Academic literature on the topic 'Carbon upgrading'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbon upgrading.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Carbon upgrading"
Partridge, Lester E., and Eoin J. Loughnane. "Committed carbon-upgrading existing buildings." Structural Design of Tall and Special Buildings 17, no. 5 (December 2008): 989–1002. http://dx.doi.org/10.1002/tal.478.
Full textRichter, Hannes, Norman Reger-Wagner, Susanne Kämnitz, Ingolf Voigt, Udo Lubenau, and Raymond Mothes. "Carbon membranes for bio gas upgrading." Energy Procedia 158 (February 2019): 861–66. http://dx.doi.org/10.1016/j.egypro.2019.01.222.
Full textYu, Bing, and Liang-Nian He. "Upgrading Carbon Dioxide by Incorporation into Heterocycles." ChemSusChem 8, no. 1 (September 10, 2014): 52–62. http://dx.doi.org/10.1002/cssc.201402837.
Full textFukuyama, Hidetsugu, Satoshi Terai, Masayuki Uchida, José L. Cano, and Jorge Ancheyta. "Active carbon catalyst for heavy oil upgrading." Catalysis Today 98, no. 1-2 (November 2004): 207–15. http://dx.doi.org/10.1016/j.cattod.2004.07.054.
Full textShuai, Li, Masoud Talebi Amiri, and Jeremy S. Luterbacher. "The influence of interunit carbon–carbon linkages during lignin upgrading." Current Opinion in Green and Sustainable Chemistry 2 (October 2016): 59–63. http://dx.doi.org/10.1016/j.cogsc.2016.10.001.
Full textGao, Yiwen. "Research on the Impact of Human capital on the Transformation and Upgrading of China’s Industrial Structure from the Perspective of Low Carbon Development." E3S Web of Conferences 275 (2021): 02038. http://dx.doi.org/10.1051/e3sconf/202127502038.
Full textAdnan, Ong, Nomanbhay, Chew, and Show. "Technologies for Biogas Upgrading to Biomethane: A Review." Bioengineering 6, no. 4 (October 2, 2019): 92. http://dx.doi.org/10.3390/bioengineering6040092.
Full textWang, Qi, and Guangpeng Li. "Research and Development of Carbon Dioxide Refrigeration Technology." E3S Web of Conferences 213 (2020): 03031. http://dx.doi.org/10.1051/e3sconf/202021303031.
Full textCabrera-Codony, Alba, Miguel A. Montes-Morán, Manuel Sánchez-Polo, Maria J. Martín, and Rafael Gonzalez-Olmos. "Biogas Upgrading: Optimal Activated Carbon Properties for Siloxane Removal." Environmental Science & Technology 48, no. 12 (June 2, 2014): 7187–95. http://dx.doi.org/10.1021/es501274a.
Full textYang, Juan, Jian Yu, Wei Zhao, Qiang Li, Yin Wang, and Guangwen Xu. "Upgrading Ash-Rich Activated Carbon from Distilled Spirit Lees." Industrial & Engineering Chemistry Research 51, no. 17 (April 23, 2012): 6037–43. http://dx.doi.org/10.1021/ie202882r.
Full textDissertations / Theses on the topic "Carbon upgrading"
Leonard, McLain E. (McLain Evan). "Engineering gas diffusion electrodes for electrochemical carbon dioxide upgrading." Thesis, Massachusetts Institute of Technology, 2021. https://hdl.handle.net/1721.1/130671.
Full textCataloged from the official PDF of thesis.
Includes bibliographical references (pages 219-233).
Electrochemical carbon dioxide reduction (CO2R) is increasingly recognized as a viable technology for the generation of chemicals using carbon dioxide (CO₂) recovered from industrial exhaust streams or directly captured from air. If powered with low-carbon electricity, CO2R processes have the potential to reduce emissions from chemicals production. Historically, three-electrode analytical cells have been used to study catalyst activity, selectivity, and stability with a goal of incorporating proven materials into larger devices. However, it has been recognized that the limited CO₂ flux through bulk volumes of liquid electrolyte limit the effective reaction rate of CO₂ when using promising catalyst systems.
Gas-fed electrolyzers adapted from commercial water electrolyzer and fuel cell technologies have motivated researchers to explore combinations of porous electrodes, catalyst layers, and electrolytes to achieve higher areal productivity and favorable product selectivities. Present art demonstrates that high current density production (>200 mA cm₋²) of valuable chemicals at moderate cell voltages (ca. 3-4 V) is achievable at ambient conditions using electrolysis devices with catalyst-coated gas diffusion electrodes (GDEs). However, beyond short durations (1-10 h) stable performance outcomes for flowing electrolyte systems remain elusive as electrolyte often floods electrode pores, blocking diffusion pathways for CO₂, diminishing CO2R selectivity, and constraining productivity. Systematic study of the driving forces that induce electrode flooding is needed to infer reasonable operational envelopes for gas-fed electrolyzers as full-scale industrial devices are developed.
In this thesis, I investigate GDE wettability as a prominent determinant of gas-fed flowing electrolyte CO₂ electrolyzer durability. To do this, I combine experimental and computational approaches. First, I use a flow cell platform to study transient evolution of activity, selectivity, and saturation to identify failure modes, including liquid pressurization, salt precipitation, electrowetting, and liquid product enrichment. Next, I use material wettability properties and reactor mass balances to estimate how enriched liquid product streams might defy non-wetting characteristics of current GDE material sets. Finally, I construct computational electrode models and vary surface chemistry descriptors to predict transport properties in partially saturated electrodes. Specifically, I consider how saturation evolves in response to relevant scenarios (i.e., electrowetting and liquid products) that challenge CO₂ electrolyzer durability.
by McLain E. Leonard.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Chemical Engineering
Starr, Katherine. "Environmental and economic assessment of carbon mineralization for biogas upgrading." Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/129920.
Full textOur world has been increasingly looking for solutions to reduce the greenhouse gas (GHG) emissions of our planet. Various solutions have been proposed, including carbon capture and sequestration (CCS). Focus for application of CCS has normally centered on large scale energy production that burns fossil fuel. Recently, developers have been working on applying CCS to biogas upgrading technology. This entails removing CO2 from biogas emitted from anaerobic digestors and landfills while also increasing the CH4 concentration to render the biogas suitable as natural gas substitute. Two novel technologies under review also stores the removed CO2 in a solid form, through a process called carbon mineralization. This process uses calcium oxides found in industrial waste to fix CO2 by forming calcium carbonate. Ideally these novel upgrading technologies should have more environmental benefit over conventional ones based on the fact that they immediately store CO2, while conventional ones do not. The first technology is called alkaline with regeneration (AwR) and consists of using an alkaline solution to strip the CO2. The alkaline solution is then regenerated by exposing it to a waste rich in CaO. The second is called bottom ash for biogas upgrading (BABIU) which relies on a direct gas-solid phase interaction with bottom ash from municipal solid waste incinerators. This thesis examines whether or not these two novel technologies have an environmental benefit over conventional upgrading technologies, based on industrial ecology tools. Life cycle assessment, material flow analysis, and exergy analysis were applied for the environmental and resource assessments. The thesis also examines the long term feasibility of applying these technologies, both from a material and economic point of view. Overall it was determined that the novel technologies generally do not have a better environmental performance over conventional technologies, especially AwR which was found to have a higher impact due to the use of the alkaline solution. Despite this, both novel technologies had significant CO2 savings over conventional technologies. As well since both novel processes are in the pilot plant stage it is possible to pinpoint what can be improved in order to increase the all around environmental benefit, for example by increasing the regeneration rate of the alkaline solution in AwR. The economic assessment was conducted on AwR and it was found that improving its operational costs would help create a business case for potential application. The results not only help the developers of the novel technologies to improve their long term environmental and economic viability but also can be used by developers and manufactures of similar technologies, such as other biogas upgrading or CCS technologies.
Samuel, Adam. "Biogas upgrading and solvent regeneration in monoethanolamine and ionic liquids for carbon dioxide utilisation." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/9364/.
Full textEl, Gemayel Gemayel. "Integration and Simulation of a Bitumen Upgrading Facility and an IGCC Process with Carbon Capture." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23274.
Full textDixit, Onkar. "Upgrading Biogas to Biomethane Using Absorption." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-189059.
Full textFragen, die in der Dissertation beantwortet wurden: Welches Verfahren ist zur Entschwefelung von Biogas geeignet, wenn die chemische Absorption zur CO2-Abtrennung genutzt wird? Welches Absorptionsmittel ist geeignet, um CO2 aus konzentrierten Gasen, wie Biogas, bei atmosphärischem Druck abzutrennen? Welche Eigenschaften des ausgewählten Absorptionsmittels, wässriges Diglykolamin (DGA), sind bereits bekannt? Wie wird die CO2-Gleichgewichtsbeladung unter Absorptions- und Desorptionsbedingungen mit einfachen und robusten Laborapparaten bestimmt? Welche Werte nehmen die Absorptionsmitteleigenschaften wie Dichte, Viskosität und Oberflächenspannung bei verschiedenen DGA-Gehalten und CO2-Beladungen? Wie werden die Absorptionsmitteleigenschaften durch den Primäramin-Gehalt und die CO2-Beladung beeinflusst? Was ist der optimale DGA-Gehalt im Absorptionsmittel? Was ist die optimale Desorptionstemperatur bei atmosphärischem Druck? Wie wird die CO2-Gleichgewichtsbeladung im wässrigen DGA simuliert? Welche Ungenauigkeit ist zu erwarten? Wie wird eine Absorptionskolonne umgerüstet, um die Kapazität zu erweitern? Wie wird die optimale CO2-Beladung des Absorptionsmittels am Absorbereintritt (im unbeladenen Absorptionsmittel) bestimmt? Was sind die Prozesseigenschaften eines Absorptionsverfahrens, das wässriges DGA als Absorptionsmittel nutzt sowie energieeffizienter und sicherer als Verfahren auf dem Stand der Technik ist? Wie kann das Gefahrenpotenzial von Absorptionsmittel quantitativ verglichen werden? Wie werden Gefahren aus einer Biogasanlage durch die deutsche Bevölkerung wahrgenommen? Welche positive und negative Umweltauswirkung hat Biomethan?
Vilella, Priscila Costa. "SÃntese e avaliaÃÃo de bioadsorventes na separaÃÃo de misturas contendo CO2 e CH4 para aplicaÃÃo em upgrade de biogÃs originado a partir de resÃduos sÃlidos orgÃnicos." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15705.
Full textThe generation of Municipal Solid Waste (MSW) is increasing every year in Brazil, being the organic matter responsible for more than half of the total MSW generated. Among the current alternatives to the use of organic solid waste, the anaerobic digestion is the most attractive as biogas production occurs in the process. Nevertheless, to increase its usage possibilities, biogas has to be purified and upgraded, in order to acquire characteristics similar to that of natural gas. The present work aims to prepare activated carbons (ACs) from coconut endocarp (Cocos nucifera), babassu coconut (Orbignya speciosa) and flamboyant pods (Delonix regia) by one step CO2 activation. The textural characteristics were determined by N2 adsorption isotherm at -196 ÂC. The best results of BET surface area and micropore volume were obtained for bioadsorbent synthesized from coconut shell, with values of 1452 m2/g and 0.6 cm3/g, respectively. ACs from coconut shell and babassu coconut were selected to analyze their efficiency in CO2/CH4 separation mixture for biogas upgrading application. Therefore, pure component (CO2 and CH4) and mixture (30% vol. CO2, 70% vol. CH4) adsorption equilibria were performed at 20 ÂC using a magnetic suspension balance. The CO2 adsorption capacity slightly differed between samples, presenting the AC from coconut shell better results. This sample had higher methane uptake above pressures of 3.0 bar. The experimental data were compared with the fit of Toth and IAST (Ideal Adsorbed Solution Theory) models for mono and multicomponent data, respectively. The Toth fitting was fairly accurate, while the IAST fit was moderate. The samples selectivity to CO2 over CH4 were calculated and compared with another commercial adsorbent. The AC from coconut shell presented better results than babassu coconut at low pressures, with a selectivity value of 4.2 at 1.0 bar, indicating to be a competitive material for the proposed application.
Losch, Pit. "Synthesis and characterisation of zeolites, their application in catalysis and subsequent rationalisation : methanol-to-olefins (MTO) process with designed ZSM-5 zeolites." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAF035/document.
Full textThis work revolved around the synthesis, characterisation and application of zeolites in heterogeneous catalysis. In some cases, counterintuitive observations and results needed a thorough rationalisation, which allowed a truly continuous improvement, or rational design of a catalyst for a given reaction. Zeolites are crystalline and microporous aluminosilicates, which are defined and differ one from another through their 3D arrangement of tetrahedra (SiO4 and AlO4).It has been aimed to design heterogeneous catalysts for reactions that fit in the concepts of a sustainable chemistry. Thus, this works describes and tried to respect the concepts of green chemistry and carbon upgrading. Remarkably, during this thesis the feedback looped continuous improvement approach has led twice to adapted catalysts for a catalytic chemical transformation: the liquid-solid continuous flow halogenation of aromatics was best performed with nanosized H-*BEA zeolites exhibiting a hierarchical porosity. In contrast, the gas-solid Methanol-to-Olefins (MTO) process needed an unusual catalyst. Indeed based on our study, large and perfectly crystalline H-ZSM-5 crystals with a disperse Brønsted acidity were the optimum catalyst
Erlach, Berit [Verfasser], George [Akademischer Betreuer] Tsatsaronis, and Mats [Akademischer Betreuer] Westermark. "Biomass upgrading technologies for carbon-neutral and carbon-negative electricity generation : techno-economic analysis of hydrothermal carbonization and comparison with wood pelletizing, torrefaction and anaerobic digestion / Berit Erlach. Gutachter: George Tsatsaronis ; Mats Westermark." Berlin : Technische Universität Berlin, 2014. http://d-nb.info/1067387064/34.
Full textOswald, Florian [Verfasser], and C. [Akademischer Betreuer] Syldatk. "Upgrading the toolbox for fermentation of crude syngas: Process characterization for complete carbon usage, cyanide adaption and production of C4 components / Florian Oswald ; Betreuer: C. Syldatk." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1176022598/34.
Full textBroman, Nils. "Värdeskapande av koldioxid frånbiogasproduktion : En kartläggning över lämpliga CCU-tekniker för implementeringpå biogasanläggningar i Sverige." Thesis, Linköpings universitet, Industriell miljöteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171793.
Full textKoldioxid från biogasproduktion betraktas i dagsläget som utan värde och släpps ut i atmosfärenvid uppgradering av biogas. Restgasen är en potentiell kolkälla och kan vara värdeskapandeför biogasprocessen. Genom att finna en lämplig värdeskapande process som utnyttjarkoldioxid går det att ge både ekonomiska och miljömässiga incitament till företag att utvecklasin verksamhet. I detta projekt undersöktes möjligheten att skapa värde av denna CO2.Genom en utvärdering av den tekniska mognadsgraden hos CCU-tekniker kunde en rekommendationges vid projektets slut. En analys av tekniska hinder, såsom föroreningar i gassammansättningen,såväl som hinder i form av kompetens och företagskultur undersöktes för attkunna ge en motiverad rekommendation. I projektet kartlades vilka värdeskapande systemsom skulle passa för biogasproducenter i en svensk kontext. Detta inkluderade etableradeuppgraderingstekniker för metan- och koldioxid som används i dagsläget. I projektet undersöktesäven lämpliga CCU-tekniker som kan samverka med de valda uppgraderingsprocessernaoch och agera värdeskapande. Utifrån denna kartläggning kunde det sedan anges vilkagemensamma, kritiska variabler som finns för dessa system. Därefter kunde en rekommendationav lämplig CCU-teknik ges beroende på den producerade CO2 sammansättningen. Enslutsats i projektet var att koldioxid från restgasen ofta var av hög koncentration (ca. 97-98 %)och ej innehöll några korrosiva eller toxiska komponenter, och att detta till stor del beror påhur rötkammaren är hanterad i produktionsprocessen. Således väcktes frågor kring vilka defaktiska begränsningarna för CCU är, då de inte torde vara tekniska. CCU-tekniker som visadesig vara av särskilt intresse var pH-reglering av avloppsverk, CO2 som näringssubstratför odling av mikroalger, samt tillverkning av kolsyreis för kyltransporter. Samtliga dessatekniker har tillräckligt hög teknisk mognadsgrad för att kunna installeras i dagsläget. AndraCCU-tekniker, såsom ”Power to gas”, kräver en hög CO2-koncentration och avfärdades dålitteraturstudien inte talade för den ekonomiska potentialen i dessa eftersom de kräver ytterligareuppgraderingssteg för CO2. Således valdes istället CCU-tekniker som skulle gå attimplementera direkt med den befintliga CO2 kvalitén. Vidare drogs slutsatsen att en anledningtill att CCU-tekniker inte har blivit vida implementerade till stor del är interna hindermellan distributörer och tillverkare (eller utnyttjare) av CCU-tekniker. Således kan användandetav koldioxid från biogasproduktion och implementering av CCU-tekniker främjasgenom att eliminera hinder hos företag. I projektet yttrade sig detta som bristande ekonomiskaincitament och okunskap. Ett ökat användande av CCU-tekniker kan också uppnås genomatt införa lagar och regler som begränsar användandet av föråldrade tekniker som drivs avfossila bränslen, och som kan ersättas av klimatvänliga CCU-tekniker.
Books on the topic "Carbon upgrading"
Visnapuu, A. Upgrading domestic high-iron chromite concentrates by carbonyl extraction of excess iron. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1985.
Find full textBook chapters on the topic "Carbon upgrading"
Saha, Biswajit, Sundaramurthy Vedachalam, Alivia Mukherjee, and Ajay K. Dalai. "Performance of Low-Cost Carbon-Based Adsorbent on Desulfurization of Heavy Gas Oil." In Catalytic and Noncatalytic Upgrading of Oils, 175–87. Washington, DC: American Chemical Society, 2021. http://dx.doi.org/10.1021/bk-2021-1379.ch007.
Full textKandel, Kapil, Stacey M. Althaus, Marek Pruski, and Igor I. Slowing. "Supported Hybrid Enzyme-Organocatalysts for Upgrading the Carbon Content of Alcohols." In ACS Symposium Series, 261–71. Washington, DC: American Chemical Society, 2013. http://dx.doi.org/10.1021/bk-2013-1132.ch011.
Full textMa, Jun, Chunjuan Li, Yingjie Zhang, and Ran Ju. "Combined Process of Ferrate Preoxidation and Biological Activated Carbon Filtration for Upgrading Water Quality." In Ferrates, 446–55. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0985.ch028.
Full textLindbråthen, Arne. "Carbon Membranes for Biogas Upgrading." In Carbon Membrane Technology, 65–78. CRC Press, 2020. http://dx.doi.org/10.1201/9780429445989-7.
Full text"Chapter 14 Carbon-rejecting processes." In Catalyst for Upgrading Heavy Petroleum Feeds, 335–43. Elsevier, 2007. http://dx.doi.org/10.1016/s0167-2991(07)80235-7.
Full textPatti, Sebastiano. "Determinants of Tourist Destination Competitiveness in a Low-Carbon Tourism." In Positioning and Branding Tourism Destinations for Global Competitiveness, 74–99. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7253-4.ch004.
Full textLalehloo, Rahman Shakibaei, Gomaa A. M. Ali, and Hamidreza Sadegh. "Review on Fisher-Tropsch Synthesis Method in Liquid Fuel Production." In Advanced Catalysis Processes in Petrochemicals and Petroleum Refining, 96–109. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-8033-1.ch003.
Full textPhotiou, N., L. Hollaway, and M. Chryssanthopoulos. "An ultra-high modulus carbon/glass fibre composite system for structural upgrading of steel members." In FRP Composites in Civil Engineering - CICE 2004, 741–48. Taylor & Francis, 2004. http://dx.doi.org/10.1201/9780203970850.ch83.
Full textLi, Rui, Qiangu Yan, Zhongqing Ma, and Guangyao Li. "Catalytic Upgrading of Pinewood Pyrolysis Bio-oil over Carbon-Encapsulated Bimetallic Co–Mo Carbide and Sulfide Catalysts." In Catalytic Science Series, 97–128. WORLD SCIENTIFIC (EUROPE), 2018. http://dx.doi.org/10.1142/9781786344847_0004.
Full textGradinaru, Giani Ionel, Alina Paula Moise, and Raluca Dana Caplescu. "Phenomena Implied by Sustainable and Green Retrofitting." In Retrofitting for Optimal Energy Performance, 121–42. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-9104-7.ch006.
Full textConference papers on the topic "Carbon upgrading"
Rahim, Marinda, and Fitriyana. "Upgrading East Kalimantan Lignite Into Activated Carbon As a Microwave Absorbent." In 2018 International Conference on Applied Science and Technology (iCAST). IEEE, 2018. http://dx.doi.org/10.1109/icast1.2018.8751519.
Full textDuchnowska, Magdalena. "COPPER AND ORGANIC CARBON UPGRADING SELECTIVITY ANALYSIS IN THE COPPER ORE FLOTATION PLANT." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/1.4/s04.007.
Full textKe-Xin, Bi, Fu Shan-Na, Li Yan, and Cheng Jiu-Yu. "Research on Impacts of Manufacturing Industry Upgrading to Low-Carbon Technology Breakthrough Innovation." In 2017 International Conference on Management Science and Engineering (ICMSE). IEEE, 2017. http://dx.doi.org/10.1109/icmse.2017.8574386.
Full textGuo, K., and Z. Yu. "Nickel Decorated Carbon Nanocomposites as Catalysts for the Upgrading of Heavy Crude Oil." In IOR 2017 - 19th European Symposium on Improved Oil Recovery. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201700230.
Full textMa, Zhongmin, and Qianqian Wen. "Research on Upgrading Path of China's Equipment Manufacturing Industry under Carbon Tax Policy." In 2016 2nd International Conference on Economy, Management, Law and Education (EMLE 2016). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/emle-16.2017.25.
Full textJuškaitė, Loreta, and Alvydas Zagorskis. "Microalgae Strains Monoraphidium Griffithi and Chlorella sp. for the Carbon Dioxide Capture from Biogas." In 11th International Conference “Environmental Engineering”. VGTU Technika, 2020. http://dx.doi.org/10.3846/enviro.2020.720.
Full textMadhania, Suci, K. Kusdianto, Siti Machmudah, Tantular Nurtono, W. Widiyastuti, and Sugeng Winardi. "Biogas quality upgrading by carbon mineralization with calcium hydroxide solution in continuous bubble column reactor." In PROCEEDINGS OF 2ND INTERNATIONAL CONFERENCE ON CHEMICAL PROCESS AND PRODUCT ENGINEERING (ICCPPE) 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/1.5140960.
Full textWendt, Daniel S., Piyush Sabharwall, and Vivek Utgikar. "Technologies for Upgrading Light Water Reactor Outlet Temperature." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17122.
Full textSakuma, A., T. Matsuura, T. Suzuki, O. Watanabe, and M. Fukuda. "Upgrading and Life Extension Technologies for Geothermal Steam Turbines." In ASME 2005 Power Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pwr2005-50341.
Full textVeselov, Fedor, and Ekaterina Nikulina. "Modeling Price Effects of Upgrading Strategies of Thermal Power Plants on the basis of Low Carbon Technologies in a Competitive Market." In 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). IEEE, 2019. http://dx.doi.org/10.1109/mlsd.2019.8910980.
Full text