Academic literature on the topic 'Carbon upgrading'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbon upgrading.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Carbon upgrading"

1

Partridge, Lester E., and Eoin J. Loughnane. "Committed carbon-upgrading existing buildings." Structural Design of Tall and Special Buildings 17, no. 5 (December 2008): 989–1002. http://dx.doi.org/10.1002/tal.478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Richter, Hannes, Norman Reger-Wagner, Susanne Kämnitz, Ingolf Voigt, Udo Lubenau, and Raymond Mothes. "Carbon membranes for bio gas upgrading." Energy Procedia 158 (February 2019): 861–66. http://dx.doi.org/10.1016/j.egypro.2019.01.222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Bing, and Liang-Nian He. "Upgrading Carbon Dioxide by Incorporation into Heterocycles." ChemSusChem 8, no. 1 (September 10, 2014): 52–62. http://dx.doi.org/10.1002/cssc.201402837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fukuyama, Hidetsugu, Satoshi Terai, Masayuki Uchida, José L. Cano, and Jorge Ancheyta. "Active carbon catalyst for heavy oil upgrading." Catalysis Today 98, no. 1-2 (November 2004): 207–15. http://dx.doi.org/10.1016/j.cattod.2004.07.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shuai, Li, Masoud Talebi Amiri, and Jeremy S. Luterbacher. "The influence of interunit carbon–carbon linkages during lignin upgrading." Current Opinion in Green and Sustainable Chemistry 2 (October 2016): 59–63. http://dx.doi.org/10.1016/j.cogsc.2016.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gao, Yiwen. "Research on the Impact of Human capital on the Transformation and Upgrading of China’s Industrial Structure from the Perspective of Low Carbon Development." E3S Web of Conferences 275 (2021): 02038. http://dx.doi.org/10.1051/e3sconf/202127502038.

Full text
Abstract:
From the perspective of low-carbon, this paper analyzes the impact of human capital on the transformation and upgrading of China’s industrial structure. Firstly, it combs the relevant literature, then theoretically analyzes the mechanism of human capital on the transformation and upgrading of China’s industrial structure, and then selects the energy consumption data of 30 provinces, autonomous regions, and municipalities (excluding Tibet, Hong Kong, Macao, and Taiwan) from 2006 to 2016 Human capital data, using panel data analysis for empirical test. The results show that human capital has a positive effect on the low-carbon transformation and upgrading of industrial structure, but there are some differences in the effect on the whole country and different regions in the East, middle and West. Finally, from the perspective of the government, enterprises, schools and individuals, this paper puts forward some countermeasures and suggestions, such as responding to the economic transformation and low-carbon economy policies, strengthening human capital investment, and accelerating the cultivation of low-carbon talents.
APA, Harvard, Vancouver, ISO, and other styles
7

Adnan, Ong, Nomanbhay, Chew, and Show. "Technologies for Biogas Upgrading to Biomethane: A Review." Bioengineering 6, no. 4 (October 2, 2019): 92. http://dx.doi.org/10.3390/bioengineering6040092.

Full text
Abstract:
The environmental impacts and high long-term costs of poor waste disposal have pushed the industry to realize the potential of turning this problem into an economic and sustainable initiative. Anaerobic digestion and the production of biogas can provide an efficient means of meeting several objectives concerning energy, environmental, and waste management policy. Biogas contains methane (60%) and carbon dioxide (40%) as its principal constituent. Excluding methane, other gasses contained in biogas are considered as contaminants. Removal of these impurities, especially carbon dioxide, will increase the biogas quality for further use. Integrating biological processes into the bio-refinery that effectively consume carbon dioxide will become increasingly important. Such process integration could significantly improve the sustainability of the overall bio-refinery process. The biogas upgrading by utilization of carbon dioxide rather than removal of it is a suitable strategy in this direction. The present work is a critical review that summarizes state-of-the-art technologies for biogas upgrading with particular attention to the emerging biological methanation processes. It also discusses the future perspectives for overcoming the challenges associated with upgradation. While biogas offers a good substitution for fossil fuels, it still not a perfect solution for global greenhouse gas emissions and further research still needs to be conducted.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Qi, and Guangpeng Li. "Research and Development of Carbon Dioxide Refrigeration Technology." E3S Web of Conferences 213 (2020): 03031. http://dx.doi.org/10.1051/e3sconf/202021303031.

Full text
Abstract:
With the agreement of the Kigali amendment to the Montreal Protocol, the timetable for the reduction of the mandate and the limitation of 18 controlled substances are being phased in. This has brought great challenges to the transformation, upgrading and sustainable development of China’s refrigeration and air conditioning industry. It has brought great challenges to the transformation, upgrading and sustainable development of China’s refrigeration and air conditioning industry. Carbon dioxide (CO2)is considered to be the most suitable and potential natural working medium due to its excellent environmental properties. This paper introduces the properties of CO2 refrigerant, NH3/CO2 laminated refrigeration system, CO2 secondary refrigerant refrigeration system and CO2 trans-critical refrigeration cycle system, and analyzes three representative processes of CO2 refrigeration system.
APA, Harvard, Vancouver, ISO, and other styles
9

Cabrera-Codony, Alba, Miguel A. Montes-Morán, Manuel Sánchez-Polo, Maria J. Martín, and Rafael Gonzalez-Olmos. "Biogas Upgrading: Optimal Activated Carbon Properties for Siloxane Removal." Environmental Science & Technology 48, no. 12 (June 2, 2014): 7187–95. http://dx.doi.org/10.1021/es501274a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Juan, Jian Yu, Wei Zhao, Qiang Li, Yin Wang, and Guangwen Xu. "Upgrading Ash-Rich Activated Carbon from Distilled Spirit Lees." Industrial & Engineering Chemistry Research 51, no. 17 (April 23, 2012): 6037–43. http://dx.doi.org/10.1021/ie202882r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Carbon upgrading"

1

Leonard, McLain E. (McLain Evan). "Engineering gas diffusion electrodes for electrochemical carbon dioxide upgrading." Thesis, Massachusetts Institute of Technology, 2021. https://hdl.handle.net/1721.1/130671.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, February, 2021
Cataloged from the official PDF of thesis.
Includes bibliographical references (pages 219-233).
Electrochemical carbon dioxide reduction (CO2R) is increasingly recognized as a viable technology for the generation of chemicals using carbon dioxide (CO₂) recovered from industrial exhaust streams or directly captured from air. If powered with low-carbon electricity, CO2R processes have the potential to reduce emissions from chemicals production. Historically, three-electrode analytical cells have been used to study catalyst activity, selectivity, and stability with a goal of incorporating proven materials into larger devices. However, it has been recognized that the limited CO₂ flux through bulk volumes of liquid electrolyte limit the effective reaction rate of CO₂ when using promising catalyst systems.
Gas-fed electrolyzers adapted from commercial water electrolyzer and fuel cell technologies have motivated researchers to explore combinations of porous electrodes, catalyst layers, and electrolytes to achieve higher areal productivity and favorable product selectivities. Present art demonstrates that high current density production (>200 mA cm₋²) of valuable chemicals at moderate cell voltages (ca. 3-4 V) is achievable at ambient conditions using electrolysis devices with catalyst-coated gas diffusion electrodes (GDEs). However, beyond short durations (1-10 h) stable performance outcomes for flowing electrolyte systems remain elusive as electrolyte often floods electrode pores, blocking diffusion pathways for CO₂, diminishing CO2R selectivity, and constraining productivity. Systematic study of the driving forces that induce electrode flooding is needed to infer reasonable operational envelopes for gas-fed electrolyzers as full-scale industrial devices are developed.
In this thesis, I investigate GDE wettability as a prominent determinant of gas-fed flowing electrolyte CO₂ electrolyzer durability. To do this, I combine experimental and computational approaches. First, I use a flow cell platform to study transient evolution of activity, selectivity, and saturation to identify failure modes, including liquid pressurization, salt precipitation, electrowetting, and liquid product enrichment. Next, I use material wettability properties and reactor mass balances to estimate how enriched liquid product streams might defy non-wetting characteristics of current GDE material sets. Finally, I construct computational electrode models and vary surface chemistry descriptors to predict transport properties in partially saturated electrodes. Specifically, I consider how saturation evolves in response to relevant scenarios (i.e., electrowetting and liquid products) that challenge CO₂ electrolyzer durability.
by McLain E. Leonard.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Chemical Engineering
APA, Harvard, Vancouver, ISO, and other styles
2

Starr, Katherine. "Environmental and economic assessment of carbon mineralization for biogas upgrading." Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/129920.

Full text
Abstract:
Durante los últimos años, la investigación y el desarrollo de tecnologías para la reducción de las emisiones de gases de efecto invernadero (GEI) en nuestro planeta ha incrementado. Varias soluciones se han propuesto, incluyendo la captura y secuestro de carbono (CCS en inglés). La aplicación de CCS se ha focalizado en las tecnologías de producción de energía a gran escala que utilizan combustibles fósiles. Recientemente, se ha trabajado en el uso de CCS en tecnologías de enriquecimiento de biogás. Esta práctica consiste en la eliminación del CO2 del biogás emitido por digestores anaeróbicos y vertederos con el fin de incrementar la concentración de CH4 en el biogás, generando así un potencial sustituto de gas natural. Dos innovadoras tecnologías en desarrollo almacén además el CO2 eliminado en una forma sólida, a través de un proceso llamado mineralización de carbono. Este proceso utiliza óxido cálcico de los residuos industriales para fijar el CO2 en forma de carbonato cálcico. Idealmente estas tecnologías innovadoras de enriquecimiento deberían mostrar mayores beneficios ambientales en comparación con las tecnologías convencionales ya que almacenan inmediatamente el CO2. La primera tecnología analizada es la regeneración de alcalino (AwR) que consiste en el uso de una solución alcalina para eliminar el CO2 y que es regenerada mediante su exposición a un residuo industrial rico en CaO. La segunda tecnología es enriquecimiento de biogás con cenizas (BABIU), basada en la interacción directa del biogás con las cenizas resultantes de incineradores de residuos municipales. Esta tesis pretende determinar si estas tecnologías innovadoras muestran beneficios ambientales respecto a las tecnologías convencionales de enriquecimiento de biogás, mediante la aplicación de herramientas de la ecología industrial. El análisis de ciclo de vida, el análisis de flujos materiales y el análisis de exergía son aplicadas para el análisis ambiental y de recursos. Asimismo, la viabilidad a largo plazo de las tecnologías es examinada desde el punto de vista económico y material. En general, los resultados indican que las tecnologías innovadoras no muestran un perfil ambiental notablemente mejor que las convencionales, especialmente para AwR donde el uso de la solución alcalina da lugar a un elevado impacto ambiental. Aún así, ambas tecnologías consiguen un significante ahorro de CO2 respecto a las tecnologías convencionales. Asimismo, dado que las dos tecnologías analizadas se encuentran en un período de prueba piloto, se identifican las potenciales mejoras para optimizar el perfil ambiental y económico, como incrementar la eficiencia de la regeneración de la solución alcalina en la tecnología AwR. El análisis económico realizado para AwR resaltó que reducir sus costes operacionales incrementaría la oportunidad de su implementación como negocio. Los resultados pueden ser usados tanto por promotores de estas innovadoras tecnologías para mejorar su viabilidad económica y ambiental a largo plazo, como por promotores y fabricantes de tecnologías similares, como aplicaciones de CCS o enriquecimiento de biogás.
Our world has been increasingly looking for solutions to reduce the greenhouse gas (GHG) emissions of our planet. Various solutions have been proposed, including carbon capture and sequestration (CCS). Focus for application of CCS has normally centered on large scale energy production that burns fossil fuel. Recently, developers have been working on applying CCS to biogas upgrading technology. This entails removing CO2 from biogas emitted from anaerobic digestors and landfills while also increasing the CH4 concentration to render the biogas suitable as natural gas substitute. Two novel technologies under review also stores the removed CO2 in a solid form, through a process called carbon mineralization. This process uses calcium oxides found in industrial waste to fix CO2 by forming calcium carbonate. Ideally these novel upgrading technologies should have more environmental benefit over conventional ones based on the fact that they immediately store CO2, while conventional ones do not. The first technology is called alkaline with regeneration (AwR) and consists of using an alkaline solution to strip the CO2. The alkaline solution is then regenerated by exposing it to a waste rich in CaO. The second is called bottom ash for biogas upgrading (BABIU) which relies on a direct gas-solid phase interaction with bottom ash from municipal solid waste incinerators. This thesis examines whether or not these two novel technologies have an environmental benefit over conventional upgrading technologies, based on industrial ecology tools. Life cycle assessment, material flow analysis, and exergy analysis were applied for the environmental and resource assessments. The thesis also examines the long term feasibility of applying these technologies, both from a material and economic point of view. Overall it was determined that the novel technologies generally do not have a better environmental performance over conventional technologies, especially AwR which was found to have a higher impact due to the use of the alkaline solution. Despite this, both novel technologies had significant CO2 savings over conventional technologies. As well since both novel processes are in the pilot plant stage it is possible to pinpoint what can be improved in order to increase the all around environmental benefit, for example by increasing the regeneration rate of the alkaline solution in AwR. The economic assessment was conducted on AwR and it was found that improving its operational costs would help create a business case for potential application. The results not only help the developers of the novel technologies to improve their long term environmental and economic viability but also can be used by developers and manufactures of similar technologies, such as other biogas upgrading or CCS technologies.
APA, Harvard, Vancouver, ISO, and other styles
3

Samuel, Adam. "Biogas upgrading and solvent regeneration in monoethanolamine and ionic liquids for carbon dioxide utilisation." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/9364/.

Full text
Abstract:
Biogas is a renewable energy source, consisting primarily of methane and carbon dioxide (CO2), which can be upgraded by stripping the CO2 to produce biomethane. One of the standard industrial solvents used in biogas upgrading is monoethanolamine (MEA). Despite the effective CO2 capture capability of MEA, it is energy intensive to regenerate since it requires heating the solvent to approximately 120 oC. Additional issues with MEA include material losses due to degradation and evaporation. This work investigates methods for improving the biogas upgrading process by utilising microbubbles and comparing ionic liquid solvents to MEA. It is also examined whether CO2 can be released from a solvent with high enough purity to be utilised directly in conjunction with carbon dioxide utilisation (CDU) processes. The study experimentally investigates factors influencing bubble size and absorption of CO2 by ionic liquids with a view to biogas upgrading. It was found that bubble size in the majority of ionic liquids tested was far greater than that in aqueous glycerol mixtures of similar viscosity; however, three of the ionic liquids tested had a similar bubble size. Further analysis showed that rather than viscosity, the surface tension of the ionic liquid has the most significant influence on bubble size due to its stabilising effect on the homogeneous regime in bubble columns. 30 wt.% aqueous MEA solution was shown to have a significantly greater rate of mass transfer than the ionic liquids tested due to its greater absorption capacity, greater diffusivity and tendency to form smaller bubbles. Of the ionic liquids tested, the greatest absorption capacity was exhibited by [C2mim][NTf2] and the greatest volumetric mass transfer coefficient by [C2mim][EtSO4].
APA, Harvard, Vancouver, ISO, and other styles
4

El, Gemayel Gemayel. "Integration and Simulation of a Bitumen Upgrading Facility and an IGCC Process with Carbon Capture." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23274.

Full text
Abstract:
Hydrocracking and hydrotreating are bitumen upgrading technologies designed to enhance fuel quality by decreasing its density, viscosity, boiling point and heteroatom content via hydrogen addition. The aim of this thesis is to model and simulate an upgrading and integrated gasification combined cycle then to evaluate the feasibility of integrating slurry hydrocracking, trickle-bed hydrotreating and residue gasification using the Aspen HYSYS® simulation software. The close-coupling of the bitumen upgrading facilities with gasification should lead to a hydrogen, steam and power self-sufficient upgrading facility with CO2 capture. Hydrocracker residue is first withdrawn from a 100,000 BPD Athabasca bitumen upgrading facility, characterized via ultimate analysis and then fed to a gasification unit where it produces hydrogen that is partially recycled to the hydrocracker and hydrotreaters and partially burned for power production in a high hydrogen combined cycle unit. The integrated design is simulated for a base case of 90% carbon capture utilizing a monoethanolamine (MEA) solvent, and compared to 65% and no carbon capture scenarios. The hydrogen production of the gasification process is evaluated in terms of hydrocracker residue and auxiliary petroleum coke feeds. The power production is determined for various carbon capture cases and for an optimal hydrocracking operation. Hence, the feasibility of the integration of the upgrading process and the IGCC resides in meeting the hydrogen demand of the upgrading facility while producing enough steam and electricity for a power and energy self-sufficient operation, regardless of the extent of carbon capture.
APA, Harvard, Vancouver, ISO, and other styles
5

Dixit, Onkar. "Upgrading Biogas to Biomethane Using Absorption." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-189059.

Full text
Abstract:
Questions that were answered in the dissertation: Which process is suitable to desulphurize biogas knowing that chemical absorption will be used to separate CO2? Which absorption solvent is suitable to separate CO2 from concentrated gases such as biogas at atmospheric pressure? What properties of the selected solvent, namely aqueous diglycolamine (DGA), are already known? How to determine solvent properties such as equilibrium CO2 solubility under absorption and desorption conditions using simple, but robust apparatuses? What values do solvent properties such as density, viscosity and surface tension take at various DGA contents and CO2 loadings? How do primary alkanolamine content and CO2 loading influence solvent properties? What is the optimal DGA content in the solvent? What is the optimal desorption temperature at atmospheric pressure? How can equilibrium CO2 solubility in aqueous DGA solvents be simulated? What is the uncertainty in the results? How to debottleneck an absorber and increase its gas-treating capacity? How to determine the optimal lean loading of the absorption solvent? What are the characteristics of the absorption process that uses aqueous DGA as the solvent to separate CO2 from biogas and is more energy efficient and safer than the state-of-the-art processes? How to quantitatively compare the hazards of absorption solvents? What is the disposition of the German population towards hazards from biogas plants? What are the favourable and adverse environmental impacts of biomethane?
Fragen, die in der Dissertation beantwortet wurden: Welches Verfahren ist zur Entschwefelung von Biogas geeignet, wenn die chemische Absorption zur CO2-Abtrennung genutzt wird? Welches Absorptionsmittel ist geeignet, um CO2 aus konzentrierten Gasen, wie Biogas, bei atmosphärischem Druck abzutrennen? Welche Eigenschaften des ausgewählten Absorptionsmittels, wässriges Diglykolamin (DGA), sind bereits bekannt? Wie wird die CO2-Gleichgewichtsbeladung unter Absorptions- und Desorptionsbedingungen mit einfachen und robusten Laborapparaten bestimmt? Welche Werte nehmen die Absorptionsmitteleigenschaften wie Dichte, Viskosität und Oberflächenspannung bei verschiedenen DGA-Gehalten und CO2-Beladungen? Wie werden die Absorptionsmitteleigenschaften durch den Primäramin-Gehalt und die CO2-Beladung beeinflusst? Was ist der optimale DGA-Gehalt im Absorptionsmittel? Was ist die optimale Desorptionstemperatur bei atmosphärischem Druck? Wie wird die CO2-Gleichgewichtsbeladung im wässrigen DGA simuliert? Welche Ungenauigkeit ist zu erwarten? Wie wird eine Absorptionskolonne umgerüstet, um die Kapazität zu erweitern? Wie wird die optimale CO2-Beladung des Absorptionsmittels am Absorbereintritt (im unbeladenen Absorptionsmittel) bestimmt? Was sind die Prozesseigenschaften eines Absorptionsverfahrens, das wässriges DGA als Absorptionsmittel nutzt sowie energieeffizienter und sicherer als Verfahren auf dem Stand der Technik ist? Wie kann das Gefahrenpotenzial von Absorptionsmittel quantitativ verglichen werden? Wie werden Gefahren aus einer Biogasanlage durch die deutsche Bevölkerung wahrgenommen? Welche positive und negative Umweltauswirkung hat Biomethan?
APA, Harvard, Vancouver, ISO, and other styles
6

Vilella, Priscila Costa. "SÃntese e avaliaÃÃo de bioadsorventes na separaÃÃo de misturas contendo CO2 e CH4 para aplicaÃÃo em upgrade de biogÃs originado a partir de resÃduos sÃlidos orgÃnicos." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15705.

Full text
Abstract:
A geraÃÃo de ResÃduos SÃlidos Urbanos (RSU) vem aumentando a cada ano no PaÃs, sendo a fraÃÃo orgÃnica normalmente responsÃvel por mais da metade da quantidade total de RSU gerada. Entre as alternativas existentes para o aproveitamento dos resÃduos sÃlidos orgÃnicos, destaca-se a digestÃo anaerÃbia, uma soluÃÃo atrativa, tendo em vista que hà produÃÃo de biogÃs durante o processo. Entretanto, para que suas possibilidades de aplicaÃÃo sejam mais abrangentes, à necessÃrio que o biogÃs seja purificado e posteriormente submetido a um processo de upgrade, a fim de que adquira caracterÃsticas similares ao do gÃs natural. O presente trabalho teve como objetivo sintetizar Carbonos Ativados (CAs) a partir de endocarpo de coco seco (Cocos nucifera), de coco babaÃu (Orbignya speciosa) e a partir de vagem de flamboyant (Delonix regia) por meio de ativaÃÃo com diÃxido de carbono em Ãnica etapa. As caracterÃsticas texturais das amostras foram determinadas por meio de isotermas de adsorÃÃo de N2 a -196 ÂC. Os maiores valores de Ãrea superficial especÃfica e volume de microporos foram obtidos para o bioadsorvente sintetizado a partir do coco seco, com valores de 1452 m2/g e 0,60 cm3/g, respectivamente. Foram selecionados os CAs de coco seco e de coco babaÃu para a anÃlise de suas eficiÃncias na separaÃÃo de misturas CO2/CH4 para aplicaÃÃo no upgrade de biogÃs. Para tanto, ensaios de equilÃbrio de adsorÃÃo dos componentes puros (CO2 e CH4) e da mistura (30% vol. CO2, 70% vol. CH4) foram realizados a 20 ÂC utilizando uma balanÃa de suspensÃo magnÃtica. A capacidade de adsorÃÃo de CO2 pouco se diferenciou entre as duas amostras, apresentando o CA de coco seco melhores resultados. Essa amostra apresentou valores bem maiores de captura de metano a pressÃes acima de 3,0 bar. Os dados experimentais foram comparados com os obtidos pelo ajuste do modelo de TÃth e da IAST (Teoria da SoluÃÃo Adsorvida Ideal) para os dados mono e multicomponentes, respectivamente. Os ajustes de TÃth foram bastante precisos, enquanto os da IAST se adequaram moderadamente. As seletividades das amostras para o CO2 em relaÃÃo ao CH4 foram determinadas e comparadas com a de outros adsorventes comerciais. O CA do coco seco apresentou resultados melhores que o coco babaÃu a baixas pressÃes, com valor de seletividade de 4,2 a 1,0 bar, indicando ser um material competitivo para a aplicaÃÃo proposta.
The generation of Municipal Solid Waste (MSW) is increasing every year in Brazil, being the organic matter responsible for more than half of the total MSW generated. Among the current alternatives to the use of organic solid waste, the anaerobic digestion is the most attractive as biogas production occurs in the process. Nevertheless, to increase its usage possibilities, biogas has to be purified and upgraded, in order to acquire characteristics similar to that of natural gas. The present work aims to prepare activated carbons (ACs) from coconut endocarp (Cocos nucifera), babassu coconut (Orbignya speciosa) and flamboyant pods (Delonix regia) by one step CO2 activation. The textural characteristics were determined by N2 adsorption isotherm at -196 ÂC. The best results of BET surface area and micropore volume were obtained for bioadsorbent synthesized from coconut shell, with values of 1452 m2/g and 0.6 cm3/g, respectively. ACs from coconut shell and babassu coconut were selected to analyze their efficiency in CO2/CH4 separation mixture for biogas upgrading application. Therefore, pure component (CO2 and CH4) and mixture (30% vol. CO2, 70% vol. CH4) adsorption equilibria were performed at 20 ÂC using a magnetic suspension balance. The CO2 adsorption capacity slightly differed between samples, presenting the AC from coconut shell better results. This sample had higher methane uptake above pressures of 3.0 bar. The experimental data were compared with the fit of Toth and IAST (Ideal Adsorbed Solution Theory) models for mono and multicomponent data, respectively. The Toth fitting was fairly accurate, while the IAST fit was moderate. The samples selectivity to CO2 over CH4 were calculated and compared with another commercial adsorbent. The AC from coconut shell presented better results than babassu coconut at low pressures, with a selectivity value of 4.2 at 1.0 bar, indicating to be a competitive material for the proposed application.
APA, Harvard, Vancouver, ISO, and other styles
7

Losch, Pit. "Synthesis and characterisation of zeolites, their application in catalysis and subsequent rationalisation : methanol-to-olefins (MTO) process with designed ZSM-5 zeolites." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAF035/document.

Full text
Abstract:
Cette thèse s'articule autour des zéolithes, plus particulièrement leur synthèse, leur caractérisation et leur application comme catalyseurs hétérogènes. Dans certains cas, la compréhension des phénomènes encontrés au cours de ce processus nécessitait un travail de rationalisation. Ce dernier ingrédient permet une réelle amélioration continue, ou une conception sur mesure d'un catalyseur pour une réaction. Les zéolithes sont des aluminosilicates, microporeux et cristallins, qui se définissent et se différencient de part leur arrangement 3D de tétraèdres (SiO4 et AlO4) . Il a été essayé d'utiliser des zéolithes conçues sur mesures en tant que catalyseurs pour des réactions faisant partie d'une chimie renouvelable. Ainsi, ces travaux s'inscrivent dans le cadre des concepts de la chimie verte et de l'addition graduelle de complexité moléculaire. Au cours de cette thèse, la boucle itéative de l'amélioration continue a mené à deux reprises à un catalyseur très adapté au processus catalytique en question: d'une part l'halogènation d'aromatiques a été effectuée en phase liquide, il s'agit d'un procédé liquide-solide pour lequel le meilleur catalyseur résulte en une zéolithe béta (H-*BEA) avec une porosité hiérarchisée. Au contraire, la réaction de la conversion du méthanol en oléfines (MTO) une réaction gas-solide semble avoir comme catalyse uroptimal des zéolithes de type ZSM-5 sans porosité hierarchisée, mais ayant des tailles cristallines élevées, une qualité cristalline proche de la perfection (sans défauts) et une densité de sites acides très disperses
This work revolved around the synthesis, characterisation and application of zeolites in heterogeneous catalysis. In some cases, counterintuitive observations and results needed a thorough rationalisation, which allowed a truly continuous improvement, or rational design of a catalyst for a given reaction. Zeolites are crystalline and microporous aluminosilicates, which are defined and differ one from another through their 3D arrangement of tetrahedra (SiO4 and AlO4).It has been aimed to design heterogeneous catalysts for reactions that fit in the concepts of a sustainable chemistry. Thus, this works describes and tried to respect the concepts of green chemistry and carbon upgrading. Remarkably, during this thesis the feedback looped continuous improvement approach has led twice to adapted catalysts for a catalytic chemical transformation: the liquid-solid continuous flow halogenation of aromatics was best performed with nanosized H-*BEA zeolites exhibiting a hierarchical porosity. In contrast, the gas-solid Methanol-to-Olefins (MTO) process needed an unusual catalyst. Indeed based on our study, large and perfectly crystalline H-ZSM-5 crystals with a disperse Brønsted acidity were the optimum catalyst
APA, Harvard, Vancouver, ISO, and other styles
8

Erlach, Berit [Verfasser], George [Akademischer Betreuer] Tsatsaronis, and Mats [Akademischer Betreuer] Westermark. "Biomass upgrading technologies for carbon-neutral and carbon-negative electricity generation : techno-economic analysis of hydrothermal carbonization and comparison with wood pelletizing, torrefaction and anaerobic digestion / Berit Erlach. Gutachter: George Tsatsaronis ; Mats Westermark." Berlin : Technische Universität Berlin, 2014. http://d-nb.info/1067387064/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Oswald, Florian [Verfasser], and C. [Akademischer Betreuer] Syldatk. "Upgrading the toolbox for fermentation of crude syngas: Process characterization for complete carbon usage, cyanide adaption and production of C4 components / Florian Oswald ; Betreuer: C. Syldatk." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1176022598/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Broman, Nils. "Värdeskapande av koldioxid frånbiogasproduktion : En kartläggning över lämpliga CCU-tekniker för implementeringpå biogasanläggningar i Sverige." Thesis, Linköpings universitet, Industriell miljöteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171793.

Full text
Abstract:
Carbon dioxide from biogas production is currently considered to be without value and isbecause of this released into the atmosphere in the biogas upgrading process. The residualgas is a potential carbon source and can create value in the biogas manufacturing process.By finding a suitable value-creating process that utilizes carbon dioxide, it can be possibleto provide both economic and environmental incentives for companies to develop theiroperations. This project explored the possibility to create value from this CO2. Through anevaluation of the technical maturity of CCU technologies, a recommendation could be givenat the end of the project. An analysis of technical barriers, such as pollutants in the gas, aswell as barriers in the form of competence and corporate culture were examined in orderto provide a reasoned recommendation. The project mapped which value-creating systemswould be suitable for biogas producers in a Swedish context. This included established methaneand carbon dioxide upgrading techniques currently in use and suitable CCU techniquesthat can interact with the selected upgrading processes and serve as value creators. Based onthis survey, it was then possible to identify common, critical variables for these systems. Thereafter,a recommendation of an appropriate CCU technology could be given depending onthe CO2 composition produced. One conclusion from the study was that carbon dioxide concentrationsfrom the residual gas was often high (approx. 97-98 %) and did not contain anycorrosive or toxic components, and that this largely depends on how the digestion reactor ishandled in the production process. Thus, questions were raised about what the actual limitationsof the CCU are, as they did not seem to be technical. CCU techniques that proved to beof particular interest were pH regulation of sewage plants, CO2 as a nutrient substrate for thecultivation of microalgae, and manufacturing of dry-ice for refrigerated transports. All of thesetechnologies currently have a sufficiently high degree of technical maturity to be installedalready today. Other CCU techniques, such as "’Power to gas”, require a high CO2 concentrationand were discarded as the literature review did not suggest the economic potential forthem as they require additional CO2 upgrading steps. Instead, CCU techniques were chosenthat could be implemented directly with the existing CO2 quality. Furthermore, it was concludedthat one reason why CCU technologies have not been widely implemented is internalbarriers between distributors and manufacturers (or users) of CCU technologies. Thus, theuse of carbon dioxide from biogas production and implementation of CCU technologies canbe promoted by eliminating barriers in companies, such as a lack of both knowledge andfinancial incentives.
Koldioxid från biogasproduktion betraktas i dagsläget som utan värde och släpps ut i atmosfärenvid uppgradering av biogas. Restgasen är en potentiell kolkälla och kan vara värdeskapandeför biogasprocessen. Genom att finna en lämplig värdeskapande process som utnyttjarkoldioxid går det att ge både ekonomiska och miljömässiga incitament till företag att utvecklasin verksamhet. I detta projekt undersöktes möjligheten att skapa värde av denna CO2.Genom en utvärdering av den tekniska mognadsgraden hos CCU-tekniker kunde en rekommendationges vid projektets slut. En analys av tekniska hinder, såsom föroreningar i gassammansättningen,såväl som hinder i form av kompetens och företagskultur undersöktes för attkunna ge en motiverad rekommendation. I projektet kartlades vilka värdeskapande systemsom skulle passa för biogasproducenter i en svensk kontext. Detta inkluderade etableradeuppgraderingstekniker för metan- och koldioxid som används i dagsläget. I projektet undersöktesäven lämpliga CCU-tekniker som kan samverka med de valda uppgraderingsprocessernaoch och agera värdeskapande. Utifrån denna kartläggning kunde det sedan anges vilkagemensamma, kritiska variabler som finns för dessa system. Därefter kunde en rekommendationav lämplig CCU-teknik ges beroende på den producerade CO2 sammansättningen. Enslutsats i projektet var att koldioxid från restgasen ofta var av hög koncentration (ca. 97-98 %)och ej innehöll några korrosiva eller toxiska komponenter, och att detta till stor del beror påhur rötkammaren är hanterad i produktionsprocessen. Således väcktes frågor kring vilka defaktiska begränsningarna för CCU är, då de inte torde vara tekniska. CCU-tekniker som visadesig vara av särskilt intresse var pH-reglering av avloppsverk, CO2 som näringssubstratför odling av mikroalger, samt tillverkning av kolsyreis för kyltransporter. Samtliga dessatekniker har tillräckligt hög teknisk mognadsgrad för att kunna installeras i dagsläget. AndraCCU-tekniker, såsom ”Power to gas”, kräver en hög CO2-koncentration och avfärdades dålitteraturstudien inte talade för den ekonomiska potentialen i dessa eftersom de kräver ytterligareuppgraderingssteg för CO2. Således valdes istället CCU-tekniker som skulle gå attimplementera direkt med den befintliga CO2 kvalitén. Vidare drogs slutsatsen att en anledningtill att CCU-tekniker inte har blivit vida implementerade till stor del är interna hindermellan distributörer och tillverkare (eller utnyttjare) av CCU-tekniker. Således kan användandetav koldioxid från biogasproduktion och implementering av CCU-tekniker främjasgenom att eliminera hinder hos företag. I projektet yttrade sig detta som bristande ekonomiskaincitament och okunskap. Ett ökat användande av CCU-tekniker kan också uppnås genomatt införa lagar och regler som begränsar användandet av föråldrade tekniker som drivs avfossila bränslen, och som kan ersättas av klimatvänliga CCU-tekniker.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Carbon upgrading"

1

Visnapuu, A. Upgrading domestic high-iron chromite concentrates by carbonyl extraction of excess iron. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Carbon upgrading"

1

Saha, Biswajit, Sundaramurthy Vedachalam, Alivia Mukherjee, and Ajay K. Dalai. "Performance of Low-Cost Carbon-Based Adsorbent on Desulfurization of Heavy Gas Oil." In Catalytic and Noncatalytic Upgrading of Oils, 175–87. Washington, DC: American Chemical Society, 2021. http://dx.doi.org/10.1021/bk-2021-1379.ch007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kandel, Kapil, Stacey M. Althaus, Marek Pruski, and Igor I. Slowing. "Supported Hybrid Enzyme-Organocatalysts for Upgrading the Carbon Content of Alcohols." In ACS Symposium Series, 261–71. Washington, DC: American Chemical Society, 2013. http://dx.doi.org/10.1021/bk-2013-1132.ch011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ma, Jun, Chunjuan Li, Yingjie Zhang, and Ran Ju. "Combined Process of Ferrate Preoxidation and Biological Activated Carbon Filtration for Upgrading Water Quality." In Ferrates, 446–55. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0985.ch028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lindbråthen, Arne. "Carbon Membranes for Biogas Upgrading." In Carbon Membrane Technology, 65–78. CRC Press, 2020. http://dx.doi.org/10.1201/9780429445989-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Chapter 14 Carbon-rejecting processes." In Catalyst for Upgrading Heavy Petroleum Feeds, 335–43. Elsevier, 2007. http://dx.doi.org/10.1016/s0167-2991(07)80235-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Patti, Sebastiano. "Determinants of Tourist Destination Competitiveness in a Low-Carbon Tourism." In Positioning and Branding Tourism Destinations for Global Competitiveness, 74–99. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7253-4.ch004.

Full text
Abstract:
Low-carbon tourism represents a sustainable way to make tourist destinations more competitive and efficient. Therefore, tourist destination competitiveness has to consider natural resources preservation and environmentally sustainable development. Many cities have become more attractive through upgrading their quality of services, investing in low-carbon policies, and consequently, improving their competitiveness. In these contexts, innovation and technology were used to provide benefits to the tourist as well as to the resident like in the “smart city” model. Many tourist destinations are exposed to very high levels of competition, so it becomes really significant to change policy and strategy ameliorating environmental standards to maintain profit margins. The purpose of this chapter is to study the low-carbon tourists' destination competitiveness. It intends to contribute to the literature analyzing this topic and explaining how low-carbon goods and services can determine the competitiveness of a tourist destination.
APA, Harvard, Vancouver, ISO, and other styles
7

Lalehloo, Rahman Shakibaei, Gomaa A. M. Ali, and Hamidreza Sadegh. "Review on Fisher-Tropsch Synthesis Method in Liquid Fuel Production." In Advanced Catalysis Processes in Petrochemicals and Petroleum Refining, 96–109. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-8033-1.ch003.

Full text
Abstract:
This chapter describes the Fisher-Tropsch Synthesis (FTS) method. Although it has been already applied at industrial scale for a century, the FTS has gained renewed interests as it is a key step for converting alternative feedstocks, including biomass to transportation fuels. It is the means by which synthesis gas containing hydrogen and carbon monoxide is converted to hydrocarbon products. The chapter explores that interest in FTS technology is increasing rapidly. In addition, the FTS process and products upgrading are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Photiou, N., L. Hollaway, and M. Chryssanthopoulos. "An ultra-high modulus carbon/glass fibre composite system for structural upgrading of steel members." In FRP Composites in Civil Engineering - CICE 2004, 741–48. Taylor & Francis, 2004. http://dx.doi.org/10.1201/9780203970850.ch83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Rui, Qiangu Yan, Zhongqing Ma, and Guangyao Li. "Catalytic Upgrading of Pinewood Pyrolysis Bio-oil over Carbon-Encapsulated Bimetallic Co–Mo Carbide and Sulfide Catalysts." In Catalytic Science Series, 97–128. WORLD SCIENTIFIC (EUROPE), 2018. http://dx.doi.org/10.1142/9781786344847_0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gradinaru, Giani Ionel, Alina Paula Moise, and Raluca Dana Caplescu. "Phenomena Implied by Sustainable and Green Retrofitting." In Retrofitting for Optimal Energy Performance, 121–42. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-9104-7.ch006.

Full text
Abstract:
With all the new technology and scientific progress, the human population is significantly increasing, and the planet will hardly support the overpopulation. The increase of the carbon footprint and natural resources decrease with each human. Society must find solutions to use resources in a smart way, reducing the ecological impact and stopping the cities from sprawling. Instead of extending the manmade environment and using more resources, we can act on what we have, upgrading our buildings by using sustainable and green retrofitting and making them energy efficient and environmentally friendly, while covering our cultural, social and psychological needs. Overpopulation, as well as depopulation/migration, greatly affects architecture. This study aims at finding retrofit solutions and strategies in an attempt to improve the existing urban environment quality and buildings' energy efficiency, provide interior comfort and contribute to aesthetic urban image, as well as doing so in a cheap and efficient way.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Carbon upgrading"

1

Rahim, Marinda, and Fitriyana. "Upgrading East Kalimantan Lignite Into Activated Carbon As a Microwave Absorbent." In 2018 International Conference on Applied Science and Technology (iCAST). IEEE, 2018. http://dx.doi.org/10.1109/icast1.2018.8751519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duchnowska, Magdalena. "COPPER AND ORGANIC CARBON UPGRADING SELECTIVITY ANALYSIS IN THE COPPER ORE FLOTATION PLANT." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/1.4/s04.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ke-Xin, Bi, Fu Shan-Na, Li Yan, and Cheng Jiu-Yu. "Research on Impacts of Manufacturing Industry Upgrading to Low-Carbon Technology Breakthrough Innovation." In 2017 International Conference on Management Science and Engineering (ICMSE). IEEE, 2017. http://dx.doi.org/10.1109/icmse.2017.8574386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guo, K., and Z. Yu. "Nickel Decorated Carbon Nanocomposites as Catalysts for the Upgrading of Heavy Crude Oil." In IOR 2017 - 19th European Symposium on Improved Oil Recovery. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201700230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Zhongmin, and Qianqian Wen. "Research on Upgrading Path of China's Equipment Manufacturing Industry under Carbon Tax Policy." In 2016 2nd International Conference on Economy, Management, Law and Education (EMLE 2016). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/emle-16.2017.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Juškaitė, Loreta, and Alvydas Zagorskis. "Microalgae Strains Monoraphidium Griffithi and Chlorella sp. for the Carbon Dioxide Capture from Biogas." In 11th International Conference “Environmental Engineering”. VGTU Technika, 2020. http://dx.doi.org/10.3846/enviro.2020.720.

Full text
Abstract:
One of the most important tools for mitigating climate change is biogas production. Increasing their use requires improving the energy value of biogas by reducing its carbon dioxide content while increasing the methane concentration in biogas. Biological purification of biogas using microalgae strains − merging biogas upgrading method where microalgae use carbon dioxide for their growth during the process of photosynthesis. A four-column photobioreactor was constructed with Monoraphidium Griffithi, Chlorella sp. microalgae strains, distilled water and MWH medium for purification of biogas. Experimental studies determined sizes, shapes and of microalgae cells, the pH changes of mediums used after biogas treatment and the composition of biogas before and after upgrading using photobioabsorber. Microalgae Monoraphidium Griffithi was estimated to have the greatest contribution to CO2 reduction by decreasing from 31.0% to 10.0%. The smallest reduction in CO2 was recorded when biogas was flowing through MWH medium. Experiments have shown that the absorption of biogas components results in the release of oxygen. As the biogas was flowing through all suspensions, the oxygen concentration increased from 3.6 to 5.2%.
APA, Harvard, Vancouver, ISO, and other styles
7

Madhania, Suci, K. Kusdianto, Siti Machmudah, Tantular Nurtono, W. Widiyastuti, and Sugeng Winardi. "Biogas quality upgrading by carbon mineralization with calcium hydroxide solution in continuous bubble column reactor." In PROCEEDINGS OF 2ND INTERNATIONAL CONFERENCE ON CHEMICAL PROCESS AND PRODUCT ENGINEERING (ICCPPE) 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/1.5140960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wendt, Daniel S., Piyush Sabharwall, and Vivek Utgikar. "Technologies for Upgrading Light Water Reactor Outlet Temperature." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17122.

Full text
Abstract:
Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.
APA, Harvard, Vancouver, ISO, and other styles
9

Sakuma, A., T. Matsuura, T. Suzuki, O. Watanabe, and M. Fukuda. "Upgrading and Life Extension Technologies for Geothermal Steam Turbines." In ASME 2005 Power Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pwr2005-50341.

Full text
Abstract:
In some aging geothermal steam turbines, the increased steam consumption is found out due to time deterioration of the turbine parts, mainly caused by erosion, corrosion damages or deposits of impurities on the steam paths. Furthermore the heavy damage due to stress corrosion cracking or corrosion fatigue damage, etc. are observed on rotors, blades and other parts and components. On the other hand in other units, the turbine output capacity decreases according to aging decrease of geothermal well pressure, that is, inlet steam pressure of turbine. Under these circumstances, upgrading and life extension are required for reliability and performance on geothermal steam turbines, particularly the existing ones. And as the effective utilization of geothermal energy is important from the viewpoint of decreasing carbon dioxide on environment problem, these technologies can, needless to say be applied to new geothermal projects as well as the existing ones. This paper describes development and application of advanced steam path design such as nozzle and blade for improving reliability and performance, and of advanced rotor design and material including overlay coating technology for improving reliability and extending life. And also it describes uprating of the existing units in opposition to aged decreasing in the inlet steam pressure.
APA, Harvard, Vancouver, ISO, and other styles
10

Veselov, Fedor, and Ekaterina Nikulina. "Modeling Price Effects of Upgrading Strategies of Thermal Power Plants on the basis of Low Carbon Technologies in a Competitive Market." In 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). IEEE, 2019. http://dx.doi.org/10.1109/mlsd.2019.8910980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography