Academic literature on the topic 'Cardiac health measurements'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cardiac health measurements.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cardiac health measurements"
Geelhoed, Miranda J. J., Sonja P. E. Snijders, Veronica E. Kleyburg-Linkers, Eric A. P. Steegers, Lennie van Osch-Gevers, and Vincent W. V. Jaddoe. "Reliability of echocardiographic measurements of left cardiac structures in healthy children." Cardiology in the Young 19, no. 5 (August 20, 2009): 494–500. http://dx.doi.org/10.1017/s1047951109990862.
Full textAbellán-Aynés, Oriol, Pedro Manonelles, and Fernando Alacid. "Cardiac Parasympathetic Withdrawal and Sympathetic Activity: Effect of Heat Exposure on Heart Rate Variability." International Journal of Environmental Research and Public Health 18, no. 11 (May 31, 2021): 5934. http://dx.doi.org/10.3390/ijerph18115934.
Full textFirstenberg, Michael S., Neil L. Greenberg, Mario J. Garcia, Annitta J. Morehead, Lisa A. Cardon, Allan L. Klein, and James D. Thomas. "Internet-based transfer of cardiac ultrasound images." Journal of Telemedicine and Telecare 6, no. 3 (June 1, 2000): 168–71. http://dx.doi.org/10.1258/1357633001935275.
Full textWetzel, Glenn T., Fuhua Chen, William F. Friedman, and Thomas S. Klitzner. "Calcium Current Measurements in Acutely Isolated Neonatal Cardiac Myocytes." Pediatric Research 30, no. 1 (July 1991): 83–88. http://dx.doi.org/10.1203/00006450-199107000-00017.
Full textWETZEL, GLENN T., FUHUA CHEN, WILLIAM F. FRIEDMAN, and THOMAS S. KLITZNER. "Calcium Current Measurements in Acutely Isolated Neonatal Cardiac Myocytes." Pediatric Research 30, no. 1 (July 1991): 83???88. http://dx.doi.org/10.1203/00006450-199107010-00015.
Full textRenner, LE, and LT Meyer. "Injectate port selection affects accuracy and reproducibility of cardiac output measurements with multiport thermodilution pulmonary artery catheters." American Journal of Critical Care 3, no. 1 (January 1, 1994): 55–61. http://dx.doi.org/10.4037/ajcc1994.3.1.55.
Full textDoi, Matsuyuki, Koji Morita, and Kazuyuki Ikeda. "Frequently repeated fick cardiac output measurements during anesthesia." Journal of Clinical Monitoring 6, no. 2 (April 1990): 107–12. http://dx.doi.org/10.1007/bf02828286.
Full textD’Mello, Skoric, Xu, Roche, Lortie, Gagnon, and Plant. "Real-Time Cardiac Beat Detection and Heart Rate Monitoring from Combined Seismocardiography and Gyrocardiography." Sensors 19, no. 16 (August 8, 2019): 3472. http://dx.doi.org/10.3390/s19163472.
Full textJarolim, Petr, Purvish P. Patel, Michael J. Conrad, Lei Chang, Vojtech Melenovsky, and David H. Wilson. "Fully Automated Ultrasensitive Digital Immunoassay for Cardiac Troponin I Based on Single Molecule Array Technology." Clinical Chemistry 61, no. 10 (October 1, 2015): 1283–91. http://dx.doi.org/10.1373/clinchem.2015.242081.
Full textCollins, C., S. Drew, J. Holberton, and C. Calado. "Reference Echocardiographic Measurements in Very Low Birth Weight Preterm Infants." American Journal of Perinatology 36, no. 03 (August 6, 2018): 303–10. http://dx.doi.org/10.1055/s-0038-1667070.
Full textDissertations / Theses on the topic "Cardiac health measurements"
Cathelyn, Jim, and L. Lee Glenn. "Effect of Ambient Temperature and Cardiac Stability on Two Methods of Cardiac Output Measurement." Digital Commons @ East Tennessee State University, 1999. https://dc.etsu.edu/etsu-works/7534.
Full textCelik, Numan. "Wireless graphene-based electrocardiogram (ECG) sensor including multiple physiological measurement system." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15698.
Full textJones, Nicole L. "Comparison of physical activity assessment methods among Phase III cardiac rehabilitation participants." Virtual Press, 2006. http://liblink.bsu.edu/uhtbin/catkey/1339152.
Full textSchool of Physical Education, Sport, and Exercise Science
Miller, Angela Nicole Roberts. "The CaReS Battery: Measuring Stages of Change in Cardiac Rehabilitation through the Development of a Targeted Instrument." Kent State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=kent1279478756.
Full textKlein, Ran. "Precise rubidium-82 infusion system for cardiac perfusion measurement using three-dimensional positron emission tomography." Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/27144.
Full textSandri, Gustavo Luiz. "Automated non-contact heart rate measurement using conventional video cameras." reponame:Repositório Institucional da UnB, 2016. http://dx.doi.org/10.26512/2016.02.D.21118.
Full textConforme o sangue flui através do corpo de um indivíduo, ele muda a forma como a luz é irradiada pela pele, pois o sangue absorve luz de forma diferente dos outros tecidos. Essa sutil variação pode ser capturada por uma câmera e ser usada para monitorar a atividade cardíaca de uma pessoa. O sinal capturado pela câmera é uma onda que representa as variações de tonalidade da pele ao longo do tempo. A frequência dessa onda é a mesma frequência na qual o coração bate. Portanto, o sinal capturado pela câmera pode ser usado para estimar a taxa cardíaca de uma pessoa. Medir o pulso cardíaco remotamente traz mais conforto pois evita o uso de eletrodos. Também permite o monitoramento de uma pessoa de forma oculta para ser empregado em um detector de mentira, por exemplo. Neste trabalho nós propomos dois algoritmos para a estimação da taxa cardíaca sem contato usando câmeras convencionais sob iluminação não controlada. O primeiro algoritmo proposto é um método simples que emprega um detector de face que identifica a face da pessoa sendo monitorada e extrai o sinal gerado pelas mudanças no tom da pele devido ao fluxo sanguíneo. Este algoritmo emprega um filtro adaptativo para aumentar a energia do sinal de interesse em relação ao ruído. Nós mostramos que este algoritmo funciona muito bem para vídeos com pouco movimento. O segundo algoritmo que propomos é uma melhora do primeiro para torná-lo mais robusto a movimentos. Nós modificamos o método usado para definir a região de interesse. Neste algoritmo é utilizado um detector de pele para eliminar pixels do plano de fundo do vídeo, os frames dos vídeos são divididos em micro-regiões que são rastreados com um algoritmo de fluxo ótico para compensar os movimentos e um algoritmo de clusterização é aplicado para selecionar automaticamente as melhores micro-regiões para efetuar a estimação da taxa cardíaca. Propomos também um esquema de filtragem temporal e espacial para reduzir o ruído introduzido pelo algoritmo de fluxo ótico. Comparamos os resultados dos nossos algoritmos com um oxímetro de dedo comercial e mostramos que eles funcionam bem para situações desafiadoras.
As the blood flows through the body of an individual, it changes the way that light is irradiated by the skin, because blood absorbs light differently than the remaining tissues. This subtle variation can be captured by a camera and be used to monitor the heart activity of a person. The signal captured by the camera is a wave that represents the changes in skin tone along time. The frequency of this wave is the same as the frequency by which the heart beats. Therefore, the signal captured by the camera could be used to estimate a person’s heart rate. This remote measurement of cardiac pulse provides more comfort as it avoids the use of electrodes or others devices attached to the body. It also allows the monitoring of a person in a canceled way to be employed in lie detectors, for example. In this work we propose two algorithms for non-contact heart rate estimation using conventional cameras under uncontrolled illumination. The first proposed algorithm is a simple approach that uses a face detector to identify the face of the person being monitored and extract the signal generated by the changes in the skin tone due to the blood flow. This algorithm employs an adaptive filter to boost the energy of the interest signal against noise. We show that this algorithm works very well for videos with little movement. The second algorithm we propose is an improvement of the first one to make it more robust to movements. We modify the approach used to define the region of interest. In this algorithm we employ a skin detector to eliminate pixels from the background, divide the frames in microregions that are tracked using an optical flow algorithm to compensate for movements and we apply a clustering algorithm to automatically select the best micro-regions to use for heart rate estimation. We also propose a temporal and spatial filtering scheme to reduce noise introduced by the optical flow algorithm. We compared the results of our algorithms to an off-the-shelf fingertip pulse oximeter and showed that they can work well under challenging situations.
Kiviniemi, A. (Antti). "Measurement of cardiac vagal outflow by beat-to-beat R-R interval dynamics." Doctoral thesis, University of Oulu, 2006. http://urn.fi/urn:isbn:9514281896.
Full textJones, Jason L. "Pedometer intervention to increase physical activity of patients entering a maintenance cardiac rehabilitation program." Muncie, IN : Ball State University, 2009. http://cardinalscholar.bsu.edu/654.
Full textTaniguchi, Ryoji. "Combined measurements of cardiac troponin T and N-terminal pro-brain natriuretic peptide in patients with heart failure." Kyoto University, 2006. http://hdl.handle.net/2433/143842.
Full textWaldenborg, Micael. "Echocardiographic measurements at Takotsubo cardiomyopathy : transient left ventricular dysfunction." Doctoral thesis, Örebro universitet, Institutionen för hälsovetenskap och medicin, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-35798.
Full textBooks on the topic "Cardiac health measurements"
Bustin, Debra. Hemodynamic monitoring for critical care. Norwalk, Conn: Appleton-Century-Crofts, 1986.
Find full textInterventional physiology rounds: Case studies in coronary pressure and flow for clinical practice. New York: Wiley-Liss, 1998.
Find full textDemetriades, Demetrios, Leslie Kobayashi, and Lydia Lam. Cardiac complications in trauma. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199687039.003.0062.
Full textDemetriades, Demetrios, Leslie Kobayashi, and Lydia Lam. Cardiac complications in trauma. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199687039.003.0062_update_001.
Full textLam, Lydia, Leslie Kobayashi, and Demetrios Demetriades. Cardiac complications in trauma. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199687039.003.0062_update_002.
Full textLam, Lydia, Leslie Kobayashi, and Demetrios Demetriades. Cardiac complications in trauma. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199687039.003.0062_update_003.
Full textVincent, Jean-Louis. Ethical issues in cardiac arrest and acute cardiac care: a European perspective. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199687039.003.0013.
Full textVincent, Jean-Louis. Ethical issues in cardiac arrest and acute cardiac care: a European perspective. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199687039.003.0013_update_001.
Full textA, Amini Amir, and Prince Jerry L, eds. Measurement of cardiac deformations from MRI: Physical and mathematical models. Dordrecht: Kluwer Academic Publishers, 2001.
Find full textSainz, Jorge G., and Bradley P. Fuhrman. Basic Pediatric Hemodynamic Monitoring. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199918027.003.0005.
Full textBook chapters on the topic "Cardiac health measurements"
Ravon, Gwladys, Yves Coudière, Angelo Iollo, Oliver Bernus, and Richard D. Walton. "Issues in Modeling Cardiac Optical Mapping Measurements." In Functional Imaging and Modeling of the Heart, 457–65. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20309-6_52.
Full textHartikainen, Juha E. K., Kari U. O. Tahvanainen, and Tom A. Kuusela. "Short-Term Measurement of Heart Rate Variability." In Clinical Guide to Cardiac Autonomic Tests, 149–76. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1057-2_6.
Full textHedman, Antti E., and Marek Malik. "Long-Term Measurement of Heart Rate Variability." In Clinical Guide to Cardiac Autonomic Tests, 195–238. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1057-2_8.
Full textPage, Sally G. "Measurements of Structural Parameters in Cardiac Muscle." In Ciba Foundation Symposium 24 - Physiological Basis of Starling's Law of the Heart, 13–30. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470720066.ch3.
Full textJohnston, A. "Techniques for the blood level measurement of cardiac drugs and their application." In Drugs for Heart Disease, 365–77. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-3294-5_13.
Full textLopes, D. F., J. L. Marques, and E. A. Castro. "A MCDA/GIS-Based Approach for Evaluating Accessibility to Health Facilities." In Computational Science and Its Applications – ICCSA 2021, 311–22. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86973-1_22.
Full textWong, K. K. L., R. M. Kelso, S. G. Worthley, P. Sanders, J. Mazumdar, and D. Abbott. "A Novel Measurement System for Cardiac Flow Analysis Applied to Phase Contrast Magnetic Resonance Imaging of the Heart." In IFMBE Proceedings, 596–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03879-2_167.
Full textFukuda, H., H. Yasuda, S. Shimokawa, and M. Tamura. "The Oxygen Dependence of the Energy State of Cardiac Tissue: 3 1P-NMR and Optical Measurement of Myoglobin in Perfused Rat Heart." In Oxygen Transport to Tissue XI, 567–73. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5643-1_63.
Full textPatil, H. G. Sandeep, Ajit N. Babu, and P. S. Ramkumar. "Non-Invasive Data Acquisition and Measurement in Bio-Medical Technology." In Advances in Healthcare Information Systems and Administration, 27–45. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9446-0.ch003.
Full textPatil, H. G. Sandeep, Ajit N. Babu, and P. S. Ramkumar. "Non-Invasive Data Acquisition and Measurement in Bio-Medical Technology." In Medical Imaging, 253–71. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0571-6.ch010.
Full textConference papers on the topic "Cardiac health measurements"
Pirozzi, M., F. Pietroni, S. Casaccia, L. Scalise, and G. M. Revel. "Cardiac Activity Classification using an E-Health App for a Wearable Device." In 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE, 2018. http://dx.doi.org/10.1109/memea.2018.8438674.
Full textLee, Namheon, Michael D. Taylor, Kan N. Hor, and Rupak K. Banerjee. "Non-Invasive Calculation of Energy Loss in Pulmonary Arteries Using 4D Phase Contrast MRI Measurement." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80525.
Full textCórdova Aquino, Jacobo, and Hugo I. Medellín-Castillo. "A Passive Hybrid Model to Estimate the Elastic Performance of Left Ventricular Cardiac Fibres." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-12124.
Full textvan der Horst, Arjen, Frits L. Boogaard, Marcel C. M. Rutten, and Frans N. van de Vosse. "A 1D Wave Propagation Model of Coronary Flow in a Beating Heart." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53367.
Full textXu, Jiangtao, Jialu Wang, Minshun Wu, and Ruizhi Zhang. "An accurate switched-capacitor heart resistance measurement for cardiac pacemaker." In 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2016. http://dx.doi.org/10.1109/biocas.2016.7833838.
Full textLieber, Samuel C., Nadine Aubry, Jayashree Pain, Gissela Diaz, Song-Jung Kim, and Stephen S. Vatner. "Measurement of the Transverse Apparent Elastic Modulus in Mammalian Cardiac Myocytes." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41469.
Full textFarrar, G. E., G. T. Gullberg, and A. I. Veress. "Full Cardiac Cycle Strain Measurement Using Hyperelastic Warping, Application to Detecting Myocardial Dysfunction in Rat microPET Images." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53654.
Full textIshay, Roni Ben, Scharf Shimon, Maya Herman, and Chaim Yosefy. "Classification of Left Heart Functional Dimensions by Clustering Cardiac Echo-Doppler Measurements." In 2006 International Conference on Information Technology: Research and Education. IEEE, 2006. http://dx.doi.org/10.1109/itre.2006.381547.
Full textKondruweit, M., N. Ebel, S. Kniesburges, M. Döllinger, and M. Weyand. "Direct Ex Vivo Measurement of the Real Geometric Orifice Area to Assess the Hemodynamic Performance of Bioprosthetic Heart Valves." In 48th Annual Meeting German Society for Thoracic, Cardiac, and Vascular Surgery. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1678991.
Full textWiener, Thomas, Robert Arnold, and Ernst Hofer. "On-line analysis of cardiac near field signals during electrophysiological experiments with heart preparations." In 2012 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2012. http://dx.doi.org/10.1109/i2mtc.2012.6229563.
Full textReports on the topic "Cardiac health measurements"
Treadwell, Jonathan R., James T. Reston, Benjamin Rouse, Joann Fontanarosa, Neha Patel, and Nikhil K. Mull. Automated-Entry Patient-Generated Health Data for Chronic Conditions: The Evidence on Health Outcomes. Agency for Healthcare Research and Quality (AHRQ), March 2021. http://dx.doi.org/10.23970/ahrqepctb38.
Full text