Dissertations / Theses on the topic 'Carbone – Composites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Carbone – Composites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Labruquère, Sandrine. "Protection interne contre l'oxydation des composites carbone/carbone." Bordeaux 1, 1998. http://www.theses.fr/1998BOR10676.
Full textBrender, Patrice. "Etude de l'influence de la température sur les réactions tribochimiques des matériaux carbonés : Application au freinage aéronautique de composites Carbone/Carbone." Thesis, Mulhouse, 2012. http://www.theses.fr/2012MULH5872.
Full textThe objective of this work is to study quantitatively the evolution of carbon materials surface properties and reactivity under breaking conditions similar to those encountered during taxiing. The breaking tests were carried out using a Tribometric Test Bench. The rubbed C/C composites and the wear debris collected are then characterized by mutiscale unconventional techniques. The whole rubbed composites and the wear debris are characterized by Temperature-Programmed Desorption and by oxygen chemisorption. These analyzes are used to determine the nature and amount of functional groups and the content of active sites that is characteristic of the reactivity of the carbon material and also responsible of its interaction with the surrounding environment. The characterizations are completed by morphological, structural and textural analysis, such as Electron Microscopy, X-Ray Diffraction and gas adsorption. The analysis of the physic-chemical characteristics of wear debris and of the rubbed discs enables to evidence the tribochemical reactions occurring in the mechanical contact: chemical reactions between oxygen or water and the broken C-C bonds have been evidenced. A model is finally proposed, justifying the differences in the tribological properties during taxiing tests. The later is based on the carbon reactivity and on the interface properties and justify the temperature dependence of this system
Mauchin, Agnès. "Comportement mécanique à haute température de composites carbone/carbone." Bordeaux 1, 1997. http://www.theses.fr/1997BOR10676.
Full textFradet, Guillaume. "Physico-chimie de l’interface fibres/matrice : applications aux composites Carbone/Carbone." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14948/document.
Full textThis work focuses on the physical chemistry of the fiber/matrix interface applied to composites carbon/carbon. The surface of carbon fibers was modified by various surface treatments. The carbon fibers surface variation was evaluated by inverse gas chromatography at infinite dilution, SEM, AFM, TEM, Raman... After these characterizations, surface treatments were selected for the realization of C/C composites. The mechanical properties of composites at modulated interfaces (fibers/matrix bonding) were evaluated. Finally, a correlation between surface modification of carbon fibers and macroscopic behavior of composite C/C was established
Breban, Philippe. "Composites aluminium fibres de carbone obtenus par filage." Châtenay-Malabry, Ecole centrale de Paris, 1990. http://www.theses.fr/1990ECAP0130.
Full textDumont, Mikaël. "Composites Carbone/Carbone 3D densifiés par imprégnation/carbonisation de brai mésophasique." Bordeaux 1, 2001. http://www.theses.fr/2001BOR12344.
Full textBelorgey-Beaugrand, Sandrine. "Etude du procédé de densification rapide par caléfaction pour l'élaboration de composites carbone-carbone." Orléans, 2000. http://www.theses.fr/2000ORLE2027.
Full textThe Rapid Densification is a suitable process for the elaboration of carbon-carbon composites. Compared to the classical Chemical Vapour Infiltration process, it offers a gain in time, while the obtained materials are the same quality. The aim of the present work is to improve the understanding of the phenomena occurring in this process. The study is applied to the densification of Novoltex preforms, from SNECMA. It is demonstrated that carbon deposition takes place within a calefaction film, and that the formation of a mosaic texture as a deposit can be avoided with the use of a Gore Tex fabric. The observed phenomena are explained in terms of stabilization of the calefaction film in the porous medium. Heterogeneities in the pyrocarbon deposit are related to the pore surface area/pore volume ratio (As/Vr). A parametric study shows that working under pressure enhance the carbon yield, the densification rate, and the homogeneity of the pyrocarbon texture
Vautey, Philippe. "Bilan des performances mécaniques des composites carbone/thermoplastiques pour l'aéronautique." Compiègne, 1993. http://www.theses.fr/1993COMP0639.
Full textRovillain, Dominique. "Procédé de densification rapide et caractérisation de composites carbone/carbone." Bordeaux 1, 1999. http://www.theses.fr/1999BOR10536.
Full textDekeyrel, Alixe. "Mise au point d’un procédé d’élaboration rapide de composites Carbone/Carbone haute densité." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14017/document.
Full textHigh density Carbon/Carbon composites are usually prepared by chemical vapor impregnation or by liquid pitch impregnation under high pressure (100 MPa). As these processes are complex and costly, an alternative moderate pressure (P < 10 MPa) impregnation process may be attractive, provided the densification yield is strongly improved. This doctoral work proposes an original process, including a pre-densification step, which leads to a significant increase of the C/C composite final density. Essential characteristics of pitches, various parameters influencing liquid pitch densification and processes for the pre-densification step are determined from bibliographical study. Consistent changes of the different physico-chemical characteristics are observed throughout the evolution of pitches to graphitic carbon, under moderate pressure. This experimental study on matrix precursors leads to the selection of a particular pitch as substitute of A240 pitch and to the determination of a specific pyrolysis procedure under moderate pressure. Influence of porous network in preforms on the pitch behaviour during densification is outlined by the comparison of densification yields in both an orthogonal 3D preform and a needled preform. Hybrid densification processes (with film-boiling process, powder impregnation, mesophasic pitch impregnation) are evaluated through the final density and the microstructure of elaborated composites. High density C/C composites, with an apparent density higher than 1.80 g.cm-3 and an open porosity lower than 15%, have been prepared from a pre-densified needled preform, after four densification cycles with liquid isotropic pitch, under moderate pressure. Thermal properties measurements on these C/C composites confirm the strong relationship between microstructure and thermal conductivity. It seems possible to tailor the macroscopic properties of C/C composites, thanks to hybrid carbonaceous matrices
Charron, Morgan. "Modélisation basée images du comportement thermomécanique de composite C/C." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0670/document.
Full textC/C composites are used in very high temperature applications, especially in space activities. The ability to design these materials is essential in order to enhance their performances and lower their production costs. This work introduces an images-based multiscale modeling of the thermomechanical behavior of a C/C needled composites. Standard methods cannot describe this very complex architecture.The CEPI model (Computing Effective Properties using Images) is based on one hand on the components properties, some of them having been characterized in the laboratory, and on the other hand on the architecture of the material which is directly obtained using tomography images. The components properties were used on a microscopic model of an idealistic yarn, while the macroscopic model was based on the CT scan data itself. The influence of the internal parameters of the method was studied and discussed, and allowed validating some hypotheses. Finally, the comparison between the numerical and experimental results validates the CEPI model on the linear mechanical behavior and stressed the key axes of improvement for the thermal expansion behavior of these composites
Baranne, Philippe. "Mécanisme d'inhibition par l'anhydride borique de l'oxydation d'un composite carbone-carbone." Mulhouse, 1985. http://www.theses.fr/1985MULH0010.
Full textZhang, Jing. "Différents traitements de surface des fibres de carbone et leur influence sur les propriétés à l'interface dans les composites fibres de carbone/résine époxyde." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2012. http://www.theses.fr/2012ECAP0038/document.
Full textCarbon fiber (CF)-reinforced polymer composites are widely used in aerospace, construction and sporting goods due to their outstanding mechanical properties, light weight and high thermal stabilities. Their overall performance significantly depends on the quality of the fiber-matrix interface. A good interfacial adhesion provides efficient load transfer between matrix and fiber. Unfortunately, untreated CFs normally are extremely inert and have poor adhesion to resin matrices. Meanwhile, poor transverse and interlaminar properties greatly limit the composite performance and service life. Therefore, a new kind of fiber-based reinforcement is highly desired to improve the overall composite properties, especially the interfacial adhesion between fiber and matrix. In this thesis, three kinds of surface treatment, including sizing, heat treatment and carbon nanotube (CNT) growth, were applied to CFs. In particular, CFs grafted with CNTs, combining with the other two treatments demonstrate superior interfacial adhesion to the tested epoxy matrix. The proposed epoxy sizing can improve the CNT-CF hybrid performance and prevent fiber damage during the subsequent handling such as transport and composite preparation. Firstly, epoxy-based sizing was applied onto the CF surface by the deposition from polymer solutions. Sizing could not only protect the carbon fiber surface from damage during processing but also improve their wettability to polymer matrix. A detailed study was conducted on the influence of the ratio of epoxy and amine curing agent in the sizing formulation. The sizing level on the fiber surface was controlled by varying the concentration of polymer solutions. Secondly, heat treatment in a gas mixture at 600-750 oC was used to modify the carbon fiber surface. The effect of gas mixture composition, treatment time and temperature on the interface was evaluated systematically. Thirdly, CNTs were in-situ grafted on the carbon fiber surface by a continuous chemical vapour deposition (CVD) process to obtain hierarchical reinforcement structures. These hybrid structures have the potential to improve the interfacial strength of fiber/epoxy composites due to the increased lateral support of the load-bearing fibers. Meanwhile, the CNT reinforcement could improve the composite delamination resistance, electrical and thermal properties. The CF grown with CNTs of different morphologies and densities were produced by varying CVD conditions. After the surface treatment, single fiber fragmentation test was used to assess the interfacial shear strength (IFSS) of carbon fiber/epoxy composites. Compared with the as-received CFs, the epoxy sizing and the heat treatment contributed to an improvement in IFSS of up to 35% and 75%, respectively. The interfacial adhesion between epoxy matrix and CNT-grafted fibers could be tailored by varying the CNT morphology, number density and length. The CFs grafted with 2 wt% CNTs of 10 nm in diameter resulted in an improvement in IFSS of around 60%. A further heat treatment and epoxy sizing could contribute to an additional increase of 108%. It’s worth to mention that no significant strength degradation of the fibers was observed after the surface treatments. This work could support the development of large-scale approach to CF surface treatment, and throw light on the design of structurally efficient CF/epoxy composites
Louys, François. "Rôle des interfaces dans le mécanisme d'oxydation des composites carbone-carbone." Mulhouse, 1985. http://www.theses.fr/1985MULH0000.
Full textEste, Alexia. "Modélisation de l’endommagement d’un composite 3D carbone/carbone : comportement à température ambiante." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0006/document.
Full text3D C/C composites are commonly employed in aerospace industry due to their outstandingmechanical properties at high temperatures. In order to ensure the integrity of structures,knowledge of the composite mechanical behaviour and fracture mechanisms is crucial.For this purpose, damage modeling of a 3D C/C composite, at room temperature, isproposed in which a meso-scale approach is considered. At this description scale, 3D C/Ccomposites are made of two materials : carbon fibers yarns and carbon matrix. Each materialbehavior is modeled by an elastic damage law (isotropic for matrix, orthotropic for yarns)with a limited number of parameters.The parameters identification process is based on experimentaldata obtained from previous work and from an experimental campaign carried outthrough this thesis work. This campaign aimed to a greater understanding of the materialmechanical behavior at mesoscopic scale. Furthermore, experimental tests were carried outto validate the composite modeling. It is shown that experimental reponses obtained fromfour-point and three-point bending tests are particularly well described from the proposedmesoscopic model
R'Mili, Mohamed. "Application de la mécanique de la rupture au composite carbone-carbone bidirectionnel." Lyon, INSA, 1987. http://www.theses.fr/1987ISALA028.
Full textDesprés, Jean-François. "Les interphases de carbone pyrolytique dans les composites carbone-carbure de silicium." Pau, 1993. http://www.theses.fr/1993PAUU3021.
Full textDupuy, Diane. "Comportement thermomécanique de composites réfractaires oxyde-carbone." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0108.
Full textThe present thesis aimed at investigating the relationships existing between the microstructure of alumina-carbon refractories used in steel continuous casting and their thermomechanical properties. The work realized here fall within a composite approach, by determining thermomechanical properties of the single constituents of the materials and analyzing then the properties of the heterogeneous composites. Different systems of double scale model materials, constituted of graphite and alumina aggregates in one hand, and of carbon matrix loaded with fine alumina grains on the other hand were studied here. The carbon bond of these materials resulting from pyrolysis of phenolic resin, the thermomechanical properties of the elaborated model materials were analyzed both during and after the pyrolysis heating treatment. The properties evolutions of the cured samples during the pyrolysis highlighted a slight damage during the end of heating and important damage during cooling, due to a thermal expansion mismatch between the alumina grains and the resin/carbon bond. The influence of the thermal damage has been investigated thanks to tensile tests on the pyrolyzed materials, which exhibit a rather strong non-linear behavior. Relationships between volume fraction and physical key-properties of the materials have been established. Besides, the obtained results highlighted that a small change in composition can drastically change the thermomechanical properties of these materials. This overall study on model materials allowed to develop some ideas in order to improve industrial compositions
Vittecoq, Éric. "Sur le comportement en compression des composites stratifies carbone-epoxy." Paris 6, 1991. http://www.theses.fr/1991PA066381.
Full textChamroune, Nabil. "Matériaux composites Aluminium/Carbone : architecture spécifique et propriétés thermiques adaptatives." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0140/document.
Full textMany carbon/metal composites are currently used in several applications. One of them concerns their use as heat sinks in microelectronics. Concerning this application, two conditions are required: a high thermal conductivity (TC) in order to evacuate the heat generated by the electronic chip and a coefficient of thermal expansion (CTE) similar to the used material type of the electronic device (2-8×10-6 /K).Therefore, graphite flakes (GF; TC: 1000 W/m.K and CTE: -1×10-6 /K in the graphite plane) reinforced aluminum matrix (Al; TC: 217 W/m.K and CTE: 25×10-6 /K) composites were fabricated. These composite materials were fabricated by Powder Metallurgy (PM) and Flake Powder Metallurgy (FPM). This process, which consist to use a flattened metallic powder, helped to improve the in-plane orientation (perpendicular to the pressure direction) of GF under uniaxial pressure. Moreover, this process provided a better Al-C interface thanks to a planar contact between the matrix and the reinforcements. This resulted in an improvement of the CT from 400 W/m.K to 450 W/m.K for a reinforcement content of 50 vol.%. Nevertheless, regarding thermal dilation, CTEs of 21.8×10-6 /K and 21.7×10-6 /K were obtained by MP and FPM respectively, which is incompatible with the intended application.To overcome this problem, composite materials with multiple reinforcement were developed by solid-liquid phase sintering. Then, carbon fibers (CF) have been added to aluminum and graphite flakes. The addition of CF to GF reinforcement reduced significantly the CTE of the Al/(GF+CF) composites with a small proportion of CF, while preserving a high TC. In addition, the Al/(GF+FC) composite materials have significantly lower CTEs than the Al/CF composites with a equivalent vol.% of CF. Therefore, Al/(GF+CF) composite materials were developed by solid-liquid phase sintering to obtain a TC of 400 W/m.K (comparable to the TC of copper) and a CTE of 8×10-6 /K (comparable to the CTE of alumina). In addition, the lightweight of aluminum gives composite materials Al/C a low density (d = 2.4 g/cm3). Therefore, the composite materials developed in this study are promising as a lightweight heat sink in microelectronic industries
Souquet-Grumey, Julien. "Fonctionnalisation de nouveaux composites carbone-carbone et leur valorisation en catalyse hétérogène." Poitiers, 2010. http://www.theses.fr/2010POIT2316.
Full textLaurent, Fabrice. "Croissance de nanotubes de carbone sur des fibres de carbone : application aux matériaux composites." Thesis, Mulhouse, 2016. http://www.theses.fr/2016MULH7632/document.
Full textThe research presented in this work aims to develop the oxyacetylene flame method for the Carbon Nanotubes (CNT) synthesis at the Laboratory of Physics and Mechanics of Textiles. The simplicity and the degree of innovation of this process make of it a serious candidate for manufacturing a pilot in order to produce new kind of tridimensional material made of CNT having grew on carbon fibres. This work consisted of:- Make a bibliographic study,- Establish a proof of concept of the growth of CNT,- Design and manufacture a device allowing process control,- Setup the process of growth on the fibres,- Identify the main parameters influencing CNT quality and quantity,- Characterize CNT,- Assume the CNT growth on carbon fibers,- Integrate these multidimensional materials into an organic matrix to realize structural composite materials,- Characterize these materials,- Describe and explain the growth mechanism in the flame.First, we focused our work on the fibres chemical treatment before flame exposition to evaluate the NTC growth conditions by varying notably, the fibres exposition temperature and the quality of the catalysts. After, the NTC syntheses on carbon fibres (CF) was done. The multidimensional product was characterized par various examinations and analyses. Composite materials were molded with epoxy resin to evaluate mechanical properties of NTC-FC. Young’s modulus was increased and tensile strength at break decreased. Transverse and longitudinal electrical properties were increased by 500 to 800 % respectively. Finally, we proposed NTC growth mechanisms. They are directly linked to the chemical and physical catalyst particles properties
Bertran, Xavier. "Comportement en milieu oxydant d’un composite carbone/carbone pour applications structurales entre 150 et 400°c dans l’aéronautique civile." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14922/document.
Full textA 2D Carbon/Carbon composite is envisaged for structural parts, operating between 150 and 400°C, in civil aircraft. In this temperature range, the durability of these materials remains unknown because they have never been developed for this kind of applications. A first approach allowed us to correlate the chemical reactivity of the elemental constituents (fiber and matrix) to their structural organization. Then, thermal ageing tests performed on the composite material have demonstrated that a low rate of oxidation could be responsible to a significant reduction of residual mechanical properties. Cracks and fiber/matrix debonding resulting to the elaboration process create an extended pathway to a preferential oxidation of the most reactive compound. This latter is followed by a premature failure by delamination. The reduction of the material properties over long periods is finally discussed in order to evaluate its ability to replace metallic materials in aircraft structural parts
Guillaud, Nicolas. "Tolérance aux dommages générés par impact de structures composites épaisses. Application aux réservoirs composites hyperbares." Thesis, Paris, ENSAM, 2015. http://www.theses.fr/2015ENAM0040/document.
Full textThis thesis took place within the framework of the project TOLEDO (Tolerance in the damage by impact of the hyperbaric reservoirs) managed by Air Liquide in partnership with the CEA Le Ripault and PPRIME institute.The hydrogen is stored within the type IV vessel at a servive pressure of 700 bar.These composite structures present as peculiarities to be thick (> 30 mm), to have a strong curvature and to be precharged in pressure during a possible impact.Our work showed that these peculiarities modify the type, the quantity and the localization of the various usually observed damages (fiber breakage, délamination and matrix cracking).The damages were able to be quantified by means of simple and original methods.The influence of the peculiarities on the behavior in the impact was able to be determined by the use of two experimental devices designed and realized during this thesis.The first one allows to preload a thick composite plates in uniaxial tension thick composite plates.The second allows to preload in state of membrane a composite pipe and allowed to show that the most critical impact towards reservoirs is when they are empty.This study allowed to highlight the criticality of the fiber breakage on the loss of performance within the hyperbaric reservoirs.A digital model taking into account the dispersal of the failure stress and various types of damages was developed.It also allows to introduce an initial damage and confirm some experimental results
Fontaine, Florian. "Composites à matrice carbone-oxyde et carbone-nitrure : thermodynamique de l'élaboration et son impact sur les propriétés physico-chimiques, thermiques et mécaniques des composites." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14217/document.
Full textCarbon/carbon composites exhibit excellent mechanical and thermal properties at high temperature that make them espe-cially suitable for ablation or friction pieces. Their sensitivity toward oxidation above 400°C has lead to the will of doping them with refractory ceramics that are nonoxidizable or with a high oxidation temperature. The sol-gel process allowed to introduce 1 % in volume of titanium or aluminum oxide or nitride in the matrix. Nitrides are obtained by carbothermal nitridation of the oxide films. Two types of sols were used: the “standard” ones and those with extra sucrose. Sucrose is added to prevent pyrocarbon consumption during the nitridation. Furthermore, it was shown that it has an impact on the nitridation rate. Charged composites are then densified by Chemical Vapor Infiltration, which induces phases transforma-tions that were predicted by thermodynamics: titanium nitride films are partially carburized (formation of titanium carbonitride) and titanium dioxide films are reduced (formation of titanium oxycarbide). Aluminum-based films are more stable and don’t undergo any transformation. Thermal diffusivity of the as-synthesized composites is not much modified by the addition of these ceramics while the tensile and compressive strength are slightly increased. By the way, composites are hardened. Their oxidation kinetics is slowed down. Aluminum-rich composites exhibit a weight loss divided by two compared to the C/C reference. All those properties are directly, or not, linked to the composition of the sols, in particular to their sucrose content. Indeed, it was shown that sucrose-containing sols rather jellify on the surface of the composite, thus preventing the diffusion of precursor gases to the heart of the pieces. The final porosity is then modified. The porosity has an important impact on the compressive strength, thermal diffusivity and oxidation kinetics of the synthesized composites
Thomas, Benjamin. "Matériaux composites Argent/Carbone à propriétés thermiques adaptatives." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0140.
Full textDue to their high thermal conductivity, metal matrix composite materials reinforced with carbon allotropes exhibit a high potential application for thermal management in electronics. This work deals with the elaboration of new synthesis process to produce Ag/rGO (silver/reduced Graphene Oxide) and Ag/GF (silver/Graphite Flakes) composite materials. This process, based on “molecular level mixing” methods, makes it possible to obtain Ag/rGO composite powders with individualized nano-reinforcements up to a concentration of 1 % in volume. Applied to the synthesis of Ag/GF composite materials, it allows to synthesize dense composite materials with a graphite concentration up to 70 % in volume and with a thermal conductivity up to 675 Wm-1.K-1 (426 Wm-1.K-1 for pure silver). Moreover, it has been shown that Ag/GF powders elaboration process has a strong influence on the structural anisotropy of bulk materials as well as on the extrinsic thermal boundary resistance Ag-graphite. The process developed in this work allows Ag/GF composite materials to reach thermal conductivity up to 19 % higher than the same materials synthesized by conventional mixing powder process. However, like most metal/GF composite materials (with Cu, Al, Mg and Fe matrix), thermal expansion of Ag/GF composite materials shows “anomalies”. Indeed, the anisotropy of their coefficient of thermal expansion (CTE) is opposed to their structural anisotropy, their CTE has an abnormally high dependence on temperature and these materials exhibit dimensional instability during thermal cycling. While it is commonly admit in literature that these “anomalies” are the consequence of internal stresses generated during materials densification (because of CTE mismatch between matrix and reinforcement), this phenomenon remains poorly understood and difficult to control. A significant part of this work is devoted to the study of these anomalies and especially to the study of the influence of matrix mechanical properties on composite materials thermal expansion. Thanks to EBSD, XRD, instrumented microhardness and microscopy analysis, key phenomena responsible of thermomechanical behavior of Ag/GF composite materials have been identified. Especially, it has been shown that a large part of the internal stresses is relaxed by plastic deformation of silver matrix and pseudo-plastic deformation of graphite during the post-densification cooling step of the materials. Thus, the control of mechanical properties of metallic matrix (especially of its elastic limit) makes it possible to attenuate the anomalies in CTE and confers a better dimensional stability to Ag / GF composite materials during thermal cycling. Finally, the addition of rGO in silver matrix of Ag/GF composites materials has also reduced material dimensional instability by up to 50 % thanks to the damping properties of rGO
Fontugne, Christophe. "Carbonisation de brais en milieu géométriquement limité : application aux composites carbone-carbone granulaires." Orléans, 2001. http://www.theses.fr/2001ORLE2025.
Full textFontaine, Pauline. "Traitement thermique de recyclage appliqué aux composites carbone/PEEK et aux mélanges de composites renforcés carbone. Solutions alternatives de valorisation des fibres recyclées." Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2020. http://www.theses.fr/2020EMAC0015.
Full textCarbon Fiber Reinforced Composites (CFRC) are high technical materials applied in various fields from sports to aeronautics. During the last decade, the demand of CFRC has extended significantly resulting in increasing the volume of composite waste generated each year. Incited by European directives, thermal recycling treatments have been developed at industrial scale to recover carbon fibers, mostly from thermosetting composites. Nowadays CFRP in development used thermoresistant resins such as Poly Ether Ether Ketone (PEEK). Part of this work is to study the recycling feasibility of this type of CFRP alone and mixed with thermosetting and thermoplastics matrix based composites. Semi-industrial pilot was used in inert (pyrolysis) and reactive (steam-thermolysis, oxydation) atmosphere conditions. First results of mixture perform in nitrogen have revealed that inert atmosphere cannot allow the recovery of carbon fibers from thermoresistant resins. On the contrary trials on PEEK in oxydative atmospheres enable the extraction of fiber, but induce morphological and chemical modifications and tensile strength reduction. New approach on the recycled carbon fiber valorization have also been studied. These fibers have been coated by nanocellulose as sizing agent for their reuse in new composite formulations. Mechanical properties loss induce by recycling have been offset thank to this surface treatment. Recycled fibers was also incorporate in jute/PA6 composite to create a hybrid composite with balance properties in terms of strength, price and environmental impact
Rossignol, Jean-Yves. "Sur des matériaux composites céramique-céramique à renfort bidirectionnel de fibres de carbone et à matrice hybride carbone-carbure ou carbone-nitrure élaborés par CVI." Bordeaux 1, 1985. http://www.theses.fr/1985BOR10560.
Full textLajzerowicz, Pierre. "Modélisation de l'élaboration de composites carbone-carbone par dépôt chimique en phase vapeur." Grenoble INPG, 1987. http://www.theses.fr/1987INPG0144.
Full textLajzerowicz, Pierre. "Modélisation de l'élaboration de composites carbone-carbone par dépôt chimique en phase vapeur." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37606889m.
Full textPerie, Jean-Noël. "Meso-modélisation des mécanismes d'endommagement dans les composites carbone-carbone à texture multidirectionnelle /." Cachan : Laboratoire de mécanique et technologie, 2000. http://catalogue.bnf.fr/ark:/12148/cb38860756n.
Full textNguyen, Van Sang-Trouvat Béatrice. "Analyse et optimisation des interfaces dans les composites carbone / carbone à renfort fibreux." Bordeaux 1, 1996. http://www.theses.fr/1996BOR10718.
Full textJeanne, Jean-François. "Étude de l'endommagement surfacique de matériaux composites type carbone/carbone sous sollicitations tribologiques." Nantes, 1994. http://www.theses.fr/1994NANT2046.
Full textLines, Jean-François. "Modélisation et optimisation du procédé de densificaton de composites carbone/carbone par calefaction." Bordeaux 1, 2003. http://www.theses.fr/2003BOR12767.
Full textMartineau, Lilian. "Mise en forme de composites carbone/PEEK dans le domaine caoutchoutique." Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2018. http://www.theses.fr/2018EMAC0008/document.
Full textThermoplastic composite materials based on long carbon fibers are extensively studied to prepare their introduction in the next generation of structural parts in aerospace industry. Because of its thermomechanical properties, unidirectional carbon/PEEK appears as a potential candidate, however the current forming processes do not appear able to manufacture thick parts with this material. The aim of my PhD thesis is to propose an innovative process to produce thick carbon/PEEK parts of L-shape and U-shape profiles. The heart of the concept is to carry out the step of deformation when the matrix is in the rubbery state to promote inter-ply sliding and thus avoiding the formation of wrinkling defect whatever the thickness. In a first step, the processing window suitable to obtain a preform was defined based on the physical properties of the PEEK matrix. The implementation of the proposed method, based on the results collected, has highlighted the complexity of the deformation mechanisms under these specific conditions. A better understanding of these mechanisms has been provided by a modeling and simulation approach. Finally, the material properties and the performance of the parts produced by this new process have been measured, the comparison with parts obtained by a conventional forming process validates the proposed process
Boyer, François. "Développement de nanocomposites et composites de fibres de carbone-PEEK-nanotubes de carbones : caractérisations mécanique et électrique." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2284/.
Full textThis study is a part of our on-going research in the frame of the INMAT project managed by AIRBUS Operation (certified by AESE competitiveness pole) and in partnership with some other academic institutions, consisting of a composite thermoplastic PEEK/carbon fibers/ carbon nanotubes. The ultimate aim of INMAT is to produce carbon / PEEK laminates with enhanced electrical properties by integrating MWCNT without using compatibilizers. Indeed the addition of CNT's in the matrix will confer isotropic properties in term of electrical conductivity. Thus, Multiwalled Carbon Nanotubes (MWCNT) were dispersed into a PEEK matrix to manufacture first granulates. The MWCNT weight contents were 0,5; 1; 2 and 3 wt%. Tests specimens and films were then synthetized in order to carry out mechanical and electrical characterization, using DDS and DMA equipments. The next step is to produce carbon fibers/ PEEK/ MWCNT laminates by two different methods. First one consist in a composite "sandwich". During plies collation, films of PEEK/ MWCNT were staked between two plies of carbon/ PEEK prepreg. Several laminates were thus hot-pressed for 20 minutes at 380°C: i- free carbon/ PEEK laminates [0°16]; ii- carbon/PEEK/PEEK film MWCNT laminates containing 8 plies of carbon /PEEK with fibers oriented at 0° and 7 plies made of PEEK/MWCNT films. Second one consist to impregnate carbon cloth with PEEK/MWCNT films
Grimaud, Richard. "Modélisation du comportement non linéaire d'un composite carbone-carbone 3D." Ecully, Ecole centrale de Lyon, 1992. http://www.theses.fr/1992ECDL0039.
Full textPatamaprohm, Baramee. "Conception et durabilité de réservoirs en composites destinés au stockage de l’hydrogène." Thesis, Paris, ENMP, 2014. http://www.theses.fr/2014ENMP0021/document.
Full textPresently, the compressed hydrogen storage under high pressure appears to be the most sophisticated solution regarding to a compromise of mass, service pressure and also volume of pressure vessels. However, the challenges of pressure vessels nowadays are their performance improvement as well as their cost reduction. In this context, we studied the type IV hydrogen storage pressure vessel in carbon fibre/epoxy composites. This work aims to obtain a reliable pressure vessel design. Firstly, an experimental study of associated materials and pressure vessel characterisation has been carried out. Then, we proposed a probabilistic model for a composite which is dedicated in particular to fibre breakage using multi-scale simulations in accordance with its mechanical and physical properties. Once this model joined with damage criteria dedicated separately to the others damage mechanisms are integrated into the pressure vessel simulations. Finally, recommendations on composite pressure vessels have been proposed in order to improve their performances and to decrease the mass of composite directly corresponding to the reduction of composite pressure vessels cost
Diaz, Chacon Lurayni. "Influence de charges carbonées sur la dissipation thermique de nouveaux composites diélectriques." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT320/document.
Full textMost electronic and electrical equipment are coated or encapsulated by epoxy resin due to its physical, chemical and dielectric properties. However, this material has a major drawback: its low thermal conductivity ( 0.2 W / mK). In this context, we have developed and characterized epoxy / carbon composites in order to improve the thermal conductivity of this type of resin while maintaining its dielectric properties. We have tested the potential of a wide range of carbonaceous fillers, structures, shapes and sizes (spheres, tubes and plates), such as carbon micro-spheres and multi-walled carbon nanotubes synthesized by CVD and PECVD, but also industrial fillers: graphite nano-platelets (exfoliated graphite), petroleum coke, synthetic and natural graphite. Large composite samples (50 x 50 x 4 mm) were prepared from a DGEBA engineering resin of high viscosity 8.5-15 Pa.s, by varying the charge vol%. The thermal properties of the composites were measured from the transient plane source technique (hot disk). The best results are obtained from graphite nano-platelets: the thermal conductivity reach (0.55 W / mK) for a maximum load of 2.67 vol%.. The relative increase of thermal conductivity is 66% to 1 vol.%. This increase is particularly high to the extent that the best results reported so far is 20% / vol% for resins with lower viscosity, type DGEBF (2.5 - 4.5 Pa.s). The allowable concentration (1.3 vol.%) to maintain a sufficiently high electrical resistivity (> 105 ohm.m) permits to increase of the thermal conductivity to 100% (0.37 W / mK) compared to the initial resin. These results are interpreted in terms of transport of acoustic phonons in the composite two-phase system. Graphite nano-platelets are characterized by anisotropic shapes with a surface of about 26 x 26 microns whose thickness is of the order of 6 nm. They combine an ordered periodic structure in graphene planes (characterization by XPS, EDX and XRD), and a high aspect ratio ( 4300), estimated using various techniques: TEM, SEM and BET. We show that graphite exfoliation permit to increase the aspect ratio of graphite nanoplatelets, maintaining large micronic graphene surface, and without generating structural defects is a challenge. This peculiar 2D morphology allows on one hand, to retain or even increase the intrinsic filler conductivity, favored in the graphene planes, and on another hand, due to their high surface area, to ensure after their dispersion in the resin, a better transport of acoustic phonons through the composite
Pailhes, Jérôme. "Comportement mécanique sous sollicitations multi-axiales d'un composite carbone-carbone." Bordeaux 1, 1999. http://www.theses.fr/1999BOR12152.
Full textAucher, Jérémie. "Etude comparative du comportement composites à matrice thermoplastique ou thermodurcissable." Phd thesis, INSA de Rouen, 2009. http://tel.archives-ouvertes.fr/tel-00557897.
Full textTual, Nicolas. "Durability of carbon/epoxy composites for tidal turbine blade applications." Thesis, Brest, 2015. http://www.theses.fr/2015BRES0057/document.
Full textComposite materials are used in many marine structures and new applications are being developed such as tidal turbine blades. The reliability of these components, in a very severe environment, is crucial to the profitability of tidal current energy systems. These structures are subject to many forces such as ocean tides, waves, storms but also to various marine aggressions, such as sea water and corrosion. A thorough understanding of the long term behavior of the moving parts is therefore essential. The majority of tidal turbine developers have preferred carbon blades, so there is a need to understand how long immersion in the ocean affects these composites. In this study the long term behavior of different carbon/epoxy composites has been studied using accelerated ageing tests. A significant reduction of composite strengths has been observed after saturation of the material in seawater. For longer immersions only small further changes in these properties occur. No significant changes have been observed for moduli nor for composite toughness. Changes in properties are initially due to matrix plasticization, followed by reductions due to fibre/matrix interface changes. Damage can affect the long term behavior of composites structures and create new pathways for water diffusion. As a consequence a damage model has been proposed based on a coupled strength/toughness criterion to describe the threshold of damage and on a toughness criterion to describe the crack development kinetics. It describes in a correct manner the damage threshold and kinetics for the as-received material and for material after sea water ageing. The evolution of the rate of water ingress into composite materials has been followed, in order to develop a diffusion model taking into account the anisotropic nature of composites. Then the diffusion model has been applied on a tidal turbine blade. Finally a first investigation of the coupling between the diffusion model and damage has been performed. This study has contributed to the development of tools to quantify long term durability of composite tidal turbine blades
Eker, Yasin. "Stockage électrochimique du lithium dans les carbones désordonnés et dans les composites carbone/silicium." Orléans, 2008. http://www.theses.fr/2008ORLE2003.
Full textPeillex, Guillaume. "Modélisations numériques multi-échelles du comportement dynamique de matériaux composites sous sollicitations tribologiques : cas des composites Carbone/Carbone utilisés en freinage aéronautique." Lyon, INSA, 2007. http://www.theses.fr/2007ISAL0068.
Full textIn order to understand the wear mechanism of composites used in aeronautic brakes, we need to dissociate the role of the mechanical phenomena from those of the thermal and physico-chemical phenomena. A two-scale composite is modelized numerically, using finite elements, and takes into account the mechanical aspect of dynamic contact with friction loading. Convergence is achieved thanks to a particular friction law. A multi-scale approach, by homogenization allows to dissociate the influence of the macroscopic scale, which determines the possible vibration modes, from the one of the mesoscopic scale, which chooses the mode that is really expressed. A damage scenario, based on local stress evaluation for each scale, is set up and joins experimental observations. The model also allows to characterize the influence of some manufacturing process parameters over its tribological behavior
Baudry, Pierre. "Etude du résidu carboné et de la liaison fibre/matrice lors de la pyrolyse de composites carbone/phénolique." Bordeaux 1, 2004. http://www.theses.fr/2004BOR12879.
Full textPoutord, Antoine. "Étude du perçage à sec de l'empilage Ti6Al4V/Composite fibre de carbone." Thesis, Paris, ENSAM, 2014. http://www.theses.fr/2014ENAM0149/document.
Full textThe aeronautic field has stronger and stronger requirements so the use of materials for structures has been unavoidable. That’s why carbon fiber composite is appeared in plane structures, used with elements in titanium alloy, and most part of them in Ti6Al4V. These materials are also dispatched in stacks and are drilled in a “one shot” operation, in the aim of being assembled with rivets or bolts. Through the industrial point of view, many problems are highlighted by this operation, generating several over costs. Technologic and scientific locks linked with this operation will be analyzed in this study.The knowledge of local stresses exerted by the tool on the machined matter is the first point allowing the improvement of the understanding of phenomenon that occurs during cutting. Few processes will be experimented to determine stresses submitted by the tool during drilling with accuracy. In the aim of completing the knowledge of the cutting operation, the analysis of the temperature inside the drill is needed. That’s why different experimental devices of thermal measurement are developed.These devices have allowed instrumented machining of holes in each material separately and in the stack of Ti6Al4V/CFRP in order to understanding phenomenon that occur during this operations
Patel, Stéphanie. "Nanotubes de carbone alignés sur supports carbonés : de la synthèse aux matériaux composites." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112296.
Full textBecause of their properties, composite materials have attracted considerable interests in advanced technology such as in aeronautic field because of their properties. In the case of organic composite reinforced with long fibres, the properties depend not only on the reinforcements and the matrix but also on the interface between the fibre and the matrix (F/M). This thesis deals with the work led to integrate securely aligned carbon nanotubes (CNT) directly on carbon fibres (CF) in order to assess their effects on electrical and mechanical properties at the F/M interface in thermosetting and thermoplastic composite. To include aligned CNT directly on carbon substrates, the catalytic chemical vapour deposition synthesis method of CNT has been developed which consists in carrying out the synthesis in two steps in the same synthesis equipment avoiding intermediate handling. First, a deposition of oxide ceramic layer based on SiO2 is performed followed by the growth of CNT. The process has been adjusted in order to achieve a homogeneous growth of aligned CNT along the carbon fibre cloth compatible with industrial requirement for composite elaboration. Each material obtained from the different steps has been characterized with complementary physical and chemical analysis techniques in order to understand the ceramic sub-layer role on the growth of CNT. In particular, it has been pointed out that during the growth of CNT the sub-layer is modified by the incorporation of iron in the ceramic layer based SiO2, leading to the formation of mixed oxide which plays the role of diffusion barrier layer resulting in the growth of aligned, dense and long CNT on carbon substrates (glassy carbon, carbon fibre cloth). Besides, to avoid the dispersion of CNT in the atmosphere during the handling step for the elaboration of composite, a surface functionalization of CNT has been performed to encapsulate them. Finally, electrical and mechanical properties have been measured on carbon clothes exposed to different treatments and on composites reinforced with these clothes
Lalet, Grégory. "Composites aluminium/fibres de carbone pour l'électronique de puissance." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2010. http://tel.archives-ouvertes.fr/tel-00538480.
Full textTrabelsi, Walid. "Vieillissement de matériaux composites carbone/époxy pour applications aéronautiques." Phd thesis, Paris, ENSAM, 2006. http://pastel.archives-ouvertes.fr/pastel-00002194.
Full text