Academic literature on the topic 'Carman-Kozeny'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Carman-Kozeny.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Carman-Kozeny"
Carrier, W. David. "Goodbye, Hazen; Hello, Kozeny-Carman." Journal of Geotechnical and Geoenvironmental Engineering 129, no. 11 (2003): 1054–56. http://dx.doi.org/10.1061/(asce)1090-0241(2003)129:11(1054).
Full textXIAO, BOQI, XIAN ZHANG, GUOPING JIANG, et al. "KOZENY–CARMAN CONSTANT FOR GAS FLOW THROUGH FIBROUS POROUS MEDIA BY FRACTAL-MONTE CARLO SIMULATIONS." Fractals 27, no. 04 (2019): 1950062. http://dx.doi.org/10.1142/s0218348x19500622.
Full textJohnson, Andrew K., Alexander L. Yarin, and Farzad Mashayek. "Packing Density and the Kozeny-Carman Equation." Neurosurgery 71, no. 5 (2012): E1064—E1065. http://dx.doi.org/10.1227/neu.0b013e31826c57d6.
Full textMavko, Gary, and Amos Nur. "The effect of a percolation threshold in the Kozeny‐Carman relation." GEOPHYSICS 62, no. 5 (1997): 1480–82. http://dx.doi.org/10.1190/1.1444251.
Full textTurtoi, Petrica, Traian Cicone, and Aurelian Fatu. "Experimental and theoretical analysis of (water) permeability variation of nonwoven textiles subjected to compression." Mechanics & Industry 18, no. 3 (2017): 307. http://dx.doi.org/10.1051/meca/2016048.
Full textPorter, Lee B., Robert W. Ritzi, Lawrence J. Mastera, David F. Dominic, and Behzad Ghanbarian-Alavijeh. "The Kozeny-Carman Equation with a Percolation Threshold." Ground Water 51, no. 1 (2012): 92–99. http://dx.doi.org/10.1111/j.1745-6584.2012.00930.x.
Full textPaydar, Zahra, and Anthony J. Ringrose-Voase. "Prediction of hydraulic conductivity for some Australian soils." Soil Research 41, no. 6 (2003): 1077. http://dx.doi.org/10.1071/sr02120.
Full textRao, P. S., and Santosh Agarwal. "A Comparison of Porous Structures on the Performance of a Slider Bearing with Surface Roughness in Couple Stress Fluid Film Lubrication." Applied Mechanics and Materials 813-814 (November 2015): 921–37. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.921.
Full textDvorkin, Jack, Haim Gvirtzman, and Amos Nur. "Kozeny-Carman relation for a medium with tapered cracks." Geophysical Research Letters 18, no. 5 (1991): 877–80. http://dx.doi.org/10.1029/91gl01069.
Full textSchulz, Raphael, Nadja Ray, Simon Zech, Andreas Rupp, and Peter Knabner. "Beyond Kozeny–Carman: Predicting the Permeability in Porous Media." Transport in Porous Media 130, no. 2 (2019): 487–512. http://dx.doi.org/10.1007/s11242-019-01321-y.
Full textDissertations / Theses on the topic "Carman-Kozeny"
Porter, Lee Brenson II. "The Kozeny-Carman Equation Considered With a Percolation Threshold." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1309878625.
Full textBrêttas, Juan Diego Cardoso. "Geração de meios porosos fractais com uma nova equação do tipo Kozeny-Carman." Universidade do Estado do Rio de Janeiro, 2010. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1289.
Full textA relação entre porosidade e permeabilidade desperta o interesse de pesquisadores e engenheiros por causa de suas diversas aplicações. Tais como na utilização de filtros, materiais pouco permeáveis, reservatórios naturais, etc. Ao longo do século XX, diversos trabalhos propondo tal relação foram apresentados na literatura e grande parte desses trabalhos desenvolvem modelos baseados na equação clássica de Kozeny-Carman. Nesta dissertação, propomos um modelo mais robusto que a formulação clássica de Kozeny-Carman, ou seja, que não apresenta as limitações dessa equação clássica. Além disso, um estudo baseado na Teoria dos Meios Fractais indica que o modelo estudado, nesta dissertação, generaliza diversas equações que fornecem a relação entre porosidade e permeabilidade. Por fim, será mostrado que o modelo proposto é capaz de descrever a relação entre porosidade e permeabilidade de diversos materiais porosos de natureza fractal.
The relationship between porosity and permeability attracts the attention of researchers and engineers because of their various applications. Such as in utilization of filters, waterproof materials, natural reservoirs, for example.Throughout the twentieth century, several works proposed in the literature they study the relation porosity-permeability, and much of this works they develop models based on the classical equation of Kozeny-Carman. In this dissertation, we propose a model more robust than the classical formulation of Kozeny-Carman, ie, that does not have the limitations of the equation classical. Furthermore, a study based on the Theory of the Media Fractals indicates that the model studied in this dissertation provide the relationship between porosity and permeability of several models presented in the literature. Finally, it will shown that the model proposed is able to describe the relationship between porosity and permeability of porous materials of various fractal nature.
Brêttas, Juan Diego Cardoso. "Modelagem e simulação do escoamento imiscível em meios porosos fractais descritos pela equação de Kozeny-Carman Generalizada." Universidade do Estado do Rio de Janeiro, 2013. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=5307.
Full textThis work deals with the two-phase flow in heterogeneous porous media of fractal nature, where the fluids are considered immiscible. The porous media are modeled by the Kozeny-Carman Generalized (KCG) equation, a relationship between permeability and porosity obtained from a new power law. This equation proposed by us is able to generalize various models of the literature, and thus is of more general use. The numerical simulator developed here employs finite difference methods. Following the classic strategy called IMPES, the evolution in the time is based on an operators splitting technique. Thus, the pressure field is computed implicitly, whereas the saturation equation of wetting phase is solved explicitly in each time step. The optimization method called DFSANE is used to solve pressure equation. We emphasize that the DFSANE method has not been used before in the reservoir simulation context. Therefore, its use here is unprecedented. To minimize numerical diffusions, the saturation equation is discretized by an upwind-type scheme, commonly employed in numerical simulators for petroleum recovery, which is explicitly solved by the fourth order Runge-Kutta method. The simulation results are quite satisfatory. In fact, these results show that the KCG model is able to generate heterogeneous porous media, whose features enable to capture physical phenomena that are generally inaccessible to many simulators based on classical finite differences, as the so-called fingering phenomenon, which occurs when the mobility ratio (between the fluid phases) assumes adverse values. In all simulations presented here, we consider that the immiscible flow is two-dimensional. Thus, the porous medium is characterized by permeability and porosity fields defined in two-dimensional Euclidean regions. However, the theory discussed in this work does not impose restrictions for the their application to three-dimensional problems.
O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.
Mastera, Lawrence. "Estimating Permeability from the Grain-Size Distributions of Natural Sediment." Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1278618761.
Full textEsselburn, Jason Dennis. "Porosity and Permeability in Ternary Sediment Mixtures." Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1245949430.
Full textVerdibello, Steven M. "Relationship Between Log Permeability and Fraction of Finer Grains in Bimodal Sediment Mixtures." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1341497125.
Full textRainey, Thomas James. "A study into the permeability and compressibility of Australian bagasse pulp." Queensland University of Technology, 2009. http://eprints.qut.edu.au/30394/.
Full textMartinelli, Laure. "Influence de l'aération sur le colmatage des membranes immergées." Toulouse, INSA, 2006. http://eprint.insa-toulouse.fr/archive/00000323/.
Full textThis thesis is about the influence of aeration on submerged hollow fibre membrane fouling in outside/in filtration. In a first part, yeast filtration (0. 5 g. L-1) is studied in a 100 l tank with a membrane area of 0. 32m2. Two types of filtration experiments were performed: critical condition determination with flux step method and filtration experiment under fouling condition. These experiments were performed without and with aeration with small and spherical cap bubbles. Fouling sensitivity to position and small bubble injection flow rate as well as to frequency and volume of spherical cap was analysed. Filtration experiments involve characterization of filtration efficiency with tight and loose fibres. In a second, part local experimental and numerical studies were performed thanks to the image analysis, P. I. V. Measurements and FLUENT numerical simulations (two-fluid model for small bubbles and V. O. F. Model for spherical cap bubbles). Filtration and hydrodynamics analysis results lead to the determination of mechanisms explaining aeration effect on submerged hollow fibre fouling. This study contributes to better understand the revelant global hydrodynamic parameters in order to control fouling
Maciel, Hugo Emerich. "Avaliação de modelos de permeabilidade em meios porosos não consolidados." Universidade do Estado do Rio de Janeiro, 2015. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=9498.
Full textAs simulações computacionais tem sido amplamente empregadas no estudo do escoamento darciano e não-darciano em meios porosos consolidados e não-consolidados. Neste trabalho, através de uma nova formulação para a equação de Forchheimer, foram identificadas duas novas propriedades denominados fator de comportamento do fluido, que atua paralelamente a permeabilidade, e permeabilidade equivalente global, resultado da relação anterior. Este comportamento foi estudado e validado através da implementação de um aparato experimental e um código computacional baseado no modelo de regressão-linear que, além disso, demonstrou que o escoamento, ainda que em regime não darciano, comporta-se linearmente como a equação de Darcy, ainda que o coeficiente angular desta diminuiu de acordo com a faixa do número de Reynolds atingida, sendo esta dependente do tipo de leito empregado. Ainda neste trabalho, foi implementado o método de otimização R2W para estimar os parâmetros da equação de Kozeny-Carman a partir de dados experimentais obtidos por Dias et al, a fim de simular o escoamento darciano em meios porosos. Por fim, foi alcançada excelente concordância entre os dados simulados pelo método R2W / equação de Kozeny-Carman e os dados reais.
Computer simulations have been widely used in the study of Darcys flow and non-Darcy porous media in consolidated and non-consolidated. In this work, through a new formulation for the Forchheimer equation, we have been identified two new called Fluid Factor Behavior properties, which acts parallel to permeability, and overall equivalent permeability result of the previous relationship. This behavior has been studied and validated through implementation of an experimental apparatus and a computer code based on the linear regression model, moreover, it demonstrated that flow, even in non darciano system behaves linearly as the Darcy, however, the slope of this decreased according to the range of Reynolds numbers reached, this being dependent on the type of bed used. Although this work was implemented R2W optimization method to estimate the parameters of Kozeny-Carman equation from experimental data provided in the literature in order to simulate the darciano flow in porous media. Finally, it achieved excellent agreement between the data simulated by R2W method / Kozeny-Carman equation and actual data.
Rakotondrandisa, Aina. "Modélisation et simulation numérique de matériaux à changement de phase." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMR051/document.
Full textIn this thesis we develop a numerical simulation tool for computing two and three-dimensional liquid-solid phase-change systems involving natural convection. It consists of solving the incompressible Navier-Stokes equations with Boussinesq approximation for thermal effects combined with an enthalpy-porosity method for the phase-change modeling, using a finite elements method with mesh adaptivity. A single-domain approach is applied by solving the same set of equations over the whole domain. A Carman-Kozeny-type penalty term is added to the momentum equation to bring to zero the velocity in the solid phase through an artificial mushy region. Model equations are discretized using Galerkin triangular finite elements. Piecewise quadratic (P2) finite-elements are used for the velocity and piecewise linear (P1) for the pressure. The coupled system of equations is integrated in time using a second-order Gear scheme. Non-linearities are treated implicitly and the resulting discrete equations are solved using a Newton algorithm. The numerical method is implemented with the finite elements software FreeFem++ (www.freefem.org), available for all existing operating systems. The programs are written and distributed as an easy-to-use open-source toolbox, allowing the user to code new numerical algorithms for similar problems with phase-change. We present several validations, by simulating classical benchmark cases of increasing difficulty: natural convection of air, melting of a phase-change material, a melting-solidification cycle, a basal melting of a phase-change material, and finally, a water freezing case
Book chapters on the topic "Carman-Kozeny"
Kruczek, Boguslaw. "Carman–Kozeny Equation." In Encyclopedia of Membranes. Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1995.
Full textKruczek, Boguslaw. "Carman–Kozeny Equation." In Encyclopedia of Membranes. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1995-1.
Full textConference papers on the topic "Carman-Kozeny"
Haro, Carlos Fabian. "Permeability Modeling. Setting Archie and Carman-Kozeny Right." In SPE Europec/EAGE Annual Conference and Exhibition. Society of Petroleum Engineers, 2006. http://dx.doi.org/10.2118/100200-ms.
Full textHaro, Carlos Fabian. "Permeability Modeling. Setting Archie and Carman-Kozeny Right." In International Oil Conference and Exhibition in Mexico. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/100201-ms.
Full textSrisutthiyakorn*, Nattavadee, and Gary Mavko. "An Improved Kozeny-Carman for Irregular Pore Geometries." In SEG Technical Program Expanded Abstracts 2015. Society of Exploration Geophysicists, 2015. http://dx.doi.org/10.1190/segam2015-5914145.1.
Full textSrisutthiyakorn, Nattavadee, and Gary Mavko. "The revised Kozeny-Carman equation: A practical way to improve permeability prediction in the Kozeny-Carman equation through pore-size distribution." In SEG Technical Program Expanded Abstracts 2017. Society of Exploration Geophysicists, 2017. http://dx.doi.org/10.1190/segam2017-17750852.1.
Full textSoares, Átila Saraiva Quintela, and Joelson Conceição. "Inversão da equação de Kozeny-Carman para meios porosos fractais." In Simpósio Brasileiro de Geofísica. Brazilian Geophysical Society, 2018. http://dx.doi.org/10.22564/8simbgf2018.103.
Full textSrivardhan, V., B. B. Singh, and D. Mondal. "Permeability Estimation Using a Fractal and Modified Kozeny-Carman Model." In 79th EAGE Conference and Exhibition 2017. EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201701392.
Full textAnbar, Sultan, Mayank Tyagi, and Karsten Thompson. "Investigation of Compaction and Sand Migration Effect on Permeability and Non-Darcy Coefficient With Pore-Scale Simulations." In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-42081.
Full textKobayashi, Ichizo, Hitoshi Owada, and Tomoko Ishii. "Hydraulic/Mechanical Modeling of Smectitic Materials for HMC Analytical Evaluation of the Long Term Performance of TRU Geological Repository." In ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2011. http://dx.doi.org/10.1115/icem2011-59090.
Full textAlpak, Faruk O., Larry W. Lake, and Sonia M. Embid. "Validation of a Modified Carman-Kozeny Equation To Model Two-Phase Relative Permeabilities." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1999. http://dx.doi.org/10.2118/56479-ms.
Full textSchlueter, EM, and PA Witherspoon. "Note on the validity of the Kozeny‐Carman formulas for consolidated porous media." In SEG Technical Program Expanded Abstracts 1995. Society of Exploration Geophysicists, 1995. http://dx.doi.org/10.1190/1.1887389.
Full textReports on the topic "Carman-Kozeny"
Schlueter, E. M., and P. A. Witherspoon. Note on the validity of the Kozeny-Carman formulas for consolidated porous media. Office of Scientific and Technical Information (OSTI), 1994. http://dx.doi.org/10.2172/10113412.
Full text