for sustainable agriculture in the future and for this purpose a long-term monitoring data set is required. RothC-26.3 model was applied for carbon stock simulation within two different climatic scenarios (hot-dry with rapid temperature increasing and warm-dry with less rapid temperature increasing). Ten years experimental data set have been received from conventional and organic farming of experimental plots of Mendel University School Enterprise (locality Vatín, Czech-Moravian Highland). Average annual temperature in this area is 6.9°C, average annual precipitation 621 mm, and altitude 530 m above sea level. Soil was classified as Eutric Cambisol, sandy loam textured, with middle organic carbon content. Its cumulative potential was assessed as high. Results showed linear correlation between carbon stock and climatic scenario, and mostly temperature and type of soil management has influenced carbon stock. In spite of lower organic carbon inputs under organic farming this was less depending on climatic changes. Conventional farming showed higher carbon stock during decades 2000–2100 because of higher carbon input. Besides conventional farming was more affected by temperature.
APA, Harvard, Vancouver, ISO, and other styles
32

Jesus, Kennedy Nascimento, Eliza Rosário Gomes Marinho Albuquerque, Aldo Torres Sales, and Everardo Valadares de Sá Barretto Sampaio. "Estoques de carbono em solos de Pernambuco, Brasil (Carbon stocks in soil of Pernambuco state, Brazil)." Revista Brasileira de Geografia Física 12, no. 3 (June 2, 2019): 714. http://dx.doi.org/10.26848/rbgf.v12.3.p714-721.

Full text
Abstract:
O solo é um importante reservatório de carbono e desempenha papel fundamental no balanço de gases de efeito estufa e suas possíveis contribuições para as mudanças climáticas. Estimativas de estoques de carbono nos solos do Brasil em nível regional são escassas. Dados de concentração estão mais disponíveis, mas a falta de informação sobre densidade impede o cálculo dos estoques. Usando dados de artigos científicos e levantamentos de solos, foram calculados os estoques na camada superficial (0 a 30 cm) das classes de solos de Pernambuco, sob os principais tipos de uso da terra. Os maiores estoques de carbono por unidade de área estavam nos Chernossolos, Nitossolos, Vertissolos e Gleissolos. Considerando as áreas que os solos ocupam em Pernambuco, os Argissolos, Neossolos Litólicos, Planossolos e Latossolos tiveram os maiores estoques. Os estoques decrescem com a mudança de cobertura vegetal nativa para pastagem e agricultura. O estoque total de carbono total em Pernambuco é 352,7 Tg. A B S T R A C TSoil is an important carbon reservoir and plays a key role in the emission of greenhouse gases and climate changes. Estimates of carbon stocks in Brazil's soils at the regional level are scarce. Data on concentrations are sometimes available but lack of soil density prevents calculation of stocks. Using data from scientific articles and exploratory surveys, we quantified carbon stocks in the superficial layer (0-30 cm) of soils in Pernambuco state, under different land uses. Soil classes with the highest carbon stocks per unit of land were Chernosols, Nitosols, Vertisols, and Gleisols. Considering the area the soil classes occupy in Pernambuco, Argisols, Litholic Neosols, Planosols, and Oxisols have the highest carbon stocks. The soil stocks decrease with changes from native vegetation cover to agriculture establishment. The total soil carbon stock in Pernambuco was 352.7 Tg.x
APA, Harvard, Vancouver, ISO, and other styles
33

Ahirwal, Jitendra, Adarsh Kumar, and Subodh Kumar Maiti. "Effect of Fast-Growing Trees on Soil Properties and Carbon Storage in an Afforested Coal Mine Land (India)." Minerals 10, no. 10 (September 23, 2020): 840. http://dx.doi.org/10.3390/min10100840.

Full text
Abstract:
Surface coal mining activities have numerous consequences on terrestrial ecosystems. Loss of soil and biomass carbon pool due to mining activities is a serious concern in the rapidly changing environment. We investigated the effect of fast-growing trees (Albizia lebbeck, Albizia procera, and Dalbergia sissoo) on soil fertility and ecosystem carbon pool after eight years of afforestation in the post-mining land of Jharia coalfield, India, and compared with the adjacent natural forest site. Significant differences in soil organic carbon (SOC) and total nitrogen (TN) stocks in afforested mine soil and natural forest soils were observed. Greater SOC stock was found under D. sissoo (30.17 Mg·C·ha−1) while total N stock was highest under A. lebbeck (4.16 Mg·N·ha−1) plantation. Plant biomass accumulated 85% of the natural forest carbon pool after eight years of afforestation. The study concluded that planting fast-growing trees in post-mining lands could produce a promising effect on mine soil fertility and greater carbon storage in a short period.
APA, Harvard, Vancouver, ISO, and other styles
34

Debbarma, Kabir. "Concept of soil organic carbon stock." INTERNATIONAL JOURNAL OF AGRICULTURAL SCIENCES 16, no. 2 (June 15, 2020): 278–82. http://dx.doi.org/10.15740/has/ijas/16.2/278-282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Haile, Mebrahtu, Emiru Birhane, Meley Mekonen Rannestad, and Muyiwa S. Adaramola. "Carbon Stock and Soil Characteristics under Expansive Shrubs in the Dry Afromontane Forest in Northern Ethiopia." International Journal of Forestry Research 2021 (May 29, 2021): 1–10. http://dx.doi.org/10.1155/2021/6647443.

Full text
Abstract:
Increased presence of expansive plant species could bring about various ecological influences on biomass carbon, soil organic carbon, and the physical and chemical properties of the soils. However, their impacts on these ecological parameters could differ due to a wide range of life forms, plant communities of the invaded ecosystems, and abiotic conditions. This work was conducted to examine the impacts of Cadia purpurea and Tarchonanthus camphoratus cover on carbon stock in vegetation and soil and soil physicochemical properties in Desa’a forest, northern Ethiopia. Vegetation and soil data were collected from a total of 150 sampling plots (size 20 m × 20 m) from uninvaded and invaded vegetation conditions. The soil samples were collected from topsoil (0–15 and 15–30 cm) of the uninvaded and invaded vegetation conditions. The statistical difference in carbon stock and soil characteristics P < 0.05 of both invaded and uninvaded vegetation conditions were tested using an independent t-test using an R-software. The mean above- and below-ground biomass carbon stocks of the uninvaded vegetation condition (17.62 Mg·C/ha and 4.14 Mg·C/ha, respectively) were found to be significantly higher than those of the invaded vegetation condition (4.73 Mg·C/ha and 1.11 Mg·C/ha, respectively). The mean soil organic carbons (SOC) were significantly higher P < 0.01 in the uninvaded (122.83 Mg·C/ha) than in the invaded (90.13 Mg·C/ha) vegetation condition. The total carbon stock estimates were significantly higher P < 0.01 in the uninvaded vegetation condition (144.59 Mg·C/ha) than in the invaded vegetation condition (95.97 Mg·C/ha). Furthermore, the result revealed that most of the soil characteristics were significantly lower P < 0.05 under the expansive shrubs invaded vegetation conditions except for significantly high sand content P < 0.05 . Silt, nitrogen, phosphorus, calcium, copper, and zinc did not significantly change with the cover of the expansive shrubs. Our results suggest that increased presence of the expansive species decreased carbon trapping and affected most of the soil nutrients within the forest. Hence, to enhance the carbon storage potential and to maintain the soil nutrient status of the forest, proper conservation, monitoring, and management of the existing PNV and controlling a further expansion of the expansive shrubs are required. Further studies will be required on the factors responsible for the difference in carbon stocks and soil nutrients in each vegetation condition in addition to the impacts of the expansive shrubs expansion.
APA, Harvard, Vancouver, ISO, and other styles
36

Ghimire, P., B. Bhatta, B. Pokhrel, G. Kafle, and P. Paudel. "Soil organic carbon stocks under different land uses in Chure region of Makawanpur district, Nepal." SAARC Journal of Agriculture 16, no. 2 (February 16, 2019): 13–23. http://dx.doi.org/10.3329/sja.v16i2.40255.

Full text
Abstract:
Soil C sequestration through enhanced land use is a good strategy to mitigate the increasing concentration of atmospheric CO2. A study was conducted in Chhatiwan VDC of Makawanpur District to compare soil organic carbon (SOC) stocks of four main land use types such as forest, degraded forest, Khet and Bari land. Stratified random sampling method was used for collecting soil samples. Organic carbon content was determined by Walkley and Black method. Total SOC stock of different types of land followed the order: as Forest (110.0 t ha-1) > Bari (96.5 t ha-1) > Khet (86.8 t ha-1) > Degraded land (72.0 t ha-1). The SOC% declined with soil depths. The SOC% at 0–20 cm depth was highest (1.26 %) that recorded in the forest soils and lowest (0.37%) at 80- 100cm depth in degraded forest land. Thus, the SOC stock varied with land use systems and soil depths. The study suggests a need for appropriate land use strategy and sustainable soil management practices to improve SOC stock. SAARC J. Agri., 16(2): 13-23 (2018)
APA, Harvard, Vancouver, ISO, and other styles
37

Handoyo, Edi, Bintal Amin, and Elizal Elizal. "ESTIMATION OF CARBON RESERVED IN MANGROVE FOREST OF SUNGAI SEMBILAN SUB-DISTRICT, DUMAI CITY, RIAU PROVINCE." Asian Journal of Aquatic Sciences 3, no. 2 (August 4, 2020): 123–34. http://dx.doi.org/10.31258/ajoas.3.2.123-134.

Full text
Abstract:
Increasing CO2 concentration in the atmosphere is one of the factor which cause global warming. CO2 sequestration through mangrove forests is believed to be one of the efforts to reduce CO2 in atmosphere. This research was conducted in July 2019, aimed at estimating mangrove biomass, mangrove carbon stocks, soil organic carbon, and CO2 sequestration in mangrove forests in the coastal areas of Sungai Sembilan District, Dumai City, Riau Province. This research was conducted using the line transect plot method. Sampling is done by non destructive sampling by measuring DBH (Diameter at Breast Height) of mangrove trees, and soil sampling is done in a composite manner in each plot.. Mangrove biomass calculations done using allometric equations. Then, biomass is converted to carbon stock and CO2 sequestration, where the percentage value of carbon was 0.47 of biomass. As for the organic soil carbon calculation is done by multiplying the bulk density values, the percentage value of 0.47 and a depth of soil carbon.The results showed that the average estimated amount of mangrove biomass, mangrove carbon stocks, soil carbon stocks and CO2 sequestration were 621.46 tons/ha, 289.22 tons/ha, 1819.31 tons/ha and 1074.99 tons/ha. ANOVA analysis results showed that the amount of mangrove biomass, mangrove carbon stock, soil carbon stock and CO2 sequestration between stations were not significantly different (p> 0.05).
APA, Harvard, Vancouver, ISO, and other styles
38

Rahman, Arafat, MJ Uddin, Md Raisuddin Sikder, Humyra B. Murshed, JA Faysal, Mohiyuddeen Ahmad, and ASM Mohiuddin. "Soil properties and carbon stock along the toposequence of Lalmai hill ecosystem of Bangladesh." Dhaka University Journal of Biological Sciences 30, no. 2 (July 9, 2021): 331–43. http://dx.doi.org/10.3329/dujbs.v30i2.54658.

Full text
Abstract:
A study was carried out in the Lalmai hill ecosystem of Bangladesh regarding their soil properties and soil organic carbon (SOC) stocks. The Lalmai hill ecosystem consists of three toposequence arrangements as hills, piedmonts, and floodplains. Forty-five soil samples covering nine soil profiles were selected to conduct the present study. Soil samples were collected at five different depths of 0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm and 80-100 cm intervals from each pit of the study sites. Soil pH, percent SOC, percent total nitrogen (TN), bulk density, cation exchange capacity (CEC), particle size distribution, and SOC storage (kg/m2) dataset indicates that piedmont deposits and floodplain soils are more enriched than the upper hill soils. Regarding SOC storage, the post hoc test indicates that hill soils are significantly different from the other two physiographic units, but there is no significant difference between piedmont deposits and floodplain soils. The soil property varies differently depending on their depth level at different physiographic units. Estimation on SOC stock revealed that 2.01Tg, 21.75Tg, 12.68Tg carbon remains in the hill soils, piedmont soils, and estuarine floodplain soils, respectively. The total SOC stock was estimated at 36.44 Tg in the Lalmai hill ecosystem of Bangladesh, where piedmont deposits contained the highest level of SOC stock. It is assumed that more clay-organic substances are washed in at the foot of piedmont units due to the well-drained nature of upper Pleistocene hill soils. Thus, fine soil textural nature, diverse land and land cover accelerates to sequester more carbon in piedmont zone rather than hill or floodplain zones. Dhaka Univ. J. Biol. Sci. 30(2): 331-343, 2021 (July)
APA, Harvard, Vancouver, ISO, and other styles
39

Yue, Jun-Wei, Jin-Hong Guan, Lei Deng, Jian-Guo Zhang, Guoqing Li, and Sheng Du. "Allocation pattern and accumulation potential of carbon stock in natural spruce forests in northwest China." PeerJ 6 (May 25, 2018): e4859. http://dx.doi.org/10.7717/peerj.4859.

Full text
Abstract:
Background The spruce forests are dominant communities in northwest China, and play a key role in national carbon budgets. However, the patterns of carbon stock distribution and accumulation potential across stand ages are poorly documented. Methods We investigated the carbon stocks in biomass and soil in the natural spruce forests in the region by surveys on 39 plots. Biomass of tree components were estimated using allometric equations previously established based on tree height and diameter at breast height, while biomass in understory (shrub and herb) and forest floor were determined by total harvesting method. Fine root biomass was estimated by soil coring technique. Carbon stocks in various biomass components and soil (0–100 cm) were estimated by analyzing the carbon content of each component. Results The results showed that carbon stock in these forest ecosystems can be as high as 510.1 t ha−1, with an average of 449.4 t ha−1. Carbon stock ranged from 28.1 to 93.9 t ha−1 and from 0.6 to 8.7 t ha−1 with stand ages in trees and deadwoods, respectively. The proportion of shrubs, herbs, fine roots, litter and deadwoods ranged from 0.1% to 1% of the total ecosystem carbon, and was age-independent. Fine roots and deadwood which contribute to about 2% of the biomass carbon should be attached considerable weight in the investigation of natural forests. Soil carbon stock did not show a changing trend with stand age, ranging from 254.2 to 420.0 t ha−1 with an average of 358.7 t ha−1. The average value of carbon sequestration potential for these forests was estimated as 29.4 t ha−1, with the lower aged ones being the dominant contributor. The maximum carbon sequestration rate was 2.47 t ha−1 year−1 appearing in the growth stage of 37–56 years. Conclusion The carbon stock in biomass was the major contributor to the increment of carbon stock in ecosystems. Stand age is not a good predictor of soil carbon stocks and accurate evaluation of the soil carbon dynamics thus requires long-term monitoring in situ. The results not only revealed carbon stock status and dynamics in these natural forests but were helpful to understand the role of Natural Forest Protection project in forest carbon sequestration as well.
APA, Harvard, Vancouver, ISO, and other styles
40

Darwish, Talal, Thérèse Atallah, and Ali Fadel. "Challenges of soil carbon sequestration in the NENA region." SOIL 4, no. 3 (September 26, 2018): 225–35. http://dx.doi.org/10.5194/soil-4-225-2018.

Full text
Abstract:
Abstract. The Near East North Africa (NENA) region spans over 14 % of the total surface of the Earth and hosts 10 % of its population. Soils of the NENA region are mostly highly vulnerable to degradation, and future food security will much depend on sustainable agricultural measures. Weather variability, drought and depleting vegetation are dominant causes of the decline in soil organic carbon (SOC). In this work the status of SOC was studied, using a land capability model and soil mapping. The land capability model showed that most NENA countries and territories (17 out of 20) suffer from low productive lands (> 80 %). Stocks of SOC were mapped (1:5 000 000) in topsoils (0–0.30 m) and subsoils (0.30–1 m). The maps showed that 69 % of soil resources are shown to have a stock of SOC below the threshold of 30 tons ha−1. The stocks varied between ≈10 tons ha−1 in shrublands and 60 tons ha−1 for evergreen forests. Highest stocks were found in forests, irrigated crops, mixed orchards and saline flooded vegetation. The stocks of soil inorganic carbon (SIC) were higher than those of SOC. In subsoils, the SIC ranged between 25 and 450 tons ha−1, against 20 to 45 tons ha−1 for SOC. Results highlight the contribution of the NENA region to global SOC stock in the topsoil (4.1 %). The paper also discusses agricultural practices that are favorable to carbon sequestration such as organic amendment, no till or minimum tillage, crop rotation and mulching and the constraints caused by geomorphological and climatic conditions. The effects of crop rotations on SOC are related to the amounts of above and belowground biomass produced and retained in the system. Some knowledge gaps exist, especially in aspects related to the impact of climate change and effect of irrigation on SOC, and on SIC at the level of the soil profile and soil landscape. Still, major constraints facing soil carbon sequestration are policy-relevant and socioeconomic in nature, rather than scientific.
APA, Harvard, Vancouver, ISO, and other styles
41

Zhu, Jianxiao, Chuankuan Wang, Zhang Zhou, Guoyi Zhou, Xueyang Hu, Lai Jiang, Yide Li, et al. "Increasing soil carbon stocks in eight permanent forest plots in China." Biogeosciences 17, no. 3 (February 11, 2020): 715–26. http://dx.doi.org/10.5194/bg-17-715-2020.

Full text
Abstract:
Abstract. Forest soils represent a major stock of organic carbon (C) in the terrestrial biosphere, but the dynamics of soil organic C (SOC) stock are poorly quantified, largely due to lack of direct field measurements. In this study, we investigated the 20-year changes in SOC stocks in eight permanent forest plots, which represent boreal (1998–2014), temperate (1992–2012), subtropical (1987–2008), and tropical forest biomes (1992–2012) across China. SOC contents increased significantly from the 1990s to the 2010s, mostly in the upper 0–20 cm soil depth, and soil bulk densities do not change significantly during the same period. As a result, the averaged SOC stocks increased significantly from 125.2±85.2 Mg C ha−1 in the 1990s to 133.6±83.1 Mg C ha−1 in the 2010s across the forest plots, with a mean increase of 127.2–907.5 kg C ha−1 yr−1. This SOC accumulation resulted primarily from increasing leaf litter and fallen logs, which accounts 3.6 %–16.3 % of above-ground net primary production. Our findings provided direct evidence that China's forest soils have been acting as significant C sinks, although their strength varies in forests with different climates.
APA, Harvard, Vancouver, ISO, and other styles
42

Uddin, MJ, Arafat Rahman, AHM Zulfiquar Ali, and Md Khalilur Rahman. "Estimation of Carbon Stock in the Sylhet Basin Soils of Bangladesh." Journal of the Asiatic Society of Bangladesh, Science 46, no. 1 (June 22, 2021): 49–60. http://dx.doi.org/10.3329/jasbs.v46i1.54228.

Full text
Abstract:
Wetland basin soils are the major store houses of organic carbon where there is a scope to use this carbon in mitigating the climate change. A study was conducted in these basin soils at 100 cm depth regarding their carbon stock. The study showed that total soil organic carbon (SOC) stock in the Sylhet basin soils of Bangladesh is 0.094 Pg where the SOC stock was 0.044 Pg in medium low land sites and it was about 0.050 Pg in lowland sites. There was no previous study on SOC stock in the Sylhet basin soils of Bangladesh. These may act as benchmark SOC stock datasets for the future agricultural planning. The soil organic carbon stock is higher in the lowland than medium lowland sites. The contents of SOC are low is compared to its threshold levels. Moreover, it is apprehended that basin soils may lose their carbon due to the decrease of inundation level by climate change, and other eco-environmental changes. So, it is very much urgent to take steps in preserving the organic carbon of lowland basin soils. Asiat. Soc. Bangladesh, Sci. 46(1): 49-60, June 2020
APA, Harvard, Vancouver, ISO, and other styles
43

Lehtonen, Aleksi, Tapio Linkosalo, Mikko Peltoniemi, Risto Sievänen, Raisa Mäkipää, Pekka Tamminen, Maija Salemaa, et al. "Forest soil carbon stock estimates in a nationwide inventory: evaluating performance of the ROMULv and Yasso07 models in Finland." Geoscientific Model Development 9, no. 11 (November 22, 2016): 4169–83. http://dx.doi.org/10.5194/gmd-9-4169-2016.

Full text
Abstract:
Abstract. Dynamic soil models are needed for estimating impact of weather and climate change on soil carbon stocks and fluxes. Here, we evaluate performance of Yasso07 and ROMULv models against forest soil carbon stock measurements. More specifically, we ask if litter quantity, litter quality and weather data are sufficient drivers for soil carbon stock estimation. We also test whether inclusion of soil water holding capacity improves reliability of modelled soil carbon stock estimates. Litter input of trees was estimated from stem volume maps provided by the National Forest Inventory, while understorey vegetation was estimated using new biomass models. The litter production rates of trees were based on earlier research, while for understorey biomass they were estimated from measured data. We applied Yasso07 and ROMULv models across Finland and ran those models into steady state; thereafter, measured soil carbon stocks were compared with model estimates. We found that the role of understorey litter input was underestimated when the Yasso07 model was parameterised, especially in northern Finland. We also found that the inclusion of soil water holding capacity in the ROMULv model improved predictions, especially in southern Finland. Our simulations and measurements show that models using only litter quality, litter quantity and weather data underestimate soil carbon stock in southern Finland, and this underestimation is due to omission of the impact of droughts to the decomposition of organic layers. Our results also imply that the ecosystem modelling community and greenhouse gas inventories should improve understorey litter estimation in the northern latitudes.
APA, Harvard, Vancouver, ISO, and other styles
44

Hammes, K., M. S. Torn, A. G. Lapenas, and M. W. I. Schmidt. "Centennial black carbon turnover observed in a Russian steppe soil." Biogeosciences 5, no. 5 (September 18, 2008): 1339–50. http://dx.doi.org/10.5194/bg-5-1339-2008.

Full text
Abstract:
Abstract. Black carbon (BC), from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m−2, or about 7–10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182–541 years), much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene polycarboxylic acids (BPCA) as molecular markers. The proportions of less-condensed (and thus more easily degradable) BC structures decreased, whereas the highly condensed (and more recalcitrant) BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.
APA, Harvard, Vancouver, ISO, and other styles
45

Miller, B. A., S. Koszinski, M. Wehrhan, and M. Sommer. "Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks." SOIL Discussions 1, no. 1 (November 5, 2014): 757–802. http://dx.doi.org/10.5194/soild-1-757-2014.

Full text
Abstract:
Abstract. The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which are to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m−2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
APA, Harvard, Vancouver, ISO, and other styles
46

Martin, M. P., M. Wattenbach, P. Smith, J. Meersmans, C. Jolivet, L. Boulonne, and D. Arrouays. "Spatial distribution of soil organic carbon stocks in France." Biogeosciences 8, no. 5 (May 4, 2011): 1053–65. http://dx.doi.org/10.5194/bg-8-1053-2011.

Full text
Abstract:
Abstract. Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC) stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions) over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the previously published approach at the European level greatly overestimates SOC stocks.
APA, Harvard, Vancouver, ISO, and other styles
47

Lehtonen, Aleksi, and Juha Heikkinen. "Uncertainty of upland soil carbon sink estimate for Finland." Canadian Journal of Forest Research 46, no. 3 (March 2016): 310–22. http://dx.doi.org/10.1139/cjfr-2015-0171.

Full text
Abstract:
Changes in the soil carbon stock of Finnish upland soils were quantified using forest inventory data, forest statistics, biomass models, litter turnover rates, and the Yasso07 soil model. Uncertainty in the estimated stock changes was assessed by combining model and sampling errors associated with the various data sources into variance–covariance matrices that allowed computationally efficient error propagation in the context of Yasso07 simulations. In sensitivity analysis, we found that the uncertainty increased drastically as a result of adding random year-to-year variation to the litter input. Such variation is smoothed out when using periodic inventory data with constant biomass models and turnover rates. Model errors (biomass, litter, understorey vegetation) and the systematic error of total drain had a marginal effect on the uncertainty regarding soil carbon stock change. Most of the uncertainty appears to be related to uncaptured annual variation in litter amounts. This is due to fact that variation in the slopes of litter input trends dictates the uncertainty of soil carbon stock change. If we assume that there is annual variation only in foliage and fine root litter rates and that this variation is less than 10% from year to year, then we can claim that Finnish upland forest soils have accumulated carbon during the first Kyoto period (2008–2012).
APA, Harvard, Vancouver, ISO, and other styles
48

Nussbaum, M., A. Papritz, A. Baltensweiler, and L. Walthert. "Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging." Geoscientific Model Development 7, no. 3 (June 25, 2014): 1197–210. http://dx.doi.org/10.5194/gmd-7-1197-2014.

Full text
Abstract:
Abstract. Accurate estimates of soil organic carbon (SOC) stocks are required to quantify carbon sources and sinks caused by land use change at national scale. This study presents a novel robust kriging method to precisely estimate regional and national mean SOC stocks, along with truthful standard errors. We used this new approach to estimate mean forest SOC stock for Switzerland and for its five main ecoregions. Using data of 1033 forest soil profiles, we modelled stocks of two compartments (0–30, 0–100 cm depth) of mineral soils. Log-normal regression models that accounted for correlation between SOC stocks and environmental covariates and residual (spatial) auto-correlation were fitted by a newly developed robust restricted maximum likelihood method, which is insensitive to outliers in the data. Precipitation, near-infrared reflectance, topographic and aggregated information of a soil and a geotechnical map were retained in the models. Both models showed weak but significant residual autocorrelation. The predictive power of the fitted models, evaluated by comparing predictions with independent data of 175 soil profiles, was moderate (robust R2 = 0.34 for SOC stock in 0–30 cm and R2 = 0.40 in 0–100 cm). Prediction standard errors (SE), validated by comparing point prediction intervals with data, proved to be conservative. Using the fitted models, we mapped forest SOC stock by robust external-drift point kriging at high resolution across Switzerland. Predicted mean stocks in 0–30 and 0–100 cm depth were equal to 7.99 kg m−2 (SE 0.15 kg m−2) and 12.58 kg m−2 (SE 0.24 kg m−2), respectively. Hence, topsoils store about 64% of SOC stocks down to 100 cm depth. Previous studies underestimated SOC stocks of topsoil slightly and those of subsoils strongly. The comparison further revealed that our estimates have substantially smaller SE than previous estimates.
APA, Harvard, Vancouver, ISO, and other styles
49

Nussbaum, M., A. Papritz, A. Baltensweiler, and L. Walthert. "Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging." Geoscientific Model Development Discussions 6, no. 4 (December 23, 2013): 7077–116. http://dx.doi.org/10.5194/gmdd-6-7077-2013.

Full text
Abstract:
Abstract. Accurate estimates of soil organic carbon (SOC) stocks are required to quantify carbon sources and sinks caused by land use change at national scale. This study presents a novel robust kriging method to precisely estimate regional and national mean SOC stocks, along with truthful standard errors. We used this new approach to estimate mean forest SOC stock for Switzerland and for its five main ecoregions. Using data of 1033 forest soil profiles, we modelled stocks of two compartments (0–30, 0–100 cm depth) of mineral soils. Lognormal regression models that accounted for correlation between SOC stocks and environmental covariates and residual (spatial) auto-correlation were fitted by a newly developed robust restricted maximum likelihood method, which is insensitive to outliers in the data. Precipitation, near-infrared reflectance, topographic and aggregated information of a soil and a geotechnical map were retained in the models. Both models showed weak but significant residual autocorrelation. The predictive power of the fitted models, evaluated by comparing predictions with independent data of 175 soil profiles, was moderate (robust R2 = 0.34 for SOC stock in 0–30 cm and R2 = 0.40 in 0–100 cm). Prediction standard errors (SE), validated by comparing point prediction intervals with data, proved to be conservative. Using the fitted models we mapped forest SOC stock by robust external-drift point kriging at high resolution across Switzerland. Predicted mean stocks in 0–30 cm and 0–100 cm depth were equal to 7.99 kg m−2 (SE 0.15 kg m−2) and 12.58 kg m−2 (SE 0.24 kg m−2), respectively. Hence, topsoils store about 64% of SOC stocks down to 100 cm depth. Previous studies underestimated SOC stocks of topsoil slightly and those of subsoils strongly. The comparison further revealed that our estimates have substantially smaller SE than previous estimates.
APA, Harvard, Vancouver, ISO, and other styles
50

Ford, Hilary, Angus Garbutt, Mollie Duggan-Edwards, Jordi F. Pagès, Rachel Harvey, Cai Ladd, and Martin W. Skov. "Large-scale predictions of salt-marsh carbon stock based on simple observations of plant community and soil type." Biogeosciences 16, no. 2 (January 25, 2019): 425–36. http://dx.doi.org/10.5194/bg-16-425-2019.

Full text
Abstract:
Abstract. Carbon stored in coastal wetland ecosystems is of global relevance to climate regulation. Broadscale inventories of this “blue” carbon store are currently lacking and labour intensive. Sampling 23 salt marshes in the United Kingdom, we developed a Saltmarsh Carbon Stock Predictor (SCSP) with the capacity to predict up to 44 % of spatial variation in surface soil organic carbon (SOC) stock (0–10 cm) from simple observations of plant community and soil type. Classification of soils into two types (sandy or not-sandy) explained 32 % of variation in SOC stock. Plant community type (five vegetation classes) explained 37 % of variation. Combined information on soil and plant community types explained 44 % of variation in SOC stock. GIS maps of surface SOC stock were produced for all salt marshes in Wales (∼4000 ha), using existing soil maps and governmental vegetation data and demonstrating the application of the SCSP for large-scale predictions of blue carbon stores and the use of plant community traits for predicting ecosystem services.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography