Academic literature on the topic 'Carleson embeddings'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carleson embeddings.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Carleson embeddings"

1

Heiming, Helmut J. "Carleson embeddings." Abstract and Applied Analysis 1, no. 2 (1996): 193–201. http://dx.doi.org/10.1155/s1085337596000097.

Full text
Abstract:
In this paper we discuss several operator ideal properties for so called Carleson embeddings of tent spaces into specificL q(μ)-spaces, whereμis a Carleson measure on the complex unit disc. Characterizing absolutelyq-summing, absolutely continuous andq-integral Carleson embeddings in terms of the underlying measure is our main topic. The presented results extend and integrate results especially known for composition operators on Hardy spaces as well as embedding theorems for function spaces of similar kind.
APA, Harvard, Vancouver, ISO, and other styles
2

Blandignères, Alain, Emmanuel Fricain, Frédéric Gaunard, Andreas Hartmann, and William Ross. "Reverse Carleson embeddings for model spaces." Journal of the London Mathematical Society 88, no. 2 (July 17, 2013): 437–64. http://dx.doi.org/10.1112/jlms/jdt018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cima, Joseph A., and Alec L. Matheson. "On Carleson Embeddings Of Star-invariant Supspaces." Quaestiones Mathematicae 26, no. 3 (September 2003): 279–88. http://dx.doi.org/10.2989/16073600309486059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gaillard, Loïc, and Pascal Lefèvre. "Lacunary Müntz spaces: isomorphisms and Carleson embeddings." Annales de l’institut Fourier 68, no. 5 (2018): 2215–51. http://dx.doi.org/10.5802/aif.3207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lefèvre, Pascal, and Luis Rodríguez-Piazza. "Absolutely summing Carleson embeddings on Hardy spaces." Advances in Mathematics 340 (December 2018): 528–87. http://dx.doi.org/10.1016/j.aim.2018.10.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xiao, Jie. "Carleson embeddings for Sobolev spaces via heat equation." Journal of Differential Equations 224, no. 2 (May 2006): 277–95. http://dx.doi.org/10.1016/j.jde.2005.07.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tang, Lin. "Choquet integrals, weighted Hausdorff content and maximal operators." gmj 18, no. 3 (July 14, 2011): 587–96. http://dx.doi.org/10.1515/gmj.2011.0036.

Full text
Abstract:
Abstract The boundedness of maximal operators on the weighted Choquet space and the Choquet–Morrey space is established. These results are used to study Carleson embeddings for weighted Sobolev spaces.
APA, Harvard, Vancouver, ISO, and other styles
8

Jacob, Birgit, Jonathan R. Partington, and Sandra Pott. "Applications of Laplace--Carleson Embeddings to Admissibility and Controllability." SIAM Journal on Control and Optimization 52, no. 2 (January 2014): 1299–313. http://dx.doi.org/10.1137/120894750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rydhe, Eskil. "Vectorial Hankel operators, Carleson embeddings, and notions of BMOA." Geometric and Functional Analysis 27, no. 2 (March 7, 2017): 427–51. http://dx.doi.org/10.1007/s00039-017-0400-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jovanović, T. "On Carleson-Type Embeddings for Bergman Spaces of Harmonic Functions." Analysis Mathematica 44, no. 4 (December 16, 2017): 493–99. http://dx.doi.org/10.1007/s10476-017-0602-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Carleson embeddings"

1

Gaillard, Loïc. "Espaces de Müntz, plongements de Carleson, et opérateurs de Cesàro." Thesis, Artois, 2017. http://www.theses.fr/2017ARTO0406/document.

Full text
Abstract:
Pour une suite ⋀ = (λn) satisfaisant la condition de Müntz Σn 1/λn < +∞ et pour p ∈ [1,+∞), on définit l'espace de Müntz Mp⋀ comme le sous-espace fermé de Lp([0, 1]) engendré par les monômes yn : t ↦ tλn. L'espace M∞⋀ est défini de la même façon comme un sous-espace de C([0, 1]). Lorsque la suite (λn + 1/p)n est lacunaire avec un grand indice, nous montrons que la famille (gn) des monômes normalisés dans Lp est (1 + ε)-isométrique à la base canonique de lp. Dans le cas p = +∞, les monômes (yn) forment une famille normalisée et (1 + ε)-isométrique à la base sommante de c. Ces résultats sont un raffinement asymptotique d'un théorème bien connu pour les suites lacunaires. D'autre part, pour p ∈ [1, +∞), nous étudions les mesures de Carleson des espaces de Müntz, c'est-à-dire les mesures boréliennes μ sur [0,1) telles que l'opérateur de plongement Jμ,p : Mp⋀ ⊂ Lp(μ) est borné. Lorsque ⋀ est lacunaire, nous prouvons que si les (gn) sont uniformément bornés dans Lp(μ), alors μ est une mesure de Carleson de Mq⋀ pour tout q > p. Certaines conditionsgéométriques sur μ au voisinage du point 1 sont suffsantes pour garantir la compacité de Jμ,p ou son appartenance à d'autres idéaux d'opérateurs plus fins. Plus précisément, nous estimons les nombres d'approximation de Jμ,p dans le cas lacunaire et nous obtenons même des équivalents pour certaines suites ⋀. Enfin, nous calculons la norme essentielle del'opérateur de moyenne de Cesàro Γp : Lp → Lp : elle est égale à sa norme, c'est-à-dire à p'. Ce résultat est aussi valide pour l'opérateur de Cesàro discret. Nous introduisons les sous-espaces de Müntz des espaces de Cesàro Cesp pour p ∈ [1, +∞]. Nous montrons que la norme essentielle de l'opérateur de multiplication par Ψ est égale à ∥Ψ∥∞ dans l'espace deCesàro, et à |Ψ(1)| dans les espaces de Müntz-Cesàro
For a sequence ⋀ = (λn) satisfying the Müntz condition Σn 1/λn < +∞ and for p ∈ [1,+∞), we define the Müntz space Mp⋀ as the closed subspace of Lp([0, 1]) spanned by the monomials yn : t ↦ tλn. The space M∞⋀ is defined in the same way as a subspace of C([0, 1]). When the sequence (λn + 1/p)n is lacunary with a large ratio, we prove that the sequence of normalized Müntz monomials (gn) in Lp is (1 + ε)-isometric to the canonical basis of lp. In the case p = +∞, the monomials (yn) form a sequence which is (1 + ε)-isometric to the summing basis of c. These results are asymptotic refinements of a well known theorem for the lacunary sequences. On the other hand, for p ∈ [1, +∞), we investigate the Carleson measures for Müntz spaces, which are defined as the Borel measures μ on [0; 1) such that the embedding operator Jμ,p : Mp⋀ ⊂ Lp(μ) is bounded. When ⋀ is lacunary, we prove that if the (gn) are uniformly bounded in Lp(μ), then for any q > p, the measure μ is a Carleson measure for Mq⋀. These questions are closely related to the behaviour of μ in the neighborhood of 1. Wealso find some geometric conditions about the behaviour of μ near the point 1 that ensure the compactness of Jμ,p, or its membership to some thiner operator ideals. More precisely, we estimate the approximation numbers of Jμ,p in the lacunary case and we even obtain some equivalents for particular lacunary sequences ⋀. At last, we show that the essentialnorm of the Cesàro-mean operator Γp : Lp → Lp coincides with its norm, which is p'. This result is also valid for the Cesàro sequence operator. We introduce some Müntz subspaces of the Cesàro function spaces Cesp, for p ∈ [1, +∞]. We show that the value of the essential norm of the multiplication operator TΨ is ∥Ψ∥∞ in the Cesàaro spaces. In the Müntz-Cesàrospaces, the essential norm of TΨ is equal to |Ψ(1)|
APA, Harvard, Vancouver, ISO, and other styles
2

Gezahagne, Azamed Yehuala. "Qualitative Models of Neural Activity and the Carleman Embedding Technique." Digital Commons @ East Tennessee State University, 2009. https://dc.etsu.edu/etd/1875.

Full text
Abstract:
The two variable Fitzhugh Nagumo model behaves qualitatively like the four variable Hodgkin-Huxley space clamped system and is more mathematically tractable than the Hodgkin Huxley model, thus allowing the action potential and other properties of the Hodgkin Huxley system to be more readily be visualized. In this thesis, it is shown that the Carleman Embedding Technique can be applied to both the Fitzhugh Nagumo model and to Van der Pol's model of nonlinear oscillation, which are both finite nonlinear systems of differential equations. The Carleman technique can thus be used to obtain approximate solutions of the Fitzhugh Nagumo model and to study neural activity such as excitability.
APA, Harvard, Vancouver, ISO, and other styles
3

Dzacka, Charles Nunya. "A Variation of the Carleman Embedding Method for Second Order Systems." Digital Commons @ East Tennessee State University, 2009. https://dc.etsu.edu/etd/1877.

Full text
Abstract:
The Carleman Embedding is a method that allows us to embed a finite dimensional system of nonlinear differential equations into a system of infinite dimensional linear differential equations. This technique works well when dealing with first-order nonlinear differential equations. However, for higher order nonlinear ordinary differential equations, it is difficult to use the Carleman Embedding method. This project will examine the Carleman Embedding and a variation of the method which is very convenient in applying to second order systems of nonlinear equations.
APA, Harvard, Vancouver, ISO, and other styles
4

Alu, Kelechukwu Iroajanma. "Solving the Differential Equation for the Probit Function Using a Variant of the Carleman Embedding Technique." Digital Commons @ East Tennessee State University, 2011. https://dc.etsu.edu/etd/1306.

Full text
Abstract:
The probit function is the inverse of the cumulative distribution function associated with the standard normal distribution. It is of great utility in statistical modelling. The Carleman embedding technique has been shown to be effective in solving first order and, less efficiently, second order nonlinear differential equations. In this thesis, we show that solutions to the second order nonlinear differential equation for the probit function can be approximated efficiently using a variant of the Carleman embedding technique.
APA, Harvard, Vancouver, ISO, and other styles
5

La, Voie Scott Lewis. "Parameter estimation for a modified cable model using a Green's function and eigenvalue perturbation." [Johnson City, Tenn. : East Tennessee State University], 2003. http://etd-submit.etsu.edu/etd/theses/available/etd-0331103-140715/unrestricted/LaVoieS04162003a.pdf.

Full text
Abstract:
Thesis (M.S.)--East Tennessee State University, 2003.
Title from electronic submission form. ETSU ETD database URN: etd-0331103-140715. Includes bibliographical references. Also available via Internet at the UMI web site.
APA, Harvard, Vancouver, ISO, and other styles
6

"Qualitative Models of Neural Activity and the Carleman Embedding Technique." East Tennessee State University, 2009. http://etd-submit.etsu.edu/etd/theses/available/etd-0710109-101927/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"A Variation of the Carleman Embedding Method for Second Order Systems." East Tennessee State University, 2009. http://etd-submit.etsu.edu/etd/theses/available/etd-1111109-141211/.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Carleson embeddings"

1

Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls (Memoirs of the American Mathematical Society,). American Mathematical Society, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Carleson embeddings"

1

"Carleman Embedding Technique." In Nonlinear Dynamical Systems and Carleman Linearization, 73–102. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814360364_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography