Academic literature on the topic 'Carbonatites'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carbonatites.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Carbonatites"

1

Unluer, Ali Tugcan, Murat Budakoglu, Zeynep Doner, and Amr Abdelnasser. "The Evolution of the REE-Bearing Özvatan Nepheline Syenite-Carbonatite Complex, Central Turkey: Mineralogical, Geochemical, and Stable Isotopic Approaches." Minerals 13, no. 5 (May 12, 2023): 667. http://dx.doi.org/10.3390/min13050667.

Full text
Abstract:
Carbonatite complexes and associated fenite zones are famous for their high-grade rare metal ores. The carbonatite–fenite complexes generally contain high concentrations of light rare earth elements (LREE), thorium (Th), and uranium (U). While most carbonatites are closely related to continental rift zones, some complexes can be observed in post-collisional tectonic environments. The Özvatan nepheline syenite–carbonatite complex is an example of post-collisional carbonatitic magmatism in Central Anatolia, Turkey. The magmatic suite is generally composed of silica-undersaturated ultra-alkaline rocks and carbonatite dikes accompanied by high-intensity fenite zones. The carbonatites of the complex are generally dominated by coarse-grained calcite minerals accompanied by fluorite phenocrysts and may also contain minor amounts of rock-forming silicate minerals. The metasomatic aureole zones (fenites) are mainly composed of euhedral nephelines, K-feldspars, aegirines, augites, and garnets. Carbonatites of the Özvatan complex show enrichments in Ca and F with depletion of alkaline (K and Na) elements. Carbonatites and fenite zones of the Özvatan complex host a variety of incompatible elements, including La, Ce, Nd, Th, U, and Nb. The isotopic composition and general geochemical properties of carbonatites in the study area represent mantle-derived carbonatites rather than crustal limestones/skarns.
APA, Harvard, Vancouver, ISO, and other styles
2

de Ignacio, C., M. Muñoz, and J. Sagredo. "Carbonatites and associated nephelinites from São Vicente, Cape Verde Islands." Mineralogical Magazine 76, no. 2 (April 2012): 311–55. http://dx.doi.org/10.1180/minmag.2012.076.2.05.

Full text
Abstract:
AbstractThe island of São Vicente has the most abundant carbonatite outcrops in the Cape Verde Islands. A field survey of the main outcrops has shown that they consist of extrusive carbonatites, carbonatite dykes and small apophyses of intrusive carbonatite. These outcrops are spatially related to nephelinites. The compositions of the extrusive carbonatites and dykes plot close to, and within, the magnesiocarbonatite field. In contrast, the intrusive carbonatites are calciocarbonatites, with similar average strontium contents to those of extrusive carbonatites and dykes (around 4000 ppm), but remarkably low barium, niobium and total rare earth element concentrations. Whole-rock geochemistry indicates a strong affinity between the nephelinites and intrusive carbonatites, such that the latter could represent fractionation products of the same parental magma. This is in agreement with radiogenic isotope geochemistry, which shows a very restricted range of compositions in the Sr, Nd and Pb systems. Fractionation from a common parental magma occurred in two main steps: high-temperature nephelinite crystallization and high-temperature carbonatite immiscibility. The carbonatitic melts crystallized in two different environments, as follows: (1) a shallow intrusive environment, giving rise to the early calciocarbonatite cumulates; and (2) a vapour-dominated, extrusive environment, producing the later magnesiocarbonatites.
APA, Harvard, Vancouver, ISO, and other styles
3

FORMOSO, MILTON LUIZ LAQUINTINIE, EGYDIO MENEGOTTO, and VITOR PAULA PEREIRA. "Brazilian Carbonatites: Studies of the Fazenda Varela (SC) and Catalão I (GO) Carbonatites and their Alteration Products." Pesquisas em Geociências 26, no. 2 (December 31, 1999): 21. http://dx.doi.org/10.22456/1807-9806.21122.

Full text
Abstract:
This paper presents some Brazilian carbonatites case studies: the Fazenda Varela (SC) and the Catalão I (Go) carbonatites. The mineralogical composition of the Fazenda Varela carbonatite is ankerite, Fe-dolomite, dolomite, synchysite and barite. Apatite and monazite are very rare accessories. The rock presents high amounts of REE, Ba, Ca, Sr, CO2 and SO3, significant Th and U, and small amounts of P, Nb and Ta. The weathering dissolves the carbonates, forms goethite and maintains barite in a saprolite facies. The laterite facies is probably related to the tertiary climate. The weathering promote Fe enrichment, followed by Mn, Th and U in the oxide phase. Ba, REE and P are fixed in the younger weathering (saprolite phase) and lost in the older weathering (laterite phase). In Catalão I Massif five hidrotermal events and the following magmatic events were identified: (1) Phoscorite and pyroxenite; (2) Banded carbonatite with alternated calcite and dolomite layers with apatite, magnetite and pyrite; (3) Magnesium carbonatite with pyrite, rare niobozirconolite and strontiamite. Catalão I carbonatites are poor in Al, Mn, Na and K. Cr, Ni, Co, Cu, Li and Zr-richer samples do occur anomalously. Nb content in carbonatitic veins is very low and suggests that these rocks are not the source for the economic concentration of this element. In both calcite and dolomite, Ba content is smaller than Sr content. Sr, Fe and Mn are mostly associated with dolomite carbonatites. The banded carbonatite is relatively REE-poor, but the magnesium carbonatite bands are REE richer than the associated calcium carbonatite bands, which are extremely poor in all REE. The REE signatures of the distinct carbonatites didn’t show anomalies.
APA, Harvard, Vancouver, ISO, and other styles
4

Rampilova, Maria, Anna Doroshkevich, Shrinivas Viladkar, and Elizaveta Zubakova. "Mineralogy of Dolomite Carbonatites of Sevathur Complex, Tamil Nadu, India." Minerals 11, no. 4 (March 29, 2021): 355. http://dx.doi.org/10.3390/min11040355.

Full text
Abstract:
The main mass of the Sevathur carbonatite complex (Tamil Nadu, India) consists of dolomite carbonatite with a small number of ankerite carbonatite dikes. Calcite carbonatite occurs in a very minor amount as thin veins within the dolomite carbonatite. The age (207Pb/204Pb) of the Sevathur carbonatites is 801 ± 11 Ma, they are emplaced within the Precambrian granulite terrains along NE–SW trending fault systems. Minor minerals in dolomite carbonatite are fluorapatite, phlogopite (with a kinoshitalite component), amphibole and magnetite. Pyrochlore (rich in UO2), monazite-Ce, and barite are accessory minerals. Dolomite carbonatite at the Sevathur complex contains norsethite, calcioburbankite, and benstonite as inclusions in primary calcite and are interpreted as primary minerals. They are indicative of Na, Sr, Mg, Ba, and LREE enrichment in their parental carbonatitic magma. Norsethite, calcioburbankite, and benstonite have not been previously known at Sevathur. The hydrothermal processes at the Sevathur carbonatites lead to alteration of pyrochlore into hydropyrochlore, and Ba-enrichment. Also, it leads to formation of monazite-(Ce) and barite-II.
APA, Harvard, Vancouver, ISO, and other styles
5

Downes, H., F. Wall, A. Demény, and Cs Szabó. "Continuing the Carbonatite Controversy Preface." Mineralogical Magazine 76, no. 2 (April 2012): 255–57. http://dx.doi.org/10.1180/minmag.2012.076.2.01.

Full text
Abstract:
Carbonatites have always been controversial (Mitchell, 2005). Their magmatic origin was disputed in the early days of the last century, regardless of the fact that experiments clearly demonstrated the crystallization of magmatic calcite (Wyllie and Tuttle, 1960). The observation of the eruption of natrocarbonatite lava in Oldoinyo Lengai (Dawson 1962) finally convinced petrologists that they were dealing with the products of magmatic carbonate liquids. Since that time, further controversies have emerged, especially regarding the ultimate origin of carbonatite magmas, for which there are two ‘endmember’ hypotheses. The generally accepted hypothesis is based on isotopic evidence and suggests that carbonatites are from deep asthenospheric sources, such as mantle plumes (Bell, 2001; Bell et al., 2004). This fails to explain why carbonatites are essentially confined to the continental lithosphere and are extremely rare in the ocean basins (Woolley and Kjarsgaard, 2008; Woolley and Bailey, this issue), and leads to the alternative hypothesis of lithosphere-generated carbonatitic magmatism. It may be that this is simply because we have not yet understood how to identify carbonatites in oceanic regions (Bailey and Kearns, this volume), or there may be some more profound reason why carbonatites cannot form within or erupt through oceanic lithosphere.
APA, Harvard, Vancouver, ISO, and other styles
6

Sitnikova, Maria A., Vicky Do Cabo, Frances Wall, and Simon Goldmann. "Burbankite and pseudomorphs from the Main Intrusion calcite carbonatite, Lofdal, Namibia: association, mineral composition, Raman spectroscopy." Mineralogical Magazine 85, no. 4 (July 1, 2021): 496–513. http://dx.doi.org/10.1180/mgm.2021.56.

Full text
Abstract:
AbstractThe Neoproterozoic Lofdal alkaline carbonatite complex consists of a swarm of carbonatite dykes and two plugs of calcite carbonatite known as the ‘Main’ and ‘Emanya’ carbonatite intrusions, with associated dykes and plugs of phonolite, syenite, rare gabbro, anorthosite and quartz-feldspar porphyry. In the unaltered Main Intrusion calcite carbonatite the principal rare-earth host is burbankite. As burbankite typically forms in a magmatic environment, close to the carbohydrothermal transition, this has considerable petrogenetic significance. Compositional and textural features of Lofdal calcite carbonatites indicate that burbankite formed syngenetically with the host calcite at the magmatic stage of carbonatite evolution. The early crystallisation of burbankite provides evidence that the carbonatitic magma was enriched in Na, Sr, Ba and light rare earth elements. In common with other carbonatites, the Lofdal burbankite was variably affected by alteration to produce a complex secondary mineral assemblage. Different stages of burbankite alteration are observed, from completely fresh blebs and hexagonal crystals through to complete pseudomorphs, consisting of carbocernaite, ancylite, cordylite, strontianite, celestine, parisite and baryte. Although most research and exploration at Lofdal has focused on xenotime-bearing carbonatite dykes and wall-rock alteration, this complex also contains a more typical calcite carbonatite enriched in light rare earth elements and their alteration products.
APA, Harvard, Vancouver, ISO, and other styles
7

Gittins, John, and Bruce C. Jago. "Extrusive carbonatites: their origins reappraised in the light of new experimental data." Geological Magazine 128, no. 4 (July 1991): 301–5. http://dx.doi.org/10.1017/s001675680001757x.

Full text
Abstract:
AbstractCalcite-rich carbonatites are commonly attributed to calcitization of alkalic carbonatite of Oldoinyo Lengai type. The interpretation arises from the presumption that magmatic crystallization of calcite at atmospheric pressure is not possible. We show that only a small percentage of fluorine, a common element in carbonatite magmas, permits such crystallization, and we argue that most of the calcite in extrusive carbonatites is magmatic. The presence of any more than minor apatite precludes an alkalic carbonatite parentage. While not denying that calcification of alkalic carbonatite can occur, we suggest that it is not generally responsible for the formation of extrusive calcific carbonatites.
APA, Harvard, Vancouver, ISO, and other styles
8

Humphreys-Williams, Emma R., and Sabin Zahirovic. "Carbonatites and Global Tectonics." Elements 17, no. 5 (October 1, 2021): 339–44. http://dx.doi.org/10.2138/gselements.17.5.339.

Full text
Abstract:
Carbonatites have formed for at least the past three billion years. But over the past 700 My the incidence of carbonatites have significantly increased. We compile an updated list of 609 carbonatite occurrences and plot 387 of known age on plate tectonic reconstructions. Plate reconstructions from Devonian to present show that 75% of carbonatites are emplaced within 600 km of craton edges. Carbonatites are also associated with large igneous provinces, orogenies, and rift zones, suggesting that carbonatite magmatism is restricted to discrete geotectonic environments that can overlap in space and time. Temporal constraints indicate carbonatites and related magmas may form an ephemeral but significant flux of carbon between the mantle and atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
9

Cooper, Alan F., Lorraine A. Paterson, and David L. Reid. "Lithium in carbonatites — consequence of an enriched mantle source?" Mineralogical Magazine 59, no. 396 (September 1995): 401–8. http://dx.doi.org/10.1180/minmag.1995.059.396.03.

Full text
Abstract:
AbstractThe rare Li-mica taeniolite is described from the Dicker Willem carbonatite complex, Namibia, and from the Alpine carbonatitic lamprophyre dyke swarm at Haast River, New Zealand. At Haast River, taeniolite occurs in sodic and ultrasodic fenites derived from quartzo-feldspathic schists and rarely in metabasites, adjacent to dykes of tinguaite, trachyte and a spectrum of carbonatites ranging from Ca- to Fe- rich types. In Namibia, taeniolite is present in potassic fenites derived from quartz-feldspathic gneisses and granitoids at the margin of an early sövite phase of the complex and in a radial sövite dyke emanating from this centre.The occurrence of taeniolite in these totally disparate carbonatite complexes, together with examples of lithian mica from other carbonatite complexes worldwide, raises the question of the status of Li as a ‘carbonatitic element’. We argue that lithium is not a consequence of crustal assimilation or interaction, but reflects the geochemical character of the magmatic source. Li, an overlooked and little-analysed element, may be an integral part of metasomatic enrichment in the mantle, and of magmas derived by partial melting of such a source.
APA, Harvard, Vancouver, ISO, and other styles
10

Giebel, R. J., A. Parsapoor, B. F. Walter, S. Braunger, M. A. W. Marks, T. Wenzel, and G. Markl. "Evidence for Magma–Wall Rock Interaction in Carbonatites from the Kaiserstuhl Volcanic Complex (Southwest Germany)." Journal of Petrology 60, no. 6 (May 14, 2019): 1163–94. http://dx.doi.org/10.1093/petrology/egz028.

Full text
Abstract:
Abstract The mineralogy and mineral chemistry of the four major sövite bodies (Badberg, Degenmatt, Haselschacher Buck and Orberg), calcite foidolite/nosean syenite xenoliths (enclosed in the Badberg sövite only) and rare extrusive carbonatites of the Kaiserstuhl Volcanic Complex in Southern Germany provide evidence for contamination processes in the carbonatitic magma system of the Kaiserstuhl. Based on textures and composition, garnet and clinopyroxene in extrusive carbonatites represent xenocrysts entrained from the associated silicate rocks. In contrast, forsterite, monticellite and mica in sövites from Degenmatt, Haselschacher Buck and Orberg probably crystallized from the carbonatitic magma. Clinopyroxene and abundant mica crystallization in the Badberg sövite, however, was induced by the interaction between calcite foidolite xenoliths and the carbonatite melt. Apatite and micas in the various sövite bodies reveal clear compositional differences: apatite from Badberg is higher in REE, Si and Sr than apatite from the other sövite bodies. Mica from Badberg is biotite- and comparatively Fe2+-rich (Mg# = 72–88). Mica from the other sövites, however, is phlogopite (Mg# up to 97), as is typical of carbonatites in general. The typical enrichment of Ba due to the kinoshitalite substitution is observed in all sövites, although it is subordinate in the Badberg samples. Instead, Badberg biotites are strongly enriched in IVAl (eastonite substitution) which is less important in the other sövites. The compositional variations of apatite and mica within and between the different sövite bodies reflect the combined effects of fractional crystallization and carbonatite-wall rock interaction during emplacement. The latter process is especially important for the Badberg sövites, where metasomatic interaction released significant amounts of K, Fe, Ti, Al and Si from earlier crystallized nosean syenites. This resulted in a number of mineral reactions that transformed these rocks into calcite foidolites. Moreover, this triggered the crystallization of compositionally distinct mica and clinopyroxene crystals around the xenoliths and within the Badberg sövite itself. Thus, the presence and composition of clinopyroxene and mica in carbonatites may be useful indicators for contamination processes during their emplacement. Moreover, the local increase of silica activity during contamination enabled strong REE enrichment in apatite via a coupled substitution involving Si, which demonstrates the influence of contamination on REE mineralization in carbonatites.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Carbonatites"

1

Church, Abigail Ann. "The petrology of the Kerimasi carbonatite volcano and the carbonatites of Oldoinyo Lengai with a review of other occurrences of extrusive carbonatites." Thesis, University College London (University of London), 1996. http://discovery.ucl.ac.uk/1349623/.

Full text
Abstract:
Extrusive carbonatites are rare igneous rocks with just 37 known localities. The majority are calciocarbonatites, the principal exception being those of the active volcano, Oldoinyo Lengai, which are strongly alkaline. Unresolved questions concerning extrusive carbonatites include: 1. Why are extrusive carbonatites at Lengai chemically different from all others? 2. Could the extrusive calciocarbonatites originally have had alkaline compositions? In order to address these questions extrusive carbonatites from both Lengai and the adjacent volcano, Kerimasi, were collected and compared. A compilation of all the available data on known extrusive carbonatites is also presented. The major results documented in this thesis are: 1. Alkali carbonatites from Oldoinyo Lengai erupted in 1993 contain petrographic evidence for an origin by liquid immiscibility from a highly fractionated peralkaline silicate melt (wollastonite nephelinite). 2. The suite of silicate rocks at Kerimasi are derived from a primary olivine nephelinite by fractional crystallisation and cumulus processes. 3. Extrusive carbonatites at Kerimasi are not genetically related to the silicate suite. By contrast intrusive sovites also present, originated by liquid immiscibility from a primitive silicate magma, equivalent to a melilite, nephelinite, at low pressure. 4. Extrusive calciocarbonatites from Kerimasi were erupted directly from the mantle. They contain phenocrysts (previously interpreted as pseudomorphs after alkali carbonate) which are now thought to have been dolomite containing calcite exsolution lamellae. 5. Of the 35 other extrusive carbonatite occurrences, none show any petrographic or geochemical evidence of having originally being alkaline. Therefore extrusive carbonatites from Oldoinyo Lengai are thought to be unique. 6. Of the 37 extrusive carbonatites, 50% are associated with melilitites or melilitebearing rocks, 27% are associated with nephelinites and the remaining 23% were erupted with no associated silicate magmas.
APA, Harvard, Vancouver, ISO, and other styles
2

Bonas, Thiago Bastos. "Aplicação de índice mineralógico como apoio na avaliação de reservas da mina de fosfato de Cajati-SP." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/44/44137/tde-17042007-094628/.

Full text
Abstract:
A mina de fosfato de Cajati localiza-se a 230 km a sudeste da cidade de São Paulo. Nela aflora, de forma alongada segundo a direção N27ºW, um corpo de carbonatito mineralizado a apatita. O corpo mineralizado é subdividido em unidades litológicas a partir de variações nas características físicas (estruturas) e mineralógicas da matriz carbonática, dos principais acessórios e menores constituintes (textura e proporções). Dentro das unidades litilógicas existentes destacam-se a Zona de Xenólitos e Zonas de Diques, regiões caracterizadas por misturas entre magnetita-clinopiroxenitos, rocha encaixante e estéril com relação à mineralização de fosfato, e carbonatito em proporções que podem chegar a quase 100% de clinopiroxenito. Observam-se ainda zonas de reação, no contato entre as rochas descritas, caracterizando um bandamento centimétrico de composição silicática / carbonática com mineralogia peculiar e que na maioria das vezes são mineralizados economicamente a apatita. Considerando as Zonas de Xenólitos e de Diques como de aproveitamento parcial em função da presença do clinopiroxenito estéril e que as relações de distribuição espacial desta fase contaminante é errática sem qualquer controle geológico conhecido de distribuição, buscou-se estabelecer indicadores que permitem a caracterização percentual entre minério e estéril contidos nesta região. Para tanto foram realizados estudos de relação entre a composição química e a mineralogia do minério que permitiram estabelecer tais índices, os quais aplicados aos dados de análises químicas obtidos a partir de testemunhos de sondagem rotativa e de percussão (pó de perfuratriz) associados a parâmetros de lavra permitiram estabelecer níveis de aproveitamento mineral para as rochas existentes nestas unidades litológicas. Os indicadores matemáticos se apoiaram nos teores de sílica que refletem as proporções de silicatos (flogopita, olivina e piroxênio) e estabelecem nítidas fronteiras composicionais entre as três litologias presentes nas zonas de xenólitos, e definiram a Função Xenólitos. As variáveis mineralógicas apóiam as determinações de potencialidades volumétricas dos recursos discretizados no modelo de blocos de longo prazo e o aproveitamento das frentes nos planos de pré-lavra.
The Cajati phosphate mine is located 230 km southeast of São Paulo city. The ore body is composed by carbonatites mineralized with apatite, which are disposed in plant as an ellipse N27ºW oriented. The carbonatite is subdivided in lithologics units defined by variations in the physical aspects (structures) and the mineralogical characteristics of the carbonatic matrix, mainly related with the principal accessories and smaller constituents (texture and proportions). Xenoliths zones and Dikes zones are remarkable among the lithological units, they comprise portions characterized by mixtures of carbonatite and magnetite-clinopiroxenites, the hosting waste rock, in proportions that can reach almost 100% of clinopiroxenite. Some reaction zones are observed in the described rocks contact, characterizing centimetric bands (silicatic / carbonatic composition) with peculiar mineralogy that are frequently mineralized. Considering the Xenoliths zones and Dikes zones only partially profitable in function of the presence of the clinopiroxenite waste and that the spatial distribution of this contaminant rock is erratic without any geological known settings, efforts were applied in the establishment of mineralogical indicators to define the relative proportions of the constituent rocks. Stechiometric relationships between chemical and mineralogical characteristics associated with mining parameters allowed to set up levels of mineral profitability for these lithological units, which were applied in the data obtained by rotative and percussion drilling. Mathematical indicators based on silica grades, which reflect the silicates (phogopite, olivine and pyroxene) proportions, established a clear compositional division between the three litologies present in the xenoliths zones and defined the Xenoliths Function. The mineralogical variables support the profit potentiality definition for the ore resources associated with these assimilation zones, which were applied in the block model and are also used in the mining fronts.
APA, Harvard, Vancouver, ISO, and other styles
3

Roopnarain, Sherissa. "Petrogenesis of Carbonatites in the Alnö Complex, Central Sweden." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-215436.

Full text
Abstract:
The Alnö Complex is a Late Precambrian alkaline and carbonatite intrusion (c. 30km2) into Early Proterozoic country rock that extends from the north east, to the north western shoulder of Alnö Island. Carbonatites are rare among volcanic provinces, with Oldoinyo Lengai of northern Tanzania being the only active carbonatite volcano in the world today. The high carbonate mineral volumes and rare earth element (REE) concentrations of carbonatites, in combination with the intrusive-extrusive nature of their suites contribute to the rarity of these rocks. Carbonatites, through their peculiar petrological and geochemical compositions, provide vital insights to the composition and condition of the Earth’s mantle. The genesis of the Alnö carbonatites and their relation to other lithological units at the complex is however, only partially understood. This stems from the epistemological division of carbonatites as having either a ‘magmatic’ or ‘reactive’ origin. This study focuses on sampled carbonatites from the Alnö Complex, employing an oxygen and carbon isotope approach on their native calcite, complemented with petrological and mineralogical methods in order to constrain petrogenesis. As a reference, oxygen and carbon isotope data of calcite from an earlier Alnö investigation as well as from an array of data from comparative alkaline complexes elsewhere are also discussed. The combined data and the derived findings support a scenario that is consistent with the ‘magmatic’ model wherein carbonatites have a primary mantle-derived origin, and prospectively stem from a parent magma akin to that of Oldoinyo Lengai, but have experienced a degree of silicate and sedimentary assimilation. The extraction of the Alnö carbonatites for their rare earth metals is a looming possibility due to the current volatility in the rare earth market. The risks and opportunities involved in this kind of natural resource extraction provide a context wherein sustainable development paradigms can be applied. The capacity of the Alnö environment to withstand the impact of development in the mining sector is discussed through a perspective of establishing a quarry, and quarry-related methods for rare earth extraction.
APA, Harvard, Vancouver, ISO, and other styles
4

Hodgson, Neil Andrew. "Carbonatites and associated rocks from the Cape Verde Islands." Thesis, University of Leicester, 1985. http://hdl.handle.net/2381/35041.

Full text
Abstract:
Carbonatite magmas are alkali-bearing, ionic melts, analogous to synthetic carbonate melts. REE complexing suggests that carbonato-complexes dominate the melt, and these are more stable for the LREE than the HREE, leading to the extreme LREE/HREE enrichments characteristic of carbonatites. Crystal settling is viable in static magma chambers. however in thin carbonatite dykes as seen on San Vicente, turbulent flow velocities preclude vertical particle transfer against the flow of liquid, and favour fractionation by rapid crystal growth in a boundary layer close to the dyke margins, and particle accretion to the dyke walls. The Vale de Cavaleiros sovite on Fogo, displays mineralogical variation as a result of adcumulation, gravitationally controlled sedimentalogical sorting and post-lithification deformation. Minor and trace element variations are explained partly as a function of the heterogeneity of mineralogy, but require chemical modification of the magma by fractional crystallization and auto-metasomatizm. O18o and O13C of the carbonatites on San Vicente are decoupled, however calcite and dolomite may have equilibrated with seawater at temperatures close to 100°C. Fractionation of calcite and apatite from a carbonatite magma, produces cumulate microsovite and conjugate evolved carbonatite liquids which form the ferrocarbonatite suite. Trace element variations within the ferrocarbonatite suite indicate that the unstained ferrocarbonatites (unaltered 'quench' carbonatite) are heterogeneously metasomatized and mineralized by evolved (contaminated) orange ferrocarbonatites to produce brown-black ferrocarbonatites. The degree of dolomitization of the Camile dyke on San Vicente, relates to the activity of Ba2+ released during recrystallization of the original carbonate minerals. The arrays on plots of 87Sr/86Sr vs 143Nd/144Nd vs. 206Pb/204Pb for rocks from the Cape Verde Islands are interpreted as a two component mixing lines between recycled pelagic sediment and recycled altered MORB. The melilitites and nephelinites of the Malhada Pedra formation on Maio defines an array from CSn = 157. to CSN = 07 (in CSn-(Or+Ab) n-Din space), which may be interpreted as describing the loci of migration of the peritectic melt during the melting episode. There is little evidence for the genesis of carbonatite by ultra - fractionation of carbonated, alkalic, silicate magma. Neither major or trace element evidence can discriminate between liquid immiscibility, or direct partial melting of carbonated peridotite at pressures greater than 20kbar as mechanisms for generating carbonatite magmas.
APA, Harvard, Vancouver, ISO, and other styles
5

Djeddi, Asma. "Pétrogenèse des carbonatites et magmas alcalins protérozoïques d’Ihouhaouene : terrane de l’In Ouzzal, Hoggar occidental, Algérie." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTG022/document.

Full text
Abstract:
Le craton archéen de l’In Ouzzal représente une succession d'événements intrusifs et métamorphiques depuis l’Eburnéen qui en font un marqueur important des processus géodynamiques à travers les temps géologiques. La région d’Ihouhaouene située au N-W du terrane de l’In Ouzzal en Algérie est unique de par la présence d’intrusions protérozoïques de carbonatites associées à des roches alcalines saturées. Ces carbonatites intracontinentales comptent parmi les plus anciennes et inhabituelles de par leurs diversités et la présence de minéraux à terres rares. Les carbonatites sont pegmatitiques ou bréchiques avec des fragments de syénite. Elles sont des calciocarbonatites composées de calcite (>50 vol.%), apatite, clinopyroxène et wollastonite et sont associées à des syénites rouges ou blanches présentes sous forme massive. Les syénites sont composées d’alternance de niveaux clairs de feldspaths alcalins rouges ou de wollastonites associées aux feldspaths blancs et de niveaux sombres d’apatites et de clinopyroxènes. Les carbonatites et syénites forment une suite cogénétique caractérisée par une augmentation en SiO2 et une diminution en CaO et CO2. Les carbonatites ont des compositions en silice comprises entre 5 et 35 pds.%, 28 et 53 pds.% CaO et 11 à 36 pds.% CO2. Les syénites montrent une forte teneur en K2O (12 pds.%) et des teneurs très faibles en Na2O (1 pds.%). Les carbonatites et syénites sont riches en éléments incompatibles avec des teneurs en REE supérieures à 7000 fois les chondrites et 1000 fois les chondrites dans les syénites, respectivement, et de fortes teneurs en U, Sr et Th. Les éléments en trace dans les minéraux magmatiques (apatite et pyroxène) mettent en évidence des processus complexes à l’origine de ces roches impliquant plusieurs étapes de cristallisation fractionnée et d’immiscibilité à partir d’un magma mélilititique riche en CO2. Les minéraux des carbonatites riches en silice et des syénites blanches ont des signatures géochimiques similaires et se caractérisent par des rapports élevés en Nb/Ta typiques de magmas riches en carbonate par immiscibilité. Les syénites rouges ont des caractéristiques de liquides silicatés évolués par différentiation. Les minéraux des carbonatites pauvres en silice ont des rapports Nb/Ta très variables, sub-chondritiques (<10), indiquant une cristallisation à partir de liquides très évolués et la présence de magmas carbonatitiques tardifs. Les apatites, en particuliers, enregistrent divers épisodes magmatiques et également supergènes. Elles présentent dans certaines roches une redistribution et un enrichissement en terres rares variables qui se caractérisent par des exsolutions de britholite dans les carbonatites riches en silice et monazite dans les carbonatites pauvres en silice. Ces exsolutions traduisent des rééquilibrations locales sub-solidus avec des fluides tardi-magmatiques de composition riche en Cl-Th-REE pour l’exsolution de la britholite et S-Ca-P-CO2 pour les inclusions de monazite. L’apatite et le zircon présents dans ces roches alcalines et carbonatites, ont permis de déterminer l’âge de mise en place du complexe magmatique de Ihouahouene à 2100 Ma syn-métamorphique et de confirmer l’âge panafricain de son exhumation. L’étude pétrologique, géochimique et géochronologique des carbonatites et syénites d’Ihouhaouene a permis de mettre en évidence l’origine magmatique de ces roches et de définir les interactions fluides-roches supergènes à l’origine des enrichissements en REE. Les carbonatites et syénites d’Ihouahouene proviennent d’un faible taux de fusion partielle d’un manteau Précambrien riche en CO2. Plusieurs étapes de cristallisation fractionnée et d'immiscibilité ont permis la genèse de ces roches hybrides, piégées le long de grandes zones de cisaillement durant la période de transition Archéen /Eburnéen dans un régime extensif à l’In Ouzzal caractérisé par un environnement granulitique d’ultra-haute-température
The In Ouzzal Archaean craton represents a succession of intrusive and metamorphic events since Eburnean, and an important marker of geodynamic processes through geological time. The Ihouhaouene area located in the N-W of In Ouzzal terrane in Algeria is unique by the presence of Proterozoic carbonatite intrusions associated with silica-saturated alkaline rocks. These intracontinental carbonatites are among the oldest and exceptional because of their diversity and the presence of unusual rare earth minerals. Carbonatites are pegmatitic or brecciated with fragments of syenite. They are calciocarbonatites with calcite (> 50 vol.%), apatite, clinopyroxene and wollastonite and are associated with red or white syenites in massive outcrops. Syenites are composed of alternating light levels of red alkaline feldspar or wollastonite associated with white feldspar and dark levels of apatite and clinopyroxene. Carbonatites and syenites form a cogenetic suite characterized by an increase in silica and decrease in calcium and CO2 content. The carbonatites have silica content ranging from 5 to 35 wt.%, 28 to 53 wt.% CaO, and 11 to 36 wt.% CO2. Syenites have high K2O (12 wt.%) and low Na2O content (1 wt.%). Carbonatites and syenites have high incompatible element concentrations with high REE content (7000*chondrites and 1000*chondrites, respectively) and high U, Pb, Sr and Th content. Trace elements (eg. Rare Earths, Nb-Ta, Zr-Hf) in magmatic minerals (apatite-pyroxene) of carbonatites and syenites reveal complex magmatic processes at the origin of these rocks involving several stages of fractional crystallization and immiscibility from a CO2-rich melilititic magma. Silica-rich carbonatites and white syenites are characterized by high Nb/Ta, Y/Zr and Rb/Sr ratios, typical of carbonate-rich magmas by immiscibility. The red syenites have characteristics of immiscible differentiated silicate melt. Silica-poor carbonatite minerals have variable subchondritic Nb/Ta (<10) indicating crystallization from highly evolved liquids and the presence of late carbonatitic magmas. Apatites, in particular, record various magmatic and supergene processes. They present, in some rocks, redistribution and enrichment in rare earth elements, which are characterized by exsolutions of britholite in silica-rich carbonatites and monazite-quartz-calcite inclusions in silica-poor carbonatites. These minerals reflect local sub-solidus re-equilibration with late-magmatic fluids rich in Cl-Th-REE for the exsolution of britholite and S-Ca-P-CO2 for monazite inclusions. The apatite and zircon present in these alkaline and carbonatite rocks, allow determination of the syn-metamorphic crystallization age of the Ihouahouene magmatic complex at 2100 Ma and confirm the pan-African age of its exhumation. The petrological, geochemical and geochronological study of Ihouhaouene carbonatites and syenites highlights the magmatic origin of these rocks and constrains the fluid-rock interactions at sub-solidus conditions leading to REE-enrichment. The carbonatites and syenites result from a low partial melting rate of a CO2-rich Precambrian mantle. Several fractional crystallization and immiscibility stages allowed the genesis of these hybrid magmas, trapped along large shear-zones during the Archean/Eburnean transition period in the In Ouzzal terrane, characterized by extensive deformation in ultra-high-temperature granulitic environment
APA, Harvard, Vancouver, ISO, and other styles
6

Frejd, Julia. "Magnetic Mineralogy of Nb-bearing Carbonatites from Oldoinyo Dili (Tanzania)." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445837.

Full text
Abstract:
Niobium (Nb) and Rare Earth Elements (REE’s) have in recent years received considerable attention because of their importance to the modern technical industry, and more specifically the enhanced sustainability that comes with them. The main source for Nb and REE’s on Earth are carbonatites and associated alkaline silicate rocks. This report examines the magnetic properties of rocks from the Oldoinyo Dili carbonatite complex in northern Tanzania. Previous workers have suggested a link between the Fe-bearing mineralogy and the formation of Nb-mineralizations at Oldoinyo Dili. This hypothesis is further examined in this report by combining detailed petrographic observations and withnew measurements of magnetic susceptibility. The aim is to see if any correlation exists between occurrence of Nb-mineralizations and the types of Fe-minerals present at Oldoinyo Dili. Based on the magnetic susceptibility measurements, at least two different species of Fe-minerals arefound in the examined samples. These are characterized by different magnetic trends during heating/cooling and also by their separate Curie temperatures (Tc). In combination with the petrographic observations these minerals are interpreted to be magnetite (Fe2O4) with Tc ~580°C, and a mineral that most likely represents a solid solution between ilmenite (FeTiO3) and hematite (Fe2O3) with Tc ~300°C. Here, no clear link between the type of opaque mineral(s) present and the total Nb content of the carbonatites can be conclusively determined based on the petrography and the magnetic measurements alone. Although the results of this report provide an important first step towards understanding the relationship between Nb-mineralizations and the magnetic mineralogy at Oldoinyo Dili, more detailed analyses of the mineral chemistry is a necessity to fully understand their complex relations and the specific conditions under which they formed.
Niob (Nb) och sällsynta jordartsmetaller (REE’s) har på senare år fått stor uppmärksamhet för sin betydelse för den moderna tekniska industrin, och specifikt för den förhöjda hållbarhet som de bidrar med. Den huvudsakliga källan till Nb och REE’s på jorden är karbonatiter och associerade alkalisilikater. Denna rapport undersöker de magnetiska egenskaperna för karbonatit-komplexet Oldoinyo Dili i norra Tanzania. Forskare har tidigare anat att det finns en koppling mellan Fe-bärande mineralogi och bildandet av Nb-mineraliseringar vid Oldoinyo Dili. Denna hypotes undersöks vidare i denna rapport genom att kombinera detaljerade petrografiska observationer med nya mätningar av magnetisk susceptibilitet. Syftet är att undersöka om det finns någon korrelation mellan förekomst av Nb-mineraliseringar och de typer av järnmineral som finns vid Oldoinyo Dili. Baserat på de genomförda magnetiska susceptibilitets-mätningarna så finns det åtminstone två olika sorters järnmineral i de undersökta proverna. De karaktäriseras av olika magnetiska trender vid upphettning/nedkylning och även av sina olika Curietemperaturer (Tc). Kombinerat med petrografiska observationer uttolkas att dessa mineral är magnetit (Fe2O4) med Tc ~580°C, samt en mineral som troligen är en solid solution av ilmenit (FeTiO3) och hematit (Fe2O3) med Tc ~300°C. Det går inte att senågon tydlig koppling mellan förekommande opaka mineral och det totala Nb-innehållet i karbonatiterna med säkerhet enbart utifrån petrografin och de genomförda magnetiska mätningarna. Resultaten av denna rapport utgör ett bra första steg mot att förstå relationen mellan Nb-mineraliseringar och den magnetiska mineralogin för Oldoinyo Dili, men mer detaljerade analyser av mineralkemin är nödvändigt för att till fullo förstå de komplexa förhållanden som råder vid bildning av dessa.
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Mi Jung. "Minéralogie, pétrologie et géochimie de l'association Phoscorite-Carbonatite du complexe alcalin de Sokli, Finlande." Saint-Etienne, EMSE, 2002. http://www.theses.fr/2002EMSE0020.

Full text
Abstract:
Le complexe de Sokli, situé en Laponie finlandaise (67°48'N, 29°27'E), fait partie de la Province Alcaline de Kola, qui comporte 24 intrusions alcalines, mises en place au Dévonien, entre 370 et 340 Ma. Le complexe comprend principalement deux zones. La zone externe est constituée de roches modifiées ('métacarbonatites' et 'métaphoscorites', au sens de Verwoerd, 1967). La zone centrale est constituée pour l'essentiel de carbonatites associées à des phoscorites. Sur la base des assemblages minéraux et de la géochimie, trois paires principales ont été reconnues, C1-P1, C2-P2, C3-P3, qui se distribuent dans des zones successivement de plus en plus centrales du 'complex carbonatite-phoscorite' (CCP). A ces paires carbonatite-phoscorite succèdent des carbonatites à dolomite dominante (stade D4), puis un stade terminal, D5, de carbonatites à dolomite minéralisé en Strontium, Baryum et Terres Rares. Les minéraux de métaux rares (Zr, Nb, Ta,. . . ), préférentiellement concentrés dans les faciès phoscoritiques, passent de Baddeleyite seule dans CP1, à Baddeleyite+Pyrochlore dans CP2, puis à Pyrochlore dominant, et localement très abondant (quelques %), dans CP3
The Sokli complex (67°57'N, 29°05'E) is located in the north-eastern Finih Lapland, and belongs to the Paleozoic (380-360 Ma) Kola Alkaline Province (KAP). The complex comprises two main units organized as concentric zones. The outer zone is composed of alkaline silicate rocks intruded by numerous veins of carbonatites and largely transformed by the related fluids ; the inner zone is dominantly composed of carbonatites and subordinate phoscorites. Based on mineral assemblages, mineral compositions, and bulk chemical compositions, the Sokli phoscorites and carbonatites are classified in five stages of intrusion. In the early stages, phoscorites and calcite carbonatites are intimately associated with each other (P1-C1, P2-C2 and P3-C3 phoscorite-carbonatite pairs) ; in the later stages, the intrusive material is mostly dolomitic (D4 and D5 dolomite carbonatites) and lacks associated phoscorite. The latest stage rocks occur along a fracture zone in the centre of the 'magmatic core'
APA, Harvard, Vancouver, ISO, and other styles
8

Baghdadi, Bashar. "Géochimie analytique et prospection : application aux roches mantelliques de type péridotitique." Paris 6, 2013. http://www.theses.fr/2013PA066235.

Full text
Abstract:
Les angrites forment un groupe d’achondrites rares dont la minéralogie est particulière. Ce sont les plus anciennes roches magmatiques du système solaire (~4. 564 Ga). Leur pétrogenèse est mal comprise, leur pétrographie inhabituelle place leur origine au cœur d’un grand débat. La présence de métal et des microstructures réactionnelles dans certains échantillons de ce groupe mérite d’être étudiée attentivement ce qui n’a pas été fait jusqu’à ici. La modélisation thermodynamique permettra de préciser les conditions de leur formation. Nous avons conduit des analyses pétrogéochimiques et minéralogiques sur des échantillons d’angrites de type péridotitique et sur des roches terrestres (enclaves carbonatées) de Tell Thennoun/Syrie. Les résultats nous ont permis de contraindre les conditions P-T nécessaires à l’existence du magmatisme parent des angrites et de vérifier dans quelle mesure les données sur les péridotites terrestres sont en accord avec ces résultats. La maîtrise des analyses géochimiques et leurs applications dans le domaine de la prospection des minéraux est un des objectifs de cette thèse, l’étude des roches carbonatées de Tell Thennoun en est un exemple. On en conclut que le corps parent des angrites est un planétoïde de grande taille avec une évolution métamorphique et dont le magmatisme associé est typique de l’évolution précoce des planètes. Quant aux roches carbonatées de Tell Thennoun, il semble qu’elles représentent des roches d’origine sédimentaire plutôt que magmatique, recyclées dans le volcanisme de rift syrien et dont l’intérêt économique est très faible
Angrites are a group of rare achondrites with particular mineralogy. They are the oldest igneous rocks in the solar system (~4. 564 Ga). Their petrogenesis is poorly understood, their unusual petrography put up their origin in the heart of a great debate. The presence of metal and reaction microstructures in some samples of this group deserve to be studied carefully what has not been done yet. The thermodynamic modeling would recognize the conditions of their formation. We carried out petrogeochemical and mineralogical analysis on some angrites of the peridotitic type and on some terrestrial rocks (carbonated enclaves) of Tell Thennoun/Syria. The results allow us to constrain the P-T conditions necessary for the existence of the parental magmatism of angrites and to verify the extent to which data on terrestrial peridotites are consistent with these results. The expertise of geochemical analysis and their applications to the field of mineral exploration is one of the objectives of this thesis, the study of carbonated rocks of Tell Thennoun is an example of the latter. We conclude that the angrites parent body is a large planetoid with a metamorphic evolution and the associated magmatism is typical of early evolution of planets. About the carbonated rocks of Tell Thennoun, it seems that they represent rocks of sedimentary origin, rather than magmatic ones, which have been recycled in the Syrian rift volcanism and show a low economic interest
APA, Harvard, Vancouver, ISO, and other styles
9

Onuonga, Isaac Oriechi. "Geochemistry and mineralization of Buru and Kuge volcanic carbonatite centres, Western Kenya." Thesis, University of St Andrews, 1997. http://hdl.handle.net/10023/15470.

Full text
Abstract:
Western Kenya hosts a number of Tertiary and Quaternary alkaline volcanic carbonatite centres, such as Rangwa, the North and South Ruri centres, Kuge, Homa Mountain and Legetet which are located along an old Precambrian major shear zone lying within the Nyanza rift, off the main Kenyan (Gregory) rift. The centres consist of agglomerates and breccias with mixed clasts of silicate rocks and carbonatites, interbedded with carbonatitic and nephelinitic tuffs. The volcanic assemblage is transected by high level sheets and dykes of calcite carbonatite and ferrocarbonatite which were probably later feeders for the volcanic eruptions. Carbon, oxygen, and sulphur isotopic compositions were determined for calcite, siderite and barite from the Buru and Kuge carbonatite centres. Wide ranges in the isotopic compositions of the minerals were observed with values for delta13C and delta18O for the Buru calcites ranging from +1.27 to -3.23‰ (PDB) and +11.25 to +26.21‰ (SMOW). The delta13 C and delta18O for the Kuge calcites are -3.11 to -8.44‰ (PDB) and +18.09 to +25.73‰ (SMOW). The Buru siderites plot in a narrow and restricted range at -3.07 to -4.39‰ (PDB) and +12.61 to +16.10‰ (SMOW). Data on the sulphur isotopic composition from the Buru hill carbonatite show a fairly widespread variation in delta34S ranging from +4.50 to +12.40‰ (CDT), whereas Kuge hill displays a slightly more homogenous isotopic composition with values ranging from +1.10 to +5.10‰ (CDT). The carbon and oxygen isotopic compositions from the Buru and Kuge carbonatite centres do not retain the primary isotopic signatures expected for magmatic primary carbonatites. Most of the variations in isotopic composition have been attributed to secondary processes involving low temperature (60° to 144°C) hydrothemal alteration and isotopic exchange between the carbonatites and fluids (meteoric water). Higher delta18O values (+21.91 to +26.21‰) with a significant increase in delta13Cvalues (-1.48 to +1.27‰) shown by the most oxidized samples from the Buru carbonatite may indicate the involvement of supergene exchange with atmospheric CO2 at relatively lower temperatures (< 50°C). The variations in 34S shown by the two centres compared to mantle sulphur could be due to either redox processes and/or isotopic fractionations due to loss of volatiles. The Buru and Kuge carbonatite centres are characterized by enriched rare earth element (REE) values dominated by higher abundances of LREEs with steep chondrite-normalized distribution patterns. The lateritic zone at Buru hill, however, contains the greatest concentrations of REEs, barium, iron and manganese compared to the fresh carbonatite in which calcite and particularly siderite increase in abundance as the influence of supergene processes decrease with depth. The most common rare earth minerals encountered in the Buru and Kuge carbonatite centres are the fluorocarbonates (bastnaesite, synchysite and parisite), and monazite. The lanthanide fluorocarbonate and monazite control the concentration and bulk distribution of the REEs. The replacement textures of the lanthanide fluorocarbonates and monazite indicate that they are secondary in origin and appear to have been introduced by late stage, low temperature hydrothermal processes. The rare earth minerals are commonly accompanied by fluorite, and barite. Stable isotope studies suggest that the low temperature mineralogical changes and REE mineralization observed in western Kenyan carbonatites were controlled initially by hydrothermal activity and later by supergene processes. Higher delta18O and values, especially in the oxidized zones, correspond to higher REE abundances.
APA, Harvard, Vancouver, ISO, and other styles
10

Bizzarro, Martin. "Major element and isotope geochemistry (Sr, Nd and Hf) of mantle derived peridotites, carbonatites and kimberlites from Canada and Greeland; insights into mantle dynamics." Thèse, Chicoutimi : Montréal : Université du Québec à Chicoutimi ; Université du Québec à Montréal, 2003. http://theses.uqac.ca.

Full text
Abstract:
Thèse (D.Ress.Min.) -- Université du Québec à Chicoutimi, programme extensionné à l'Université du Québec à Montréal, 2002.
Bibliogr.: f. 105-109. Document électronique également accessible en format PDF. CaQCU
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Carbonatites"

1

1938-, Bell Keith, Geological Association of Canada, Mineralogical Association of Canada, and Canadian Geophysical Union, eds. Carbonatites: Genesis and evolution. London: Unwin Hyman, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Geological Survey (U.S.), ed. Revised grade and tonnage model of carbonatite deposits. Menlo Park, CA: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rheams, Karen F. Mineral filler and extender resources in Alabama. Tuscaloosa, Ala: Geological Survey of Alabama, Mineral Resources Division, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shramenko, I. F. Geokhimii͡a︡ karbonatitov ukrainskogo shchita. Kiev: Naukova dumka, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hogarth, D. D. Carbonatites and fenites near Ottawa, Ontario and Gatineau, Quebec : May 18, 1986. Ottawa: Geological Association of Canada, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

P, Rushforth, Geological Association of Canada, Mineralogical Association of Canada, and Canadian Geophysical Union, eds. Carbonatites and fenites near Ottawa, Ontario and Gatineau, Quebec: May 18, 1986. Ottawa: Geological Association of Canada, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schürmann, L. W. The Kruidfontein Carbonatite Complex, South Africa: Geology, petrology, geochemistry and economic potential. Pretoria: Council for Geoscience, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kogarko, L. N., V. A. Konova, M. P. Orlova, and A. R. Woolley. Alkaline Rocks and Carbonatites of the World. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0513-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kogarko, L. N., V. A. Kononova, M. P. Orlova, and A. R. Woolley. Alkaline Rocks and Carbonatites of the World. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-010-9094-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

N, Kogarko L., ed. Alkaline rocks and carbonatites of the world. London: Chapman & Hall, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Carbonatites"

1

Singh, Yamuna. "Carbonatites." In Society of Earth Scientists Series, 137–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41353-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kresten, Peter, and Valentin R. Troll. "An Introduction to Carbonatites and Carbonatite Complexes." In The Alnö Carbonatite Complex, Central Sweden, 1–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90224-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jones, Adrian P., Matthew Genge, and Laura Carmody. "10. Carbonate Melts and Carbonatites." In Carbon in Earth, edited by Robert M. Hazen, Adrian P. Jones, and John A. Baross, 289–322. Berlin, Boston: De Gruyter, 2013. http://dx.doi.org/10.1515/9781501508318-012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wright, J. B. "The Permo-Triassic dolerites and carbonatites." In Geology and Mineral Resources of West Africa, 126–28. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-3932-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sen, Gautam. "Alkaline and Ultra-Alkaline Rocks, Carbonatites, and Kimberlites." In Petrology, 243–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38800-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kogarko, L. N., V. A. Kononova, M. P. Orlova, and A. R. Woolley. "Introduction." In Alkaline Rocks and Carbonatites of the World, 1. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-010-9094-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kogarko, L. N., V. A. Kononova, M. P. Orlova, and A. R. Woolley. "Scope of the Catalogue." In Alkaline Rocks and Carbonatites of the World, 2–8. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-010-9094-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kogarko, L. N., V. A. Kononova, M. P. Orlova, and A. R. Woolley. "Acknowledgements." In Alkaline Rocks and Carbonatites of the World, 9. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-010-9094-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kogarko, L. N., V. A. Kononova, M. P. Orlova, and A. R. Woolley. "Descriptions by Province." In Alkaline Rocks and Carbonatites of the World, 10–224. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-010-9094-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kogarko, L. N., V. A. Konova, M. P. Orlova, and A. R. Woolley. "Introduction." In Alkaline Rocks and Carbonatites of the World, 1. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0513-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Carbonatites"

1

Yaxley, Gregory. "Petrogenesis of carbonatites." In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.14430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Massey, Skylar, and Maya Kopylova. "Fenitization of ultramafic rocks around late carbonatites in the Kovdor Massif (Kola Alkaline Carbonatitic Province)." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.6356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Polák, Ladislav, Lukáš Ackerman, Tomáš Magna, Michael Bizimis, and Vladislav Rapprich. "Lu–Hf Isotope Systematics of Carbonatites." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Giebel, R. Johannes, Michael A. W. Marks, Benjamin Walter, and Gregor Markl. "Silicates in carbonatites – origin and interpretation." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.13273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fredrick, Katelyn, Virginia McLemore, Evan Owen, and Eric Ruggles. "MINERALOGY AND CHEMISTRY OF LEMITAR CARBONATITES." In GSA Connects 2023 Meeting in Pittsburgh, Pennsylvania. Geological Society of America, 2023. http://dx.doi.org/10.1130/abs/2023am-395171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fosu, Benjamin, Prosenjit Ghosh, Tobias Weisenberger, Simon Spürgin, and Shrinivas Viladkar. "The Triple Oxygen Isotope Composition of Carbonatites." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Verplanck, Philip L., Anthony Mariano, and Anthony Mariano. "RARE EARTH ELEMENT AND NIOBIUM ENRICHMENTS IN CARBONATITES." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-281662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kommescher, Sebastian, Tomáš Magna, Sebastian Tappe, Jindřich Kynický, Raúl Fonseca, Vladislav Rapprich, and R. Johannes Giebel. "Mass-dependent titanium isotope variations of global carbonatites." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.11983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chandler, Ross, and Ignacio González-Álvarez. "Australian carbonatites: insights on geological characteristics, exploration proxies and the national prospectivity for undiscovered carbonatites and associated critical metal mineralisation." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Magna, Tomáš, Jaime Barnes, Vladislav Rapprich, and R. Johannes Giebel. "Constraints on the chlorine and fluorine inventory of carbonatites." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.12058.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Carbonatites"

1

Richardson, D. G., and T. C. Birkett. Gîtes associés à des carbonatites. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/208033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Richardson, D. G., and T. C. Birkett. Gîtes résiduels associés à des carbonatites. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/207967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Charbonneau, B. W., and D. D. Hogarth. Geophysical expression of the carbonatites and fenites, east of Cantley, Quebec. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1988. http://dx.doi.org/10.4095/122640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Posokhov, Viktor Fedorovich. SULPHATE-CONTAINING MINERALS FROM FLUORITE-BASTNESITE CARBONATITES OF THE ULAN-UDE RARE EARTH OCCURRENCE(RUSSIA, WESTERN TRANSBAIKALIA). DOI CODE, 2023. http://dx.doi.org/10.18411/doicode-2023.261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Richardson, D. G., and T. C. Birkett. Carbonatite-associated deposits. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/208032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Richardson, D. G., and T. C. Birkett. Residual carbonatite-associated deposits. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/207966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Van Rythoven, A., K. Scarberry, and S. Risedorf. Preliminary data release of whole-rock assays from rare earth and niobium deposits in Ravalli County, Montana. Montana Bureau of Mines and Geology, June 2024. http://dx.doi.org/10.59691/vlkd7955.

Full text
Abstract:
This file provides location, description, and assay data on 11 samples of carbonatite and host rocks from the Sheep Creek area of southern Ravalli County in Montana. Samples were collected in July 2023.
APA, Harvard, Vancouver, ISO, and other styles
8

Woolley, A. R., and B. A. Kjarsgaard. Carbonatite occurrences of the world: map and database. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2008. http://dx.doi.org/10.4095/225115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peterson, T. D., J. M. J. Scott, and C. W. Jefferson. Uranium-rich bostonite-carbonatite dykes in Nunavut: recent observations. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2011. http://dx.doi.org/10.4095/288751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sappin, A. A. Role in sub-activity from IOA-REE to carbonatite. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/329140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography