Dissertations / Theses on the topic 'Carbone Catalyse Fer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 26 dissertations / theses for your research on the topic 'Carbone Catalyse Fer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Guérin, Nicolas. "Fonctionnalisation du chrysotile avec du fer pour fins de catalyse." Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25608/25608.pdf.
Full textRoutier, Mathilde. "Catalyse photochimique de la réduction du dioxyde de carbone par des porphyrines de fer." Paris 7, 2014. http://www.theses.fr/2014PA077066.
Full textThe transition from fossil fuels to renewable energy sources is a major challenge in today's society. The first step to address this challenge is to find a way to store and carry this energy, which can be done under the form of chemical bonds through the activation of small molecules like CO2, 02 and H2O. In this context, our work was focused on the catalytic photoreduction of carbon dioxide by three iron porphyrins showing remarkable electrocatalytic properties. We have first studied a homogeneous molecular photochemical approach. A careful analysis of the results, comparing the three porphyrins and the effect of the addition of a weak BrOnsted acid, allowed us to propose a reaction mechanism correlating the different behaviour of the porphyrins with their molecular structures. Furthermore, a detailed analysis of the experimental conditions required for the catalysis revealed that they induced the degradation of the porphyrins. To overcome these limits, we studied the use of a photosensitizer, resulting in improved catalytic performances and higher system stability. We also studied a homogeneous molecular photoelectrochemical approach, using p-type Si photoelectrodes. We observed the reduction of CO2 with a photovoltage of 350 mV, thus validating this strategy, but the process is limited by the sensitivity of the photoelectrodes towards 02. We are currently developing new electrodes made of copper oxide to obtain better catalytic performances and a higher stability
HAMMOUCHE, MOHAMED. "Catalyse homogene de la reduction electrochimique du dioxyde de carbone par les porphyrines de fer o." Paris 7, 1991. http://www.theses.fr/1991PA077043.
Full textSoyez, Alain. "Hydrocondensation du monoxyde de carbone catalysée en phase liquide par des espèces à base de fer." Lille 1, 1985. http://www.theses.fr/1985LIL10104.
Full textBHUGUN, IQBAL. "Catalyse de la reduction electrochimique du dioxyde de carbone par les porphyrines de fer(0). Effet synergique des acides de bronsted et de lewis." Paris 7, 1995. http://www.theses.fr/1995PA077102.
Full textCoufourier, Sebastien. "Valorisation des Dérivés Carboniques par hydrogénation : un challenge vers le développement de procédés éco-compatibles." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC230.
Full textThe use of carbon dioxide as a source of carbon C1 to produce chemical platforms or as a fuel source constitute an alternative to petrochemicals and could allow its recycling. Currently, the main described processes for the recycling and the valorization of CO2 are using reducing agents in stoichiometric amounts (which generates waste) or noble metals (limited availability, toxicity and high costs). In this environmental and economical race, one of the challenges of modern chemistry is the preparation of new organometallic iron complexes and their use in catalysis. Based on our expertise in the field of synthesis, catalysis and development of organometallic complexes, this work proposes to develop new fast, efficient, selective and eco-compatible methodologies for the reduction of carbon dioxide and carbonates by hydrogenation with bifunctional iron complexes
Chafik, Abdelghani. "Influence de terres rares (La, Ce) sur les propriétés de systèmes catalytiques Métal-Carbone (Métal : Fe, Co, Ni) dans la conversion d'oxydes de carbone." Poitiers, 1988. http://www.theses.fr/1988POIT2309.
Full textPinheiro, Jean Patrick. "Croissance catalytique sous CO de carbone filamentaire et nanotubulaire." Université Joseph Fourier (Grenoble), 1999. http://www.theses.fr/1999GRE10030.
Full textZivkov, Catherine. "Etude de catalyseurs a base d'argiles et d'argiles a piliers pour la methanisation du gaz de synthese." Poitiers, 1987. http://www.theses.fr/1987POIT2205.
Full textMaatouk, Amira. "Étude de la croissance des nanotubes de carbone catalysée par le fer." Phd thesis, Université Paris-Est, 2012. http://tel.archives-ouvertes.fr/tel-00788329.
Full textAhlafi, Hammou. "Hydrogénation d'espèces carbonées adsorbées sur un catalyseur au fer : expérimentation et modélisation cinétique." Lyon 1, 1990. http://www.theses.fr/1990LYO10080.
Full textZheng, Jianxia. "Earth-abundant metal complexes for catalyzed hydroelementation." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S148/document.
Full textThis research work deals with the use of the catalysts based on the earth-abundant transition metals of the first row of the periodic table, such as Mn, Fe, and Ni, for hydroelementation reactions. First of all, the hydrosilylation of aldehydes and ketones was accomplished using a simple Ni(OAc)₂ 4H₂O/PCy₃ catalytic system with the inexpensive and stable silane PMHS as the hydride source. The reductive amination of aldehydes with amines was also achieved with the same catalytic system and TMDS, as the silane. Second, the efficiency of manganese half-sandwich complex CpMn(CO)₂(IMes) was exemplified for the reduction of aldehydes and ketones in the presence of Ph ₂ SiH ₂ (1.5 equiv.) under UV irradiation at room temperature. Still with manganese, the challenging transformation of carboxylic acids to aldehydes was performed using commercial Mn₂ (CO)₁₀ and Et₃SiH. Third, the methylation of the secondary amines with dimethyl carbonate as an alternative and safe C1 source was demonstrated under mild conditions with [CpFe(CO)₂(IMes)]I as the catalyst. Then, the hydroboration of functionalized alkenes and alkynes was catalyzed by an iron(0) carbonyl complex Fe(CO)₄(IMes) under UV irradiation. Finally, the hydroboration reaction was successfully extended to the reduction of CO₂ to methoxyboranes with Fe(CO)₃[P(OPh)₃]₂ as the catalyst and the borane sources, such as HBpin, HBcat or 9-BBN
Amatore, Muriel Gosmini Corinne. "Synthèse de liaisons carbone-carbone via l'utilisation d'une catalyse par des complexes du cobalt." Créteil : Université de Paris-Val-de-Marne, 2006. http://doxa.scd.univ-paris12.fr:8080/theses-npd/th0252093.pdf.
Full textVersion électronique uniquement consultable au sein de l'Université Paris 12 (Intranet). Titre provenant de l'écran-titre. Pagination : 231 p. Bibliogr. : 328 réf.
Gu, Bang. "Design of metal catalysts for carbon monoxide hydrogenation with high activity, selectivity and stability." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1R020/document.
Full textFischer-Tropsch (FT) synthesis is one of the most practicable routes to convert non-petroleum carbon resources, such as coal, biomass, natural gas and shale gas, via syngas into valuable fuels and chemicals. This reaction follows surface polymerization mechanism and the primary products follows the Ander-Schulz-Flory (ASF) distribution. It’s a big challenge to improve the target products selectivity. Apart from the selectivity, catalyst deactivation also restricts the wide application in FT synthesis. The effect of the promotion with bismuth and lead on direct synthesis of light olefins from syngas over carbon nanotube supported iron catalysts was investigated in Chapter 3. Compared to the un-promoted iron catalysts, a twice higher Fischer-Tropsch reaction rate and higher selectivity to light olefins were obtained. This promotion effect is more significant under atmospheric pressure with 2-4 times higher activity while the selectivity of light olefins reaches as high as ~60 %. Remarkable migration of promoters during the catalyst activation and decoration of the iron carbide nanoparticles were uncovered by characterization. Moreover, in Chapter 4 we uncovered using a wide range of ex-situ and in-situ techniques several major synergetic effects arising from the iron nanoconfinement and promotion with bismuth and lead on catalytic performance of FT synthesis resulting in light olefins. Iron nanoconfinement inside carbon nanotubes combined with the promotion with Bi or Pb result in a 10-fold higher yield of light olefins. Nanoconfinement in carbon nanotubes mostly leads to better iron dispersion and stability, while intrinsic activity is only slightly affected. Promotion with Bi and Pb results in a major increase in the site intrinsic activity (TOF) in both confined and non-confined catalysts. Over the optimized promoted and confined catalysts, Fischer-Tropsch synthesis occurs under atmospheric pressure with high conversion and enhanced selectivity to light olefins with lower degree of sintering.Apart from the confinement effect, we also study the particle size effect in the confined system for syngas conversion to light olefins over both promoted and unpromoted iron catalysts in Chapter 5. The TOF increases with increasing in the iron nanoparticles sizes from 2.5 to 12 nm over the carbon nanotubes containing encapsulated monometallic or Bi- or Pb-promoted iron nanoparticles. The iron particles size of unpromoted catalysts encapsulated in carbon nanotubes does not show any noticeable effect on the light olefin selectivity, while in the Bi- and Pb-promoted catalysts, the light olefin selectivity was higher over smaller encapsulated iron nanoparticles and decreased with the increase in the nanoparticle size.In Chapter 6, we introduced a new approach for the synthesis of linear α-olefins during low temperature FT synthesis over the Co based catalysts. We found that the co-feeding carboxylic acids leads to a shift of selectivity from paraffins to α-olefins which has been assigned to stabilization of olefins by intermediate formation of esters. The α-olefins selectivity is as high as 39 % in the presence of acids.In the end, we propose a new strategy, which substantially improves the stability of Co and Ni catalysts for CO hydrogenation via their promotion with bismuth. The promoted catalysts demonstrated exceptionally stable performance. The conducted experiments uncovered continuous catalyst self-regeneration during the reaction via oxidation of deposed carbon by oxygen scavenged after CO dissociation at the interface of metal nanoparticles and bismuth promoter. Formation of the bismuth-protecting layer over metal nanoparticles protects them against sintering
Boudouvas, Denis. "Effet du potassium sur un catalyseur composite Fe-Co-C en synthèse d'hydrocarbures." Grenoble INPG, 1989. http://www.theses.fr/1989INPG0092.
Full textKazmierski, Igor Gosmini Corinne. "Activation d'halogénures ou de pseudo-halogénures aromatiques et formation de liaisons carbone-carbone par catalyse au cobalt synthèse et réactivité d'organozinciques aromatiques, synthèse de biaryles dissymétriques /." Créteil : Université de Paris-Val-de-Marne, 2004. http://doxa.scd.univ-paris12.fr:80/theses/th0213930.pdf.
Full textSrour, Hassan. "Catalyse avec des métalloporphyrines : oxydation asymétrique et transfert de carbènes." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00910073.
Full textLulizi, James Aluha. "Synthèse Fischer-Tropsch à base température pour la production de carburants synthétiques sur des catalyseurs nanométriques de fer et de cobalt supportés par le carbone." Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10161.
Full textAbstract : This work reveals the potential plasma technology presents in producing highly active catalysts for Fischer-Tropsch synthesis (FTS), while simultaneously contracting catalyst production into a single step, which is a certain departure from the traditional multi-step methods such as impregnation or precipitation. Novel catalysts proposed were carbon-based, developed from single metal (Fe/C, Co/C) to bimetallic (Co-Fe), ternary (Mo-Co-Fe, Ni-Co-Fe) and then the promoted Au/Ni-Co-Fe formulations. Since the preparation of nanometric carbon-supported catalysts by plasma is a relatively new phenomenon, it offers the Fischer-Tropsch catalysis prospects of future commercial applications, because of the high temperatures that are achieved in plasma create Fe carbides (Fe3C, Fe5C2), which are assumed to account for Fe-based FTS catalysis. An attempt to fully quantify the carbide phases in the samples by X-ray diffraction (XRD) and Rietveld Quantitative Analysis (RQA) was only partially successful due to the nanometric nature of the materials existing below the instrument’s detection limits. With BET specific surface areas of 35–93 m2.g-1, the catalysts were found to be non-porous, a characteristic that is advantageous because Fischer-Tropsch reaction would operate away from mass transfer limitations. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (EDX) and X-ray mapping indicated high dispersion of the metal moieties in the carbon matrix, with no signs of nanoparticle agglomeration both in the fresh and used samples. Raman and X-ray Photoelectron Spectroscopy (XPS) characterized the support as highly graphitic, mixed with amorphous carbon arising from substantial defects in the graphite. Evidence from X-ray Absorption Spectroscopy (XAS) using X-ray Absorption Near Edge Structure (XANES) analysis confirmed that plasma synthesized Co/C catalyst contained some carbides (Co3C), which went undetected by XPS. Initial catalyst testing was performed in the fixed-bed reactor at 503 K (230C), 3 MPa pressure, and gas hourly space velocity (GHSV) of 6 000 〖cm〗^3 〖.h〗^(-1).g^(-1) of catalyst for 24 h. Elaborate tests were further executed in a 3-phase continuously stirred-tank slurry reactor (3-φ-CSTSR) isothermally operated between 493–533 K (220–260°C) at 2 MPa pressure, and GHSV = 3 600 〖cm〗^3 〖.h〗^(-1).g^(-1) of catalyst, for 24 h. It was observed that all catalysts were active for FTS, producing both gasoline and diesel fractions, but selectivity depended on the amount of metal in the catalyst or the reaction conditions. The most active catalyst at 493 K was the plasma-synthesized Co/C that showed 40% CO conversion, which was benchmarked against the commercial Fe/C at 32%. This performance was compared to the plasma-synthesized Fe/C (25% CO conversion) and 80%Co-20%Fe/C (10% CO conversion), while both the 50%Co-50%Fe/C and 30%Co-70%Fe/C were inactive. The plasma-synthesized Co/C was also more selective towards the gasoline fraction, but at 533 K it generated excessive CH4 (46%) and CO2 (19%) prompting the development of the Co-Fe/C bimetallics, which exhibited less than 10% selectivity towards CH4 or CO2 at over 40% CO conversion. Similarly, Ni-containing catalysts (Ni-Co-Fe/C) were relatively more active than the bimetallics, exhibiting over 50% CO conversion with higher selectivity towards the gasoline fraction (38%) than towards diesel (20%). The Ni-Co-Fe/C catalysts also produced excessive CH4 (23%) and CO2 (14%), than the Co-Fe/C bimetallics. Overall, the Co-Fe bimetallics and the acidified Co-Fe catalyst (i.e. Mo-Co-Fe/C) were more selective towards diesel formation (~55%). When the effect of pre-treatment medium was investigated, depending on catalyst composition, the CO-reduced catalysts showed enhanced selectivity for diesel fraction (50–67%) than catalysts reduced in H2 (45–55%). In addition, it was observed that catalysts containing high concentration of Co as well as those reduced in H2 generated more H2O than those reduced in CO, and the presence of Au (that is, in Ni-Co-Fe/C) not only depressed the Ni-Co-Fe/C catalyst activity, but it also lowered its capacity to form H2O, although it had no significant impact on the catalyst’s hydrocarbon selectivity.
Majesté, Labourdenne Annie. "Etude de la réactivité et de la nature des espèces actives dans l'oxydation en milieu aqueux du phénol par le peroxyde d'hydrogène, en présence de catalyseurs à base de fer déposé sur support carboné." Poitiers, 2000. http://www.theses.fr/2000POIT2296.
Full textMoore, Ashley Dawn. "Synthesis and characterization of carbon catalyst substrates for fuel cell applications." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/synthesis-and-characterization-of-carbon-catalyst-substrates-for-fuel-cell-applications(33d2baee-2602-4b47-8fa6-514a9c8fc98e).html.
Full textMaerten, Eddy Castanet Yves. "Synthèse directe de cétones arylpyridiniques par couplage carbonylant d'halogénopyridines catalysé par des systèmes palladium-carbène N-hétérocycliques et réduction asymétrique des cétones." Villeneuve d'Ascq : Université des sciences et technologies de Lille, 2007. https://iris.univ-lille1.fr/dspace/handle/1908/165.
Full textN° d'ordre (Lille 1) : 3769. Titre provenant de la page de titre du document numérisé. Bibliogr. p. 195-203. Notes bibliogr.
Couve-Bonnaire, Samuel Castanet Yves Carpentier Jean-François. "Synthèse de dérivés pyridiniques fonctionnalisés-cétones, cétoamides et cétoesters-par réaction de carbonylation de précurseurs halogènes." [S.l.] : [s.n.], 2001. http://www.univ-lille1.fr/bustl-grisemine/pdf/extheses/50376-2001-163-164.pdf.
Full textZhang, Liping. "Immobilisation de catalyseurs moléculaires de polymérisation d’oléfines sur nanomatériaux." Thesis, Toulouse, INPT, 2014. http://www.theses.fr/2014INPT0013/document.
Full textThis present thesis deals with the development of active olefin polymerization catalysts based on late transition metal (nickel and iron) imino-pyridine complexes supported on nanomaterial. Chapter I gives a comprehensive literature review of unsupported and supported ethylene polymerization catalyst. In Chapter II we report the ethylene polymerization studies using nickel complexes containing an –NH2 group for covalent immobilization on multi-walled carbon nanotubes (MWCNTs) of the corresponding precatalysts. Comparison of the homogeneous catalysts with their supported counterparts evidenced higher catalytic activity and higher molecular weights for the polymers produced. In Chapter III, iron complexes containing a pyrene group have been synthesized and immobilized on MWCNTs through non-covalent π-π interactions between pyrene group and surface of MWCNTs. Activated by MMAO, both the iron complexes and immobilized catalysts show high activities for ethylene polymerization. It was possible to evidence that MWCNTs have a great influence on the catalytic activity and on the structure of the resulting polyethylenes. Imino-pyridine nickel complexes containing various kinds of aromatic groups have been synthesized in Chapter IV and polymerization conditions in the presence and in the absence of nanocarbon materials, such as MWCNTs or few layer graphene (FLG), are discussed. For those nickel catalysts bearing 1-aryliminoethylpyridine ligands, the presence of MWCNTs in the catalytic mixture allows the formation of waxes of lower molecular weight and polydispersity, whereas the presence of FLG proved to be beneficial for the catalytic activity. In Chapter V, isoprene polymerization catalyzed by iron complexes containing polyaromatic groups and non-covalently supported on nanoparticles and confined into the inner cavity of MWCNTs (Cat@NPs and Cat@NPs@MWCNTs) are investigated. Iron complexes show excellent activity for the isoprene polymerization and produced high glass temperature polyisoprene with a high trans-1,4-polyisoprene selectivity. Polymer nanocomposites are produced by supported catalysts and, transmission electron microscopy (TEM) evidenced efficient coating of the resulting polyisoprene around the oxygen sensitive iron nanoparticles
Ayad, Massinissa. "Réactivité biomimétique du dioxygène au sein de complexes du fer et du cuivre en vue de l’activation des liaisons C-H." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0054.
Full textCatalytic oxydation of C-H bonds using molecular oxygen as ‘green’ oxidant remains a great challenge from both fundamental and industrial point of views. Many metalloproteins, such as copper end iron-based mono-oxygenases are able to perform these reactions under mild conditions. A current strategy is to develop synthetic complexes which can reproduce the efficiency of such enzymes. The main objective of our work has been to synthesize and characterize new models of soluble (sMMO) and particulate (pMMO) mono-oxygenases. Two approaches have been developed. The first strategy was to synthesize unsymmetrical dinucleating ligands bearing two coordination sites, tris-(2-pyridylmethyl)amine “TPA” and pyridinedicarboxamide “PydCA”, which are embedded in a single macrocycle to favor intermetallic interaction. The second strategy is based on the synthesis of dinucleating ligands where coordinating patterns, tetraazacyclotetradecane “cyclam” and dipicolylamine “DPA”, are separated by a phenyl type spacer. These two approaches have led to the formation and characterization in the solid state (X-ray structure) and in solution (spectroscopy, electrochemistry) of many mononuclear and dinuclear iron, copper and cobalt complexes. The study of the reactivity of some mononuclear complexes towards oxidants such as O2 and H2O2, in absence of organic substrates, has led to the identification of metal-oxygen species. Catalytic oxidation of organic substrates was also conducted
Wang, Iting, and 王怡婷. "Granular Activated Carbon as Supporter in a FBR-Fenton Reactor:Adsorption, Catalysis and Chemical Oxidation Regeneration." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/01725187351959395561.
Full text國立交通大學
環境工程所
89
Hydroxyl radical(·OH)is very oxidative, which is the base of advanced oxidation process(AOPs)for degrading organic compounds in water and wastewater. Fenton’s reagent(H2O2/Fe2+)has been proved in a lot of studies to be an effective and simple oxidant, but the drawback is the production of substantial amount of Fe(OH)3 sludge that requires further seperation and disposal. To solve this problem, the application of H2O2 as oxidant and iron oxide as the heterogeneous catalyst in oxidizing organic contaminants deserves further investigation. In This study, a novel technology which combines Fenton reaction with fluidized bed reactor was developed. It not only desolves the seperation and disposal problem of traditional Fenton’s method but is highly efficient in mass transfer and degrading organic compounds. The preparation of GAC-supported FeOOH, batch adsorption and oxidation using FeOOH-GAC and GAC, GAC as supporter in Fenton-fluidiaed-bed reactor:adsorption, catalysis and chemical oxidation regeneration was investigated. In the part of operating condition of fluidized bed, the influence of different catalyst vloume and hydrous reaction time to COD and total Fe removal was investigated. The result indicated that the more the FeOOH-GAC was filled, the higher the Fe removal, meaning the more crystal on the GAC surface;besides, the longer is the HRT, the higher is the COD and total Fe removal. In the part of study of batch adsorption and oxidation, the 24 hours isothermal adsorption experiment of GAC and the two FeOOH-GAC were performed first, the result indicated that their adsorption efficiency was better at low pH than at high pH, and that the adsorption efficiency of GAC was higher than that of the two FeOOH-GAC;the adsorption efficiency of FeOOH-GAC(B) is higher than that of FeOOH-GAC(A).Subsequently the batch oxidation experiment was performed to investigate the feasibility of the catalysis oxidation of BA of the two catalyst, the addition of Fe2+ was found able to increase the catalysis oxidation. Besides, the existance of H2O2 was proved to increasingly oxidate GAC, and increased the TOC concentration of solution. Eventually an experiment for six weeks was performd to investigate the adsorption/catalysis/chemical oxidation regeneration process of the Fenton fluidized bed using GAC as supporter, which was crystallized for 2 weeks(inflowed organic compounds, NaHCO3 and Fenton reagent)→normally performed for 1 week→2~3 times the inflow organic compounds for 1 week→10 times the inflow organic compounds for 1 week→stopped the organic compounds inflow but continued the Fenton reagent inflow for 1 week→normal inflow, the change of the COD removal was observed during the process, then select and take out catalyst at typical time point to measure the quantity of BA adsorbed, from the change of COD removal and BA adsorption capacity, GAC was regenerated during the process.
Goislard, De Monsabert Thomas. "Couches de Nanotubes et Filaments de Carbone pour l'Emission Froide d'Electrons -Intégration aux Ecrans Plats à Emission de Champ." Phd thesis, 2006. http://tel.archives-ouvertes.fr/tel-00090016.
Full textLes paramètres clés, avantages et limitations de plusieurs techniques de préparation et d'intégration de nano particules catalytiques ont d'abord été analysés : le démouillage d'un film continu, la gravure humide post-démouillage, le dépôt de nano agrégats et la lithographie électronique. Trois techniques de croissance de couches carbonées ont ensuite été étudiées dans le même réacteur : la CVD thermique simple, la CVD en présence d'un champ électrique et la CVD avec assistance plasma à partir d'une source de carbone solide. Enfin, les propriétés émissives des diverses couches carbonées élaborées ont été mesurées, en mode diode pour les couches synthétisées sur échantillon plan et en mode triode pour les couches intégrées sur structure cathodique d'écran.
L'analyse de ces résultats a permis de clarifier les liens entre paramètres technologiques d'élaboration, morphologie et performances émissives des films de nanotubes et filaments de carbone.