Dissertations / Theses on the topic 'Carnitin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Carnitin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Glatz, Martin. "Orale L-Carnitin-Supplementierung bei Hochleistungskühen." Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-183141.
Full textFelgner, Juliane. "Experimentelle Untersuchungen zur Bewertung der Bioverfügbarkeit verschiedener L-Carnitin-Verbindungen sowie zum Einfluss einer L-Carnitin-Zulage auf Parameter der Milchdrüse laktierender Sauen." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974140384.
Full textLükewille, Ulrike. "Funktionelle und pharmakologische Charakterisierung des humanen Natrium-/Carnitin-Cotransporters hOCTN2." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=96590881X.
Full textKipp, Isabel Katrin. "Perioperative L-Carnitin-Supplementierung bei kardiochirurgischen Eingriffen angeborener Herzfehler im Säuglingsalter." [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=968395988.
Full textKliemann, Mandy [Verfasser]. "Der primäre Carnitin-Mangel im erweiterten Neugeborenen-Screening / Mandy Kliemann, geb. Horn." Gießen : Universitätsbibliothek, 2012. http://d-nb.info/1064838863/34.
Full textKraft, Kathleen [Verfasser]. "L-Carnitin-Supplementierung in der Behandlung des fortgeschrittenen Pankreaskarzinoms (CARPAN-Studie) / Kathleen Kraft." Greifswald : Universitätsbibliothek Greifswald, 2011. http://d-nb.info/1016141130/34.
Full textRamanau, Aleh. "Experimentelle Untersuchungen zur Wirkung von L-Carnitin auf die Reproduktions- und Aufzuchtleistung von Sauen." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=975653857.
Full textKeller, Janine [Verfasser]. "Molekulare Wirkmechanismen von Carnitin und Regulation der Carnitinhomöostase beim Modell- und Nutztier / Janine Keller." Gießen : Universitätsbibliothek, 2012. http://d-nb.info/106395536X/34.
Full textGlatz, Martin [Verfasser], Manfred [Akademischer Betreuer] Fürll, and Annette [Gutachter] Zeyner. "Orale L-Carnitin-Supplementierung bei Hochleistungskühen / Martin Glatz ; Gutachter: Annette Zeyner ; Betreuer: Manfred Fürll." Leipzig : Universitätsbibliothek Leipzig, 2015. http://d-nb.info/1239659350/34.
Full textMüssig, Karsten Thomas. "Einfluss des Streptozotocin-Diabetes und des Carnitin Palmitoyltransferase I-Hemmers Etomoxir auf die myokardiale Genexpression." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960609113.
Full textBonitz, Karina [Verfasser]. "Bedeutung des Carnitin-Transporters OCTN2 für die Entwicklung einer Herzinsuffizienz und eines akuten Myokardinfarktes. / Karina Bonitz." Greifswald : Universitätsbibliothek Greifswald, 2016. http://d-nb.info/1082001880/34.
Full textWeyhersmüller, Annika Sarah [Verfasser], and Stephan [Akademischer Betreuer] Zierz. "Carnitin-Palmitoyltransferase-Aktivität im Muskel von Patienten mit Maligner Hyperthermie / Annika Sarah Weyhersmüller. Betreuer: S. Zierz." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2010. http://d-nb.info/1024976564/34.
Full textBahaaAldeen, Al-Trad. "Effects of Increasing Intravenous Glucose Infusions on Lactation Performance, Metabolic Profiles, and Metabolic Gene Expression in Dairy Cows." Doctoral thesis, Universitätsbibliothek Leipzig, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-38233.
Full textFischer, Maren [Verfasser], K. [Akademischer Betreuer] Eder, G. [Akademischer Betreuer] Stangl, and F. X. [Akademischer Betreuer] Roth. "Experimentelle Untersuchungen zum Carnitin-Metabolismus beim Schwein / Maren Fischer. Betreuer: K. Eder ; G. Stangl ; F. X. Roth." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2009. http://d-nb.info/1024895637/34.
Full textGrigat, Silke. "Analyse der Substratspezifität des Carnitin-Transporters SLC22A5 (OCTN2) von Mensch, Ratte und Huhn mittels LC-MS/MS /." Köln, 2008. http://opac.nebis.ch/cgi-bin/showAbstract.pl?sys=000253974.
Full textSchmengler, Uta. "Effekte der L-Carnitinsupplementierung auf das metabolische Profil adipöser und insulinresistenter Ponys im Verlaufe einer mehrwöchigen Körpergewichtsreduktion." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-115560.
Full textSummary: The effects of L-carnitine supplementation on body weight losses and metabolic profile in obese and insulin resistant ponies during a several weeks lasting bodyweight reduction pro- gramme Author: Uta Schmengler Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medi- cine, University of Leipzig Submitted in September 2012 76 p., 16 fig., 23 tab., 169 ref., appendix Introduction: Insulin resistance, local or general adiposity and the predisposition towards acute or chronical laminitis are components of the equine metabolic syndrome. Contributing factors for this syndrome are the intake and the quality of a high caloric feed by a lack of physical exersice. Howewer, the genetically predisposition of so called ”easy keepers” seems to play a role in pathogenesis. The objective of this study was to investigate the effects of L- carnitine supplementation in combination with a body weight reduction programme (BWRP) on body weight (BW) losses, insulin sensitivity and selected metabolic parameters in obese and insulin resistant ponies. Material und methods: 16 obese ponies (mean BCS = 8.0±2.0, mean CNS = 4.0±1.0) were assigned to a randomized double blind, placebo-controlled study. The ponies werde di- vided into two equal groups (N=8). During a 14 weeks lasting BWRP the ponies were fed 1.0-1.2 kg hay/100 kg BW daily. Additionally, 8 ponies were supplemented with L-carnitine (1.3g/100 kg BW) and 8 ponies were supplemented with a placebo (1.3g/100 kg BW). The supplements were offered in a mixture of 50 g grass meal and 50 g of a commercial mineral mixture, twice a day. During BWRP ponies were exercised a low-intensity protocol 6 days a week (daily 25 min walk and 15 min trot across the countryside). A frequently sampled intravenous glucose tolerance test (FSIGTT) was undertaken in order to assess insulin sen- sitivity at the beginning and the end of the study. Routine blood samples were collected for analysis of plasma glucose, serum insulin, free fatty acids (FFA), triglycerides (TG), urea and beta-hydroxybutyrate (BHB). Ponies were weighed weekly after 12 h of feed restriction by using an electronic scale for large animals. BCS and CNS were recorded weekly by the same 2 observers throughout the study. The statistical analysis was performed by parametric and non-parametric tests (ANOVA and Wilcoxon ranked test). The minimal modell calcu- lation of insulin sensitivity (SI) from FSIGTT was calculated by the computer programme (MINMOD). Results: Ponies lost 1-3% BW per week over the BWRP (time P<0.01, L-carnitine supple- mentation P=0.79), meaning a total body weight loss of 14.3%. BCS decreased in both groups with a difference of three points and CNS was reduced with a difference of 1.4-1.9 points. BW losses were accompanied by a significant improvement in insulin sensitivity (Time: P<0.01, L-carnitine supplementation: P=0.39). The calculation for SI-values by the minimalmodell showed a significant increase in L-carnitine group (GC ) and placebo group (GP ) in the end of the study. (GC : 0.76±0.88 L/min/μU*10−4 to 5.45±0.81 L/min/μU*10−4 , GP : 1.61±1.31 L/min/μU*10−4 to 6.08±2.98 L/min/μU*10−4 ). Significant time related decreases were observed for plasma glucose (GC : 4.5±0.32 mmol/L to 4.21±0.61 mmol/L, GP : 4.34±0.62 mmol/L to 3.86±0.34 mmol/L) and serum insulin (GC : 23.71±32.77 μU/mL to 3.67±3.94 μU/mL, GP : 13.55±12.67 μU/mL to 1.01±1.09 μU/mL). A significant increase was observed for serum urea (GC : 3.47±0.73 mmol/L to 4.31±1.06 mmol/L, GP : 3.71±0.79 mmol/L to 4.9±1.23 mmol/L), FFA (GC : 157±95 μmol/L to 731±138 μmol/L und GP : 113±63 μmol/L to 686±142 μmol/L) and TG (GC : 0.53±0.28 mmol/L to 0.94±0.61 mmol/L, GP : 0.45±0.23 mmol/L to 0.64±0.25 mmol/L) during BWRP. There was no further improvement in metabolic responses by L-carnitine supplementation. Conclusions: Energy intake of 7 MJ DE/100 kg BW leads to bodyweight losses of 1- 3%, herby improving insulin sensitivity and glucose metabolism. L-carnitine supplementation does not further improve glucose or fat metabolism, suggesting that endogenous L-carnitine synthesis was sufficient to facilitate energy metabolism in obese and insulin resistant ponies
Fink, Matthias Alexander [Verfasser], Henry W. S. [Akademischer Betreuer] Schroeder, Sandra [Akademischer Betreuer] Bien-Möller, Henry W. S. [Gutachter] Schroeder, and Veit [Gutachter] Rohde. "Untersuchungen zur prognostischen Relevanz des L-Carnitin-Transporters OCTN2 im Glioblastoma multiforme mit in vitro-Charakterisierung seines zytoprotektiv wirksamen Substrats L-Carnitin in humanen Glioblastomzellen / Matthias Alexander Fink ; Gutachter: Henry W. S. Schroeder, Veit Rohde ; Henry W. S. Schroeder, Sandra Bien-Möller." Greifswald : Universität Greifswald, 2019. http://d-nb.info/119416272X/34.
Full textFink, Matthias Alexander [Verfasser], Henry [Akademischer Betreuer] Schroeder, Sandra [Akademischer Betreuer] Bien-Möller, Henry W. S. [Gutachter] Schroeder, and Veit [Gutachter] Rohde. "Untersuchungen zur prognostischen Relevanz des L-Carnitin-Transporters OCTN2 im Glioblastoma multiforme mit in vitro-Charakterisierung seines zytoprotektiv wirksamen Substrats L-Carnitin in humanen Glioblastomzellen / Matthias Alexander Fink ; Gutachter: Henry W. S. Schroeder, Veit Rohde ; Henry W. S. Schroeder, Sandra Bien-Möller." Greifswald : Universität Greifswald, 2019. http://nbn-resolving.de/urn:nbn:de:gbv:9-opus-29273.
Full textKnape, Manuela Verfasser], Stephan [Akademischer Betreuer] [Zierz, Gerhard Akademischer Betreuer] Hübner, and Robert [Akademischer Betreuer] [Seckler. "In-vitro- und In-vivo-Charakterisierung der humanen Carnitin-Palmitoyltransferase 2 / Manuela Knape. Betreuer: Stephan Zierz ; Gerhard Hübner ; Robert Seckler." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2012. http://d-nb.info/1025352580/34.
Full textLehmann, Diana [Verfasser], S. [Akademischer Betreuer] Zierz, P. [Akademischer Betreuer] Berlit, and H. [Akademischer Betreuer] Reichmann. "Biochemische Charakterisierung der Carnitin Palmitoyltransferase II bei muskulärem CPT II- Mangel / Diana Lehmann. Betreuer: S. Zierz ; P. Berlit ; H. Reichmann." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2014. http://d-nb.info/1053959427/34.
Full textRabito, Estela Iraci. "Carnitinemia em pacientes oncológicos." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/17/17138/tde-10092013-164405/.
Full textThe malnutrition is one most common comorbidity among hospitalized patients. Understanding cancer consequences in energetic metabolim changes is necessary in order to avoid malnutrition or to treat it. Carnitine has a important role in lipid metabolism. The aim of this study was to evaluate the levels of serum carnitine in patients with stomach and esophagus cancer and correlated with dietary intake, body composition, resting energy expenditure, carnitine and amino acid serum levels and urinary excretion of carnitine. Twenty-four cancer patients were assessed. Cancer patients were compared with obese (n=16), healthful (n=12) and short bowel disease (n=6). The mean values of serum carnitine and urinary carnitine among all groups were 60-80 µM and 74-124 µM respectively. Serum carnitine levels between cancer patients and other groups were significantly different. 80% of cancer patients had low serum levels, which was associated with urinary below 5 µmol/Kg/day, decreased protein and low adipose tissue. However, the methionine and lysine levels, as well as the resting energy expenditure had no difference when compared with the healthy volunteers. Carnitine deficiency in cancer patients can affect energetic metabolism and contribute to the progression of cachexia.
Junior, Antonio Herbert Lancha. "Resistência ao esforço físico: efeito da suplementação nutricional de carnitina, aspartato e asparagina." Universidade de São Paulo, 1991. http://www.teses.usp.br/teses/disponiveis/9/9132/tde-05112008-132359/.
Full textJunior, Antonio Herbert Lancha. "Papel da geração de oxaloacetato no exercício físico moderado em ratos: consequências da suplementação de aspartato, asparagina e carnitina." Universidade de São Paulo, 1993. http://www.teses.usp.br/teses/disponiveis/9/9132/tde-07112008-100748/.
Full textThe importance of oxaloacetate formation was investigated by measuring pyruvate carboxylase activity in muscles and by given its precursors (aspartate, asparagine) in the diet of rats. The activity of pyruvate carboxylase markedly raised during physical effort and so might provide oxaloacetate for Krebs cycle functioning. The supplementation of aspartate and aspagine for a prolonged period of time (5 weeks) promotes increment in the resistance to exercise in rats trained to swimming during 1 hour daily for 5 weeks. This effect is accompanied by an increase in the size and number of mitochondria and also changes in glucose metabolism; elevation in glycogen synthesis and content and reduction in the rate of glycolysis. These results suggest that the production of oxaloacetate plays a role to maintain the moderate exercise during a prolonged period of time. Nevertheless, the aspartate and asparagine supplemented in the diet, despite improving the perfomance to moderate and prolonged exercise, provokes muscle ultraestructure lesions of mitochondria, \"Z\" line and miofibrils.
Motlagh, Leila Verfasser], Ralph [Akademischer Betreuer] Golbik, Stephan [Akademischer Betreuer] [Zierz, and Gisela [Akademischer Betreuer] Stoltenburg-Didinger. "Thermostabilität der Variante S113L der humanen Carnitin-Palmitoyltransferase II und ihre Regulierung durch Malonyl-CoA / Leila Motlagh. Betreuer: Ralph Golbik ; Stephan Zierz ; Gisela Stoltenburg-Didinger." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2014. http://d-nb.info/1053959508/34.
Full textFriedrich, Anne. "Studies of the expression and characterization of various transport systems at RBE4 cells, an in vitro model of the blood-brain barrier." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2003. http://nbn-resolving.de/urn:nbn:de:swb:14-1060258657421-84155.
Full textMenges, Katja [Verfasser], and Frank [Akademischer Betreuer] Sommer. "Der Einfluss von Nahrungsergänzungsmitteln auf die Fertilität und das benigne Prostatasyndrom des Mannes : am Beispiel von Carnitin, Coenzym Q10 und Lycopen / Katja Menges. Betreuer: Frank Sommer." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2015. http://d-nb.info/1078358338/34.
Full textFriedrich, Anne. "Studies of the expression and characterization of various transport systems at RBE4 cells, an in vitro model of the blood-brain barrier." Doctoral thesis, Technische Universität Dresden, 2002. https://tud.qucosa.de/id/qucosa%3A23820.
Full textMalchau, Inke [Verfasser]. "Vergleichende Untersuchungen zu den Auswirkungen einer Verabreichung von Propylenglykol, Glycerin und L-Carnitin auf den Stoffwechsel und verschiedene Leistungsparameter von Milchkühen im Rahmen der Ketoseprophylaxe / Inke Malchau." Berlin : Freie Universität Berlin, 2011. http://d-nb.info/1025511115/34.
Full textThäle, Annemarie [Verfasser], Stephan [Gutachter] Zierz, Faramarz [Gutachter] Dehghani, and Matthias [Gutachter] Vorgerd. "Der Einfluss von Cardiolipin auf die Aktivität des Wildtyps und der Mutante S113L der Carnitin-Palmitoyl-Transferase II / Annemarie Thäle ; Gutachter: Stephan Zierz, Faramarz Dehghani, Matthias Vorgerd." Halle (Saale) : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2019. http://d-nb.info/1210727943/34.
Full textThäle, Annemarie [Verfasser], Stephan Gutachter] Zierz, Faramarz [Gutachter] Dehghani, and Matthias [Gutachter] [Vorgerd. "Der Einfluss von Cardiolipin auf die Aktivität des Wildtyps und der Mutante S113L der Carnitin-Palmitoyl-Transferase II / Annemarie Thäle ; Gutachter: Stephan Zierz, Faramarz Dehghani, Matthias Vorgerd." Halle (Saale) : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2019. http://d-nb.info/1210727943/34.
Full textCosta, Rute Alves Pereira e. 1984. "Proteção por L-carnitina ou piracetam contra a morte celular causada por sinvastatina em celulas tumorais e não tumorais." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/308208.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas
Made available in DSpace on 2018-08-15T13:38:04Z (GMT). No. of bitstreams: 1 Costa_RuteAlvesPereirae_M.pdf: 1931770 bytes, checksum: c11c3126a7042737485a72a01e8020a7 (MD5) Previous issue date: 2010
Resumo: Estatinas são fármacos amplamente utilizadas no tratamento das hipercolesterolemias. Elas são inibidores competitivos da 3-hidroxi 3-metilglutaril coenzima A (HMG-CoA) redutase impedindo, dessa forma, a síntese do colesterol. L-carnitina é sintetizada a partir dos aminoácidos essenciais lisina e metionina no fígado e no rim. Desempenha função importante na célula onde está envolvida na oxidação dos ácidos graxos agindo como um cofator no transporte de grupos acil através da membrana mitocondrial interna. Piracetam é uma droga nootropica cuja função é melhorar o desempenho cognitivo, e as funções envolvidas nos processos de aprendizagem, memória, atenção e consciência. O presente trabalho teve como objetivo avaliar a ação protetora da Lcarnitina ou piracetam contra a morte por necrose de células PC-3 induzida por sinvastatina 60 µM ou tert-butyl-hidroperóxido (t-BOOH) 500 µM. Tanto a sinvastatina quanto o t-BOOH causam transição de permeabilidade mitocondrial (TPM), seguida de morte celular por necrose. L-carnitina e piracetam protegeram contra a morte celular induzida por sinvastatina ou t-BOOH por meio de um mecanismo dose-dependente (1- 12 µM). Na avaliação da disfunção mitocondrial causada por sinvastatina ou t-BOOH, tanto a L-carnitina quanto o piracetam protegeram contra a perda de potencial de membrana mitocondrial de forma semelhante à ciclosporina A. As quedas nas velocidades de respiração de estado III e estado IV, (fosforilação e repouso), também foram prevenidas por L-carnitina, piracetam e ciclosporina A. Quando linhagens de células não tumorais (GN16-P6 e HaCaT) foram analisadas, observou-se que tanto Lcarnitina quanto o piracetam também protegeram contra a morte celular induzida por sinvastatina. Podemos concluir que nas células PC-3, estes compostos protegem contra necrose celular através da inibição da TPM e que em linhagens não tumorais estes compostos apresentam efeitos semelhantes.
Abstract: Statins are drugs widely used in the treatment of hypercholesterolemia. They are competitive inhibitors of 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase preventing in this way, the synthesis of cholesterol. L-carnitine is synthesized from the essential aminoacids lysine and methionine in liver and kidney and plays na important role in the cell, where it is involved in fatty acid oxidation by acting as a cofactor in the transport of acyl groups across the inner mitochondrial membrane. Piracetam is a nootropic drug which function is to improve cognitive performance, and the functions involved in the processes of learning, memory, attention and consciousness. This study aimed to evaluate the protective action of L-carnitine or piracetam against necrosis in PC-3 cells induced by 60 µM simvastatin or 500 µM tertbutyl- hydroperoxide (t-BOOH). Both simvastatin and t-BOOH causes mitochondrial permeability transition (MPT) followed by necrosis. L-carnitine and piracetam protected against cell death induced by simvastatin or t-BOOH by a dose-dependent mechanism (1-12 µM). In the assessment of mitochondrial dysfunction caused by simvastatin or t- BOOH, L-carnitine or piracetam similarly to cyclosporin A protected against the loss of mitochondrial membrane potential. The decrease in state III or state IV respiration rates, were also prevented. When non-tumor cell lines (GN16-P6 and HaCaT) were analyzed, it was observed that both L-carnitine and piracetam also protected against cell death induced by simvastatin. We can conclude that these compounds protected against cell necrosis by inhibiting MPT in both tumor or non tumor cell lines.
Mestrado
Biologia Estrutural, Celular, Molecular e do Desenvolvimento
Mestre em Fisiopatologia Médica
Derrick, Jeremy Paul. "L-carnitine palmitoyltransferases." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293503.
Full textMello, Mariana dos Santos. "Avaliação de estresse oxidativo em pacientes portadores de acidemia 3-hidroxi-3-metilglutárica : o efeito da carnitina." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/158733.
Full textIntroduction: The 3-hydroxy-3-methylglutaric acidemia is caused by the deficiency of 3-hydroxy-3-methyl-glutaryl-CoA lyase, an enzyme of leucine metabolism, leading to accumulation of 3-hydroxy-3-methylglutaric acid in tissues. Studies have suggested that oxidative stress may contribute to the neurological damage observed in some organic acidurias. Objective: Evaluate oxidative stress parameters in patients with 3-hydroxy-3-methylglutaric aciduria patiets before and after treatment. Materials and Methods: Blood and urine samples were collected from patients at diagnosis and after treatment with restricted protein diet and supplemented with L-carnitine (100mg/kg/dia) and from controls. TBA , an end subproduct of lipid peroxidation, was measured in plasma. Determination of carbonyl and sulphydryl content, biomarkers of oxidative damage to proteins, was done in plasma. To assess urine protein oxidation, levels of di-tyrosine were measured by autofluorescence. The assay of antioxidant urinary capacity was performed using a commercial kit. The levels of free carnitine and isovalerylcarnitine were analyzed in blood samples by tandem mass spectrometry using the method of multiple reaction monitoring (MRM). Protein content was determined by the biuret method for plasma samples using a commercial kit. Results and Discussion: The results demonstrated a significant increase of total blood isovalerylcarnitine, malondialdehyde plasma concentrations and di-tyrosine urinary levels and a significant reduction of the urinary antioxidant capacity and free-carnitine blood levels in pacients at diagnosis compared to controls. It was verified a decrease in plasma malondialdehyde concentrations and urinary di-tyrosine levels in treated patients, suggesting a protective effect of the treatment on lipid peroxidation and protein oxidative damage, as well as a normalization of L-carnitine levels during treatment. Conclusions: These results allow to suggest that oxidative stress occurs in 3-hydroxy-3-methyl-glutaryl-CoA lyase deficient patients and treatment with restricted protein diet and L-carnitine may offer protection against oxidative damage.
Hamilton, Jennifer Jane. "The carnitine and carnitine ester content of rat bile and human duodenal fluid." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/25894.
Full textLand and Food Systems, Faculty of
Graduate
Clark, Deborah Jenkins. "Aminocarnitine and acylaminocarnitines : carnitine acyltransferase inhibitors affecting long-chain fatty acid and glucose metabolism /." Access full-text from WCMC, 1989. http://proquest.umi.com/pqdweb?did=744572241&sid=1&Fmt=2&clientId=8424&RQT=309&VName=PQD.
Full textBon, Frédérique. "La carnitine et ses fractions : intérêt physiopathologique, aspects analytiques." Paris 5, 1989. http://www.theses.fr/1989PA05P150.
Full textDiesel, Tiago Omar. "Delipidação química na produção in vitro e criopreservação de embriões bovinos." Universidade Federal de Goiás, 2018. http://repositorio.bc.ufg.br/tede/handle/tede/8970.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-10-15T11:00:19Z (GMT) No. of bitstreams: 2 Tese - Tiago Omar Diesel - 2018.pdf: 2037910 bytes, checksum: e5037a6e126e6597f8f92b2754602731 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2018-10-15T11:00:19Z (GMT). No. of bitstreams: 2 Tese - Tiago Omar Diesel - 2018.pdf: 2037910 bytes, checksum: e5037a6e126e6597f8f92b2754602731 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-09-13
Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG
Chemical delipidation has been used as an alternative to improve the cryotolerance of in vitro produced embryos (IVP). The aim of this study was evaluate the effect of L-carnitine (LC) on the development and survival of vitrified IVP bovine embryos by the Cryotop method in the first assay, and in the second trial the effect of LC and Forskolin on Cryotop cryopreserved embryos Experiment 1), or by modified slow freezing (Experiment 2), so mitochondrial activity, intracytoplasmic lipid (LI) content, cellular apoptosis (NCA) and hatching after heating were evaluated. In the first essay LC was used at the concentration of 0,6 mg/mL in maturation culture medium (IVM), embryo culture (IVC) and / or post-thawing (REC), in four treatments: without LC (Control), LC added to CIV (LCiv), LC to CIV + LC to REC (LCivR), and LC to MIV / CIV + LC to REC (LMivCR). The addition of LC increased the production of blastocysts in D7 by 28.6% (LCiv) and the amount of embryos grade I by 36.9% (LCivR), the re-expansion rate in 22,7% and hatching in 20.1% (LCiv), and mitochondrial activity was 1.9 times higher (P <0.001) (LCivR) than Control. The LI quantity was 29% lower in LCiv and LCivR and 50.2% in LMivCR compared Control (P <0.001). In the second experiment the embryos were cultured without addition of delipidators (Control), in the presence of 10μM of Forskolin added to the IVC in D5 (FORSK) or L-carnitine (0.6 mg / mL) added to the IVC and in post-thawing (LC). LC supplementation increased the production of blastocysts in D7 by 22.0% and grade I embryos by 30.1% (P <0.05), in relation to Control and FORSK. In Experiment 1, the re-expansion rate in LC increased (P <0.05) 28.9% in relation to FORSK. In Experiment 2, two Control treatments were used for slow freezing (Classic and Modified). Hatching after 48 hours was greater (P <0.05) in LC compared to FORSK and Classical and Modified Controls (77.5%, 41.9%, 40.5%, 40.8% respectively). In the LC treatment, there was a decrease (P <0.05) of 64.7% in the degenerate embryo rate in relation to the Classical Control. Treatment with delipidators reduced LI content (P <0.001) by 2.2 fold in FORSK and four times in the LC compared to Control. The addition of 0.6 mg / mL of L-carnitine to the culture medium and the post-thawing increased the rate of in vitro production of bovine embryos acting positively on mitochondrial potential, reducing the amount of intracellular lipids and cellular apoptosis and increasing cryotolerance of embryos submitted to the modified slow freezing protocol.
A delipidação química tem sido utilizada como alternativa para a melhoria da criotolerância em embriões produzidos in vitro (PIV). Este estudo foi realizado objetivando avaliar o efeito da Lcarnitina (LC) sobre o desenvolvimento e a sobrevivência de embriões bovinos PIV vitrificados pelo método Cryotop no primeiro ensaio, e no segundo ensaio o efeito comparado da LC e Forskolin em embriões criopreservados por Cryotop (Experimento 1), ou por congelamento lento modificado (Experimento 2). Para isto foram avaliadas a atividade mitocondrial, o conteúdo de lipídeos intracitoplasmático (LI), a apoptose celular e a eclosão após o aquecimento. No primeiro ensaio a LC foi utilizada na concentração de 0,6 mg/mL no meio para maturação (MIV), cultivo (CIV) e/ou recultivo embrionário (REC), em quatro tratamentos: sem LC (Controle), LC adicionado ao CIV (LCiv), LC ao CIV+LC ao REC (LCivR), e LC ao MIV/CIV+ LC ao REC (LMivCR). A adição de LC aumentou (P <0,05) a produção de blastocistos em D7 em 28,6% (LCiv), a quantidade de embriões grau I em 36,9% (LCivR), a taxa de re-expansão em 22,7%, a eclosão em 20,1% (LCiv) e a atividade mitocondrial foi 1,9 vezes maior (P <0,001) (LCivR) em relação ao Controle. A quantidade LI foi 29% menor em LCiv e LCivR e 50,2% em LMivCR comparado Controle (P <0,001). No segundo ensaio os embriões foram cultivados sem adição de delipidadores (Controle), na presença de 10µM de Forskolin adicionado ao CIV no D5 (FORSK) ou L-carnitina (0,6 mg/mL) adicionada ao CIV e ao recultivo (LC). A suplementação com LC aumentou a produção de blastocistos em D7 em 22,0% e de embriões grau I em 30,1% (P <0,05), em relação ao Controle e ao FORSK. No Experimento 1 a taxa de re-expansão no LC aumentou (P <0,05) 28,9% em relação ao FORSK. No Experimento 2 foram utilizados dois tratamentos Controle para congelamento lento (Clássico e Modificado). A eclosão após 48 horas foi maior (P < 0,05) no LC em comparação ao FORSK e aos Controles Clássico e Modificado (77,5%, 41,9%, 40,5%, 40,8% respectivamente). No tratamento LC foi observada diminuição (P < 0,05) de 64,7% na taxa de embriões degenerados em relação ao Controle Clássico. O tratamento com delipidadores reduziu o conteúdo de LI (P < 0,001) em 2,2 vezes em FORSK e quatro vezes no LC comparados ao Controle. A adição de 0,6 mg/mL de L-carnitina aos meios de cultivo e recultivo aumentou a taxa de produção in vitro de embriões bovinos atuando positivamente sobre a atividade mitocondrial, reduzindo a quantidade de lipídeos intracelulares e a apoptose e aumentando a criotolerância dos embriões submetidos ao protocolo de congelamento lento modificado.
Arense, Parra Paula. "Estrategias de ingeniería metabólica y biología de sistemas aplicadas a la producción de L(-)carnitina por Escherichia coli= Metabolic engineering and systems biology strategies for L(-)carnitine production in Escherichia coli." Doctoral thesis, Universidad de Murcia, 2014. http://hdl.handle.net/10803/146175.
Full textTwo parallel research aims addressed on Escherichia coli are shown in this PhD thesis. On one hand, the optimization of a biotransformation process in order to improve L( )-carnitine synthesis by using metabolic engineering techniques is explained within the first chapters. On the other hand, in the following chapters, the main effects provoked by long-term high salt concentrations and the adaptative response to osmotic stress were determined using different techniques related to systems biology. L( )-carnitine is an important trimethylammonium compound because of its role in the energetic metabolism, in humans, several pathologies are related with deficiencies of carnitine level. Several works focused on the therapeutic application of L( )-carnitine, showed that administration of this compound could be a solution as opposed to its absence. Once different carnitine production ways were revised, this work shows an alternative method using Escherichia coli to carry out the biotransformation from D(+)-carnitine and/or crotonobetaine into L( )-carnitine. By using molecular biology techniques a strain of E. coli was engineered, obtaining caiC overexpression and enhancing the production yield respect to the wild type strain. Moreover, several aspects related with carnitine metabolism, such as coenzyme A availability and the inhibition of specific metabolic pathways were studied to optimize the carnitine production. Afterwards, various metabolic engineering strategies were implemented, obtaining a stable engineered strain with high capacity to produce L( )-carnitine. The modifications carried out were: a) deletion of the aceK gene (encoding a bifunctional protein phosphatase/kinase which performs post-translational control of isocitrate dehydrogenase) in order to increase the metabolic flux towards TCA cycle, b) deletion of the caiA gene (encoding the crotonobetainyl-CoA reductase) to avoid synthesis of γ-butyrobetaine (byproduct of the carnitine metabolism), and c) replacement of the highly regulated natural promoter of the cai operon by a constitutive promoter. These mutations implemented in the same strain led to obtaining almost 100% conversion from crotonobetaine to L( )-carnitine in the assay conditions. Moreover, the main restrictions impossed to the aerobic expression of the carnitine metabolism were eliminated producing L( ) carnitine in the presence of oxygen. Therefore, this work emphasizes the important role of metabolic engineering to improve any biotechnological process. On the other hand, L( )-carnitine and similar compounds are used as osmoprotectors, which are accumulated in high concentrations, either through the uptake from the medium or through de novo synthesis inside the cells, to avoid dehydratation when the osmolarity of the culture medium increases. Under these conditions, microorganisms have different response to an environmental stress, short-term or shock and long-term adaptation. In this work, evolution and response to long-term adaptation were analyzed in a E. coli strain growing in continuous reactors supplemented with a gradually increasing concentration of NaCl (moderate, high and very high). Enzyme activities from the main metabolic pathways and fermentative metabolites were analyzed, highlighting important role of central metabolism on adaptation and cellular survival after salt stress exposition. Furthermore, the need of biosynthetic precursors and energy as ATP were shown. In addition, a systems biology approach was conducted to study cellular behavior. In order to estimate the critical modifications undergone to overcome stress and to develop tolerance to salt, the metabolism was examined at several levels using different techniques (metabolomics, fluxomics and transcriptomics). Under salt stress conditions two set of responses were shown. One of them was focused to maintain the energetic threshold in cells, thus, either an increment of the metabolic pathways which could produce energy or a decrease of no-essential processes to survive were shown. On the other hand, cells under high or very high salt concentrations showed another similar response characterized by both changing on pattern of fermentative pathways and redox state. Therefore, using suitable techniques many changes in the physiology and metabolism of the E. coli strain in use were detected. Moreover, the systems biology approach offered a way to obtain and integrate a large amount of information, preventing some of the information being overlooked by the massive amount of data. Both the metabolic engineering and systems biology approaches have provided excellent ways to improve and know features of microorganisms involved in biotechnological processes related with the L( )-carnitine production.
Pereira, Lidiane Pescke. "ESTUDO META-ANALÍTICO DE MODULADORES NUTRICIONAIS PARA PORCAS GESTANTES E LACTANTES." Universidade Estadual de Ponta Grossa, 2017. http://tede2.uepg.br/jspui/handle/prefix/2403.
Full textMade available in DSpace on 2017-11-24T13:23:07Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Lidiane Pescke Pereira.pdf: 897636 bytes, checksum: 92549067a59b73ac61dbce09ee1c1ee0 (MD5) Previous issue date: 2017-09-20
Com o aumento da produtividade e da demanda nutricional pela fêmea suína, o uso de moduladores L-carnitina, L-arginina, cromo, somatotropina e ractopamina tem sido uma alternativa para melhorar os índices produtivos. Entretanto, a variabilidade nas informações e a complexidade dos estudos envolvendo o tema exige uma abordagem mais sistêmica. Objetivou-se por meio desta meta-análise determinar o efeito do uso de moduladores nutricionais no desempenho reprodutivo e das leitegadas de porcas em gestação e lactação. A base de dados utilizada incluiu 83 artigos publicados entre os anos de 1989 e 2017, totalizando 22.608 porcas em 534 tratamentos. Critérios foram estabelecidos para a seleção dos artigos: uso de moduladores nutricionais: L-carnitina, L-arginina, cromo, somatotropina e ractopamina; conter as variáveis corporais e reprodutivas de porcas gestantes e lactantes. A meta-análise envolveu as análises de heterogeneidade, gráfica, correlação, variância e de resíduos. Não houve correlação (P>0,05) entre o uso de moduladores nutricionais e as variáveis corporais das porcas. No estudo de correlações verificou-se que a suplementação com L-carnitina, L-arginina e cromo aumentam (>0,450; P<0,05) o peso do leitão ao nascer e número de leitões nascidos vivos e o peso dos leitões ao nascer. Já o uso de somatotropina aumenta o número de leitões desmamados (0,985; P<0,01). Não houve diferença significativa (P>0,05) entre as médias dos grupos dos tratamentos com L-carnitina, cromo, e somatotropina para o consumo de ração e condição corporal das porcas. O uso de ractopamina aumentou em 3,41 % (P<0,05) a espessura de toucinho ao parto. A suplementação com L-carnitina e cromo aumentaram em 2,30 % e 4,73 % (P<0,05) o número de leitões nascidos vivos, respectivamente. O uso da L-carnitina, arginina e somatotropina proporcionaram, em média, leitões mais pesados ao nascer em relação ao controle (1,48 vs. 1,43kg; P<0,05). A administração da somatotropina aumentou em 9,01 % (P<0,05) o número de leitões desmamados em relação ao controle. Os estudos sobre o uso de moduladores nutricionais encontrados na literatura são pouco explorados quanto a condição corporal e nutricional, o que impossibilita conclusões sobre o uso adequado destes aditivos para ajustes nutricionais em porcas gestantes e lactantes. Entretanto, os moduladores nutricionais L-carnitina, L-arginina, cromo e somatotropina podem melhorar o desempenho produtivo das porcas e de suas leitegadas.
The increase in productivity and nutritional demand by sows, the use of modulators L-carnitine, L-arginine, chromium, somatotropin and ractopamine has been an alternative to improve the productive indexes. However, the variability in information and the complexity of studies involving the subject requires a more systemic approach. The objective of this meta-analysis was to determine the effect of the use of nutritional modulators on the reproductive performance and litter of sows in gestation and lactation. The database used included 83 articles published between 1989 and 2017, totaling 22,608 sows in 534 treatments. Criteria were established for the selection of articles: use of nutritional modulators: L-carnitine, L-arginine, chromium, somatotropin and ractopamine; contain the body and reproductive variables of pregnant and lactating sows. The meta-analysis involved analyzes of heterogeneity, graph, correlation, variance and residuals. Don´t were significant correlations (P>0.05) between the body variables of the sows and nutritional modulators and their use. In correlation study, the L-carnitine, L-arginine and chromium supplementation increases (>0.450; P<0.05) the birth piglets weight and liveborn number. Somatotropin administration increased the weaner piglets number (0.985; P<0.01). There were no significant difference (P>0.05) between the means of groups with L-carnitine, chromium, and somatotropin for feed intake and body condition of the sows. Ractopamine use increased in 3.41% (P<0.05) the backfat thickness at farrowing. Supplementation with L-carnitine and chromium increased in 2.30 % e 4.73 % (P<0.05) the alive piglets number, respectively. The use of L-carnitine, L-arginine and somatotropin provided heavier piglets at birth in relation to control groups (1.48 vs. 1.43kg; P<0.05). Somatotropin administration increased in 9.01% (P<0.05) the of weaned piglets number in relation to control group. Studies on the use of nutritional modulators found in the literature are poorly explored in body and nutritional condition terms, which makes it impossible to reach conclusions about the proper use of these additives for nutritional adjustments in pregnant and lactating sows. However, the nutritional modulators L-carnitine, L-arginine, chromium and somatotropin can improve the productive performance of sows and their litters.
Guardia, Paolo Gadioli La. "Inibição, por sinvastatina, da respiração mitocondrial de biopsias de musculo esqueletico e figado de ratos." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/311233.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicaas
Made available in DSpace on 2018-08-15T19:15:54Z (GMT). No. of bitstreams: 1 Guardia_PaoloGadioliLa_M.pdf: 2017398 bytes, checksum: 71295ad7aacb6f016fb0abb80fd36bf9 (MD5) Previous issue date: 2010
Resumo: Inibidores da 3-hidroxi-3-metilglutaril-CoA redutase (estatinas) são fármacos utilizados para diminuir os níveis plasmáticos de colesterol e são, geralmente, seguros e bem tolerados. Ocasionalmente esses fármacos induzem miotoxicidade, como miopatia e rabdomiólise, e hepatotoxicidade. Neste trabalho investigou-se o mecanismo, in vitro e in vivo, pelo qual as estatinas atuam sobre a respiração mitocondrial de biópsias de músculo esquelético e de fígado de ratos. A incubação (1 hora) de biópsias permeabilizadas de músculo sóleo (2-3 mg) com doses crescentes de sinvastatina reduziu a velocidade de respiração mitocondrial estimulada por ADP ou FCCP de forma dose-dependente e significativa (p<0,05). A inibição causada por 1 |iM de sinvastatina nas velocidades de respiração estimuladas por ADP e FCCP foi de respectivamente cerca de 25% e 27%. Em contraste, não houve alteração significativa na velocidade de respiração de repouso. O efeito de 1|iM de sinvastatina foi inibido pela incubação concomitante com 100 |uM de mevalonato (produto da enzima HMG-CoA redutase), ou 10 |JM de coenzima Q10 (um outro produto da via de síntese do colesterol). A redução na velocidade de respiração também foi inibida pela incubação concomitante com 1 mM de L-carnitina. A incubação com sinvastatina aumentou de forma significativa (p<0,05) a produção de lactato pelas biópsias musculares em cerca de 26%, efeito protegido pela incubação concomitante com mevalonato ou coenzima Q10 ou L-carnitina na mesma concentração descrita anteriormente. Por outro lado, esta mesma concentração de sinvastatina não provocou efeito algum sobre as velocidades de respiração de mitocôndrias isoladas de músculo de ratos. A incubação (1 hora) de biópsias hepáticas (2-3 mg) com doses crescentes de sinvastatina reduziu a respiração mitocondrial estimulada por ADP ou FCCP, sem alterar a respiração de repouso. Sinvastatina (5 uM) inibiu significativamente (p<0,05) a respiração estimulada por ADP e FCCP em cerca de 24% e 29% respectivamente. Esta inibição não foi sensível a 100 |iM de mevalonato ou 10 |iM de coenzima Q10 ou 1 mM de L-carnitina. Biópsias de músculo sóleo de ratos tratados durante 15 dias com 100 mg / kg (gavagem) de sinvastatina apresentaram velocidades de consumo de oxigênio reduzidas em todos os estados respiratórios. Este efeito foi inibido pela administração concomitante de L-carnitina 200 mg / kg (gavagem).
Abstract: 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors (statins) are safe and well-tolerated therapeutic drugs, that occasionally induce myotoxicity such as myopathy and rhabdomyolysis, and hepatotocixity. Here, we investigated in vitro and in vivo the mechanisms of statin-induced toxicity on mitochondrial respiration of rat skeletal muscle and liver biopsies. One hour incubation of permeabilized soleus muscle biopsies (2-3 mg) with increasing doses of simvastatin (1 to 40 |iM) reduced ADP- or FCCP-stimulated mitochondrial respiration rate in a dose-dependent manner. The inhibition of ADP- or FCCP-stimulated mitochondrial respiration rate by simvastatin 1 |iM was 25% and 27%, respectively. No changes in rest respiration rate was observed. Simvastatin (1 |JM) inhibition of muscle respiration was prevented by coincubation with 100 |JM mevalonate, 10 |JM coenzyme Q10 or 1 mM L-carnitine. Simvastatin (1 |JM) also increased lactate production in muscle biopsies by 26%; this effect was prevented by the coincubation with mevalonate, coenzyme Q10 or L-carnitine. At the same concentration, simvastatin did not inhibit the respiration of isolated skeletal muscle mitochondria suggesting that simvastatin effect on mitochondrial respiration is not direct. Incubation (1 hour) of liver biopsies (2-3 mg) with increasing doses of simvastatin reduced ADP- or FCCP-stimulated mitochondrial respiration rate without changes in rest respiration rate. The lowest simvastatin concentration able to reduce liver biopsies respiration rates was 5 |JM, which promoted 24% and 29% inhibition in ADP- or FCCP-stimulated respiration rates, respectively. This was not modified by mevalonate, coenzyme Q10 or L-carnitine. Soleus muscle biopsies from rats treated during 15 days with simvastatin (100 mg/kg, p.o.) presented L-carnite sensitive inhibition of oxygen consumption rate in all respiratory states.
Mestrado
Medicina Experimental
Mestre em Fisiopatologia Médica
Méas, Hugo Bard Jean-Marie. "L-carnitine : simple complément alimentaire ou médicament ? de son importance biochimique à son potentiel thérapeutique /." [S.l.] : [s.n.], 2003. http://theses.univ-nantes.fr/thesemed/PHmeas.pdf.
Full textKamareddine, Rachid. "Rôle du transport de la carnitine et variations pathologiques." Strasbourg 1, 1988. http://www.theses.fr/1988STR15059.
Full textGratacòs, Batlle Esther. "Molecular characterization of carnitine palmitoyltransferase 1C." Doctoral thesis, Universitat de Barcelona, 2010. http://hdl.handle.net/10803/975.
Full textCPT1C protein sequence is highly similar to that of the other two isozymes. Expression studies indicate that CPT1C is localized exclusively in the central nervous system, with homogeneous distribution in all areas (hippocampus, cortex, hypothalamus, and others). It has also been reported that CPT1c is localized in neurons but not in astrocytes of adult brain.
1. CPT1C strucutral model
A 3-D structural model of the isozyme has been constructed by homology modeling. Residues contacting both substrates have been determined and compared to the same amino acid positions in CPT1A. The results obtained from the analysis show that the residues involved in the catalysis of the reaction in CPT1A and residues contacting both substrates are conserved mainly conserved in CPT1C or show semi-conservative substitutions.
2. CPT1 enzymatic activity
Expression of rat CPT1C in Saccharomyces cerevisiae yields no catalytic activity when testing different conditions (longer periods of time, increased temperature, increased substrate concentration, testing of microsomal fraction or chimeric protein CPT1·ACA). Thus, the yeast expression system is not suitable for studying CPT1C enzymatic activity.
3. Subcellular localization
Endogenous and overexpressed CPT1C is basically localized in the endoplasmic reticulum of mammalian cells (HEK293T, PC12, SH-SY5Y, primary cultures of fibroblasts and neurons). Some evidences indicated that CPT1C could also be found, in lower amounts, in mitochondrial associated membranes (MAMs).
The specific sequence of CPT1C N-terminal domain (first 150 amino acids) drives the protein to the endoplasmic reticulum.
4. CPT1C N-terminus processing
The N-terminal end of endogenous CPT1C in wild type mouse brain is processed (at least until Val27) and is not detected in mouse brain cortex lysates.
5. CPT1C membrane topology
The N- and C-terminal domains of CPT1C are facing the cytosolic side of the endoplasmic reticulum membrane, whereas the loop domain is facing the endoplasmic reticulum lumen.
6. CPT1C interacting partners
The data provided by the yeast two-hybrid assay do not indicate a unique binding partner of CPT1C. Instead the assay retrieved proteins involved in different functions: protein degradation, membrane trafficking, cell structure, signal transduction and metabolism.
KEYWORDS: Carnitine palmitoyltransferase, Endoplasmatic reticulum, Subcelular localization, CPT1 activity, Structural model, Membrane topology
La carnitina palmitoiltransferasa 1 (CPT1) es una enzima que cataliza la conversión de aciles-CoA de cadena larga en acil-carnitinas, reacción crucial para el control de la oxidación de ácidos grasos. Existen tres isoformas diferentes de CPT1: CPT1A (isoforma más ubicua), CPT1B (expresada en tejido adiposo, músculo y corazón) y CPT1C que es la isoforma más recientemente descrita.
La secuencia de la proteína CPT1C es muy parecida a la de las otras dos isoformas. Estudios de expresión indican que CPT1C se localiza exclusivamente en el sistema nervioso central. También se ha descrito que CPT1C se localiza en neuronas de cerebro adulto pero no en astrocitos.
Las conclusiones obtenidas de los resultados presentados en esta tesis son (por apartados):
1. Modelo structural
A través de técnicas de modelaje por homología se ha construido un modelo tridimensional teórico de la proteína. De su estudio se concluye que los residuos implicados en la catálisis de la reacción y los residuos en contacto con los sustratos están bien conservados en la secuencia de CPT1C.
2. Actividad enzimática
La expresión de CPT1C en la levadura Saccharomyces cerevisiae no muestra actividad CPT1 aunque se testen diferentes condiciones (tiempos de reacción más largos, incrementos en la concentración de sustratos, pruebas en fracciones microsomales o pruebas con proteínas quiméricas como la CPT1·ACA)
3. Localización subcelular
La proteína CPT1C se localiza básicamente en el retículo endoplasmático de células de mamífero (HEK293T, PC12, SH-SY5Y y en cultivos primarios de fibroblastos y de neuronas).
La secuencia concreta de los 150 primeros aminoácidos dirige la porteína al retículo endoplasmático.
4. Procesamiento del extremo N-terminal de CPT1C
El extremo N-terminal de la proteína CPT1C endógena sufre un procesamiento.
5. Topología en la membrana de CPT1C
Los dominios N- y C-terminal (centro catalítico) están orientados hacia la cara citosólica de la membrana del retículo endoplasmático.
6. Proteínas de unión
Los resultados obtenidos del ensayo de dobles híbridos no indican que CPT1C interaccione con una sola proteína de unión. Del ensayo se obtuvieron proteínas implicadas en diferentes funciones: degradación de proteínas, tráfico de membranas, estructura celular, vías de transducción de la señal y metabolismo.
Swiegers, Jan Hendrik. "Carnitine in yeast and filamentous fungi." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/49753.
Full textENGLISH ABSTRACT: In the yeast Saccharomyces cerevtstee, two biochemical pathways ensure that activated cytoplasmic or peroxisomal acetyl-groups are made available for mitochondrial energy production when the cells utilise non-fermentable carbon sources. The first pathway is the glyoxylate cycle, where two activated acetyl-groups are incorporated into each cycle, which releases a C4 intermediate. This intermediate is then transported to the mitochondria where it can enter the tricarboxylic acid cycle. The second pathway is the carnitine shuttle. Activated acetyl-groups react with carnitine to form acetylcarnitine, which is then transported to the mitochondria where the acetyl group is transferred. In this study it was shown that the deletion of the glyoxylate cycle specific citrate synthase, encoded by CIT2, results in a strain that is dependent on carnitine for growth on non-fermentable carbon sources. Using a /::"cit2 strain, mutants affected in carnitine-dependent metabolic activities were generated. Complementation of the mutants with a genomic library resulted in the identification of four genes involved in the carnitine shuttle. These include: (i) the mitochondrial and peroxisomal carnitine acetyltransferase, encoded by CAT2; (ii) the outer-mitochondrial carnitine acetyltransferase, encoded by YA T1; (iii) the mitochondrial carnitine translocase, encoded by CRC1; and (iv) a newly identified carnitine acetyltransferase, encoded by YAT2. All three carnitine acetyltransferases are essential in a carnitine-dependent strain. The dependence on exogenous carnitine of the /::"cit2 strain when grown on nonfermentable carbon sources suggested that S. cerevisiae does not biosynthesise carnitine. Measurements using electrospray mass spectrometry confirmed this hypothesis. As a result an investigation was initiated into carnitine biosynthesis in order to genetically engineer a S. cerevisiae strain that could endogenously biosynthesise carnitine. The filamentous fungus, Neurospora crassa, was one of the first organisms used in the seventies to identify the precursor and intermediates of carnitine biosynthesis. However, it was only about twenty years later that the first genes encoding these enzymes where characterised. Carnitine biosynthesis is a four-step process, which starts with trimethyllysine as precursor. Trimethyllysine is converted to hydroxytrimethyllysine by the enzyme trimethyllysine hydroxylase (TMLH). Hydroxytrimethyllysine is cleaved to trimethylamino-butyraldehyde by the hydroxytrimethyllysine aldolase (HTMLA) releasing glycine. Trimethylaminobutyraldehyde is dehydrogenated to trimethylamino-butyrate (y-butyrobetaine) by trimethylamino-butyraldehyde dehydrogenase (TMABA-DH). In the last step, ybutyrobetaine is converted to t-carnltine by y-butyrobetaine hydroxylase (BBH). The N. crassa TMLH homologue was identified in the genome database based on the protein sequence homology of the human TMLH. Due to the high amount of introns predicted for this gene, the cDNA was cloned and subjected to sequencing, which then revealed that the gene indeed had seven introns. Functional expression of the gene in S. cerevisiae and subsequent enzymatic analysis revealed that the gene coded for a TMLH. It was therefore named cbs-1 for "carnitine biosynthesis gene no. 1JJ. Most of the kinetic parameters were similar to that of the human TMLH enzyme. Following this, a genomic copy of the N. crassa BBH homologue was cloned and functionally expressed in S. cerevisiae. Biochemical analysis revealed that the BBH enzyme could biosynthesise L-carnitine from y-butyrobetaine and the gene was named cbs-2. In addition, the gene could rescue the growth defect of the carnitinedependent Scii? strain on non-fermentable carbon sources when y-butyrobetaine was present. This is the first report of an endogenously carnitine biosynthesising strain of S. cerevisiae. The cloning of the remaining two biosynthesis genes presents particular challenges. To date, the HTMLA has not been characterised on the molecular level making the homology-based identification of this protein in N. crassa impossible. Although the TMABA-DH has been characterised molecularly, the protein sequence is conserved for its function as a dehydrogenase and not conserved for its function in carnitine biosynthesis, as in the case of TMLH and BBH. The reason for this is probably due to the fact that the enzyme is involved in other metabolic processes. The use of N. crassa carnitine biosynthesis mutants would probably be one way in which to overcome these obstacles. The !1cit2 mutant proved useful in studying carnitine related metabolism. We therefore searched for suppressors of !1cit2, which resulted in the cloning of RAS2. In S. cerevisiae, two genes encode Ras proteins, RAS1 and RAS2. GTP-bound Ras proteins activate adenylate cyclase, Cyr1 p, which results in elevated cAMP levels. The cAMP molecules bind to the regulatory subunit of the cAMP-dependent kinase (PKA), Bcy1 p, thereby releasing the catalytic subunits Tpk1 p, Tpk2p and Tpk3p. The catalytic subunits phosphorylate a variety of regulators and enzymes involved in metabolism. Overexpression of RAS2 could suppress the growth defect of the Sclt? mutant on glycerol. In general, overexpression of RAS2 enhanced the proliferation of wild-type cells grown on glycerol. However, the enhancement of proliferation was much better for the !1cit2 strain grown on glycerol. In this respect, the retrograde response may play a role. Overexpression of RAS2 resulted in elevated levels of intracellular citrate and citrate synthase activity. It therefore appears that the suppression of !1cit2 by RAS2 overexpression is a result of the general upregulation of the respiratory capacity and possible leakage of citrate and/or citrate synthase from the mitochondria. The phenotype of RAS2 overexpression contrasts with the hyperactive RAS2val19 allele, which causes a growth defect on glycerol. However, both RAS2 overexpression and RAS2val19activate the cAMP/PKA pathway, but the RAS2val19dependent activation is more severe. Finally, this study implicated the Ras/cAMP/PKA pathway in the proliferation effect on glycerol by showing that in a Mpk1 strain, the growth effect is blocked. However, the enhanced proliferation was still observed in the Mpk2 and Mpk3 strains when RAS2 was overexpressed. Therefore, it seems that Tpk1 p plays an important role in growth on non-fermentable carbon sources, a notion that is supported by the literature.
AFRIKAANSE OPSOMMING: In die gis Saccharomyces cerevtstee, is daar twee metaboliese weë waarmee geaktiveerde asetielgroepe na die mitochondrium vervoer kan word wanneer die sel op nie-fermenteerbare koolstofbronne groei. Die een weg is die glioksilaatsiklus, waar die geaktiveerde asetielgroepe geïnkorporeer word in die siklus en dan vrygestel word as Ca-intermediêre. Hierdie intermediêre word dan na die mitochondrium vervoer waar dit in die trikarboksielsuursiklus geïnkorporeer word. Die ander weg is die karnitiensiklus, waar geaktiveerde asetielgroepe met karnitien reageer om asetielkarnitien te vorm wat dan na die mitochondrium vervoer word waar dit die asetielgroep weer vrygestel. Hierdie studie het getoon dat die delesie van die glioksilaatsiklus spesifieke sitraatsintetase, gekodeer deur CIT2, die gisras afhanklik maak van karnitien vir groei op nie-fermenteerbare koolstofbronne. Deur gebruik te maak van 'n ócit2 gisras, kon mutante, wat geaffekteer is in karnitien-verwante metaboliese aktiwiteite, gegenereer word. Komplementering van die mutante met 'n genomiese biblioteek het gelei tot die identifisering van vier gene betrokke by die karnitiensiklus. Hierdie gene sluit in: (i) die mitochondriale en die peroksisomale karnitienasetieltransferase, gekodeer deur CAT2; (ii) die buite-mitochondriale karnitienasetieltransferase, gekodeer deur YAT1; (iii) die mitochondriale karnitientranslokase, gekodeer deur CRC1; en (iv) 'n nuutgeïdentifiseerde karnitienasetieltransferase, gekodeer deur YAT2. Daar benewens, is ook gewys dat al drie karnitienasetieltransferases noodsaaklik is in 'n karriltienafhanklike gisras. Die afhanklikheid van eksogene karnitien van die ócit2 gisras, wanneer dit gegroei word op nie-fermenteerbare koolstofbronne, was aanduidend dat S. cerevisiae nie karnitien kan biosintetiseer nie. Metings deur middel van elektronsproeimassaspektrometrie het hierdie veronderstelling bevestig. Gevolglik is 'n ondersoek deur ons geïnisieer in die veld van karnitienbiosintese om 'n S. cerevisiae gisras geneties te manipuleer om karnitien sodoende endogenies te biosintetiseer. Die filamentagtige fungus, Neurospora crassa, was een van die eerste organismes wat in die sewentiger jare gebruik is om die voorloper en intermediêre van karnitienbiosintese te identifiseer. Dit was egter eers sowat twintig jaar later dat die eerste gene wat vir hierdie ensieme kodeer, gekarakteriseer is. Karnitienbiosintese is 'n vierstap-proses wat met trirnetlellisten as voorloper begin. Trimetiellisien word omgeskakel na hidroksi-trimetiellisien deur die ensiem trimetiellisienhidroksilase (TMLH). Hidroksietrimetlelllsien word dan gesplits om trimetielaminobuteraldehied te vorm deur die werking van die hidroksitrimetiellisienaldolase (HTMLA) met die gevolglike vrystelling van glisien. Trimetielaminobuteraldehied word dan na trimetielaminobuteraat (y-butirobeteïen) deur trimetielaminobuteraldehied dehidrogenase (TMABA-DH) gedehidrogeneer. In die laaste stap word y-butirobeteïen deur middel van die y-butirobeteïen hidroksilase (BBH) na L-karnitien omgeskakel. Op grond van die proteïenvolgordehomologie in die genoomdatabasis tussen die menslike TMLH en N. crassa se TMLH is laasgenoemde geïdentifiseer. As gevolg van die groot getal introns wat vir hierdie geen voorspel is, is die cDNA-weergawe daarvan gekloneer en aan volgordebepaling onderwerp. Dit het getoon dat die geen inderdaad sewe introns bevat. Funksionele uitdrukking van die geen in S. cerevisiae en ensiematiese analise het getoon dat die geen vir 'n TMLH kodeer en is gevolglik cbs-1 genoem; dit staan vir "karnitien biosintese geen no. 1tt. Meeste van die kinetiese parameters was ook soortgelyk aan die van die menslike TMLH-ensiem. Hierna is 'n genomiese kopie van N. crassa se BBH-homoloog gekloneer en funksioneel in S. cerevisiae uitgedruk. Biochemiese analise het getoon dat die uitgedrukte BBH-ensiem L-karnitien vanaf y-butirobeteïen kan biosintetiseer en die geen is cbs-2 genoem. Daar benewens kon die geen die groeidefek van die karnitien-afhanklike tlcit2-gisras ophef wanneer dit op nie-fermenteerbare koolstofbronne in die teenwoordigheid van y-butirobeteïen aangekweek is. Hierdie is die eerste verslag oor 'n endogeniese karnitien-biosintetiserende ras van S. cerevisiae. Die klonering van die oorblywende twee karnitienbiosintetiserende gene het sekere uitdagings. Tot op datum, is die HTMLA nog nie tot op genetiese vlak gekarakteriseer nie, wat dan die homologie-gebaseerde identifikasie van hierdie proteïen in N. crassa onmoontlik maak. Alhoewel die TMABA-DH geneties gekarakteriseer is, is die proteïenvolgorde ten opsigte van sy funksie as 'n dehidrogenase gekonserveer, maar nie vir sy funksie in karnitienbiosintese soos in die geval van TMLH en BBH nie. Die rede hiervoor is moontlik omdat die ensiem ook in ander metaboliese prosesse betrokke is. Die gebruik van N. crassa karnitienmutante sal moontlik een manier wees om hierdie probleme te oorkom. Die tlcit2-mutant het handig te pas gekom vir die bestudering van karnitienverwante metabolisme. Dus is daar vir onderdrukkers van die tlcit2-mutant gesoek wat gelei het tot die klonering van die RAS2-geen. In S. cere visiae , kodeer twee gene vir Ras-proteïene, RAS1 en RAS2. GTP-gebonde Ras-proteïene aktiveer adenilaatsiklase, Cyr1 p, wat verhoogde intrasellulêre cAMP-vlakke tot gevolg het. Die cAMP bind aan die regulatoriese subeenheid van die cAMP-proteïenkinase (PKA), Bcy1 p, en daardeur word die katalitiese subeenhede, Tpk1 p, Tpk2p en Tpk3p, vrygestel. Die katalitiese subeenheid fosforileer 'n verskeidenheid van reguleerders en ensieme betrokke by metabolisme. Ooruitdrukking van RAS2 het die groeidefek van die tlcit2-mutant op gliserolonderdruk. Oor die algemeen, verbeter die ooruitdrukking van RAS2 die proliferasie van die wildetipe op gliserol bevattende media. Alhoewel, die verbetering van proliferasie was baie meer opmerklik in die tlcit2-gisras. In hierdie verband, speel die gedegenereerde response dalk 'n rol. Ooruitdrukking van RAS2 het verhoogde intrasellulêre vlakke van sitraat- en sitraatsintetase-aktiwiteit tot gevolg gehad. Dit wou dus voorkom asof die onderdrukking van die ócit2-groeidefek deur RAS2 se ooruitdrukking die gevolg was van algemene opreguiering van respiratoriese kapasiteit en die lekkasie van sitraat en/of sitraatsintetase uit die mitochondria. Die fenotipe van RAS2 ooruitdrukking kontrasteer die hiperaktiewe RAS2va / 19 alleel, wat 'n groeidefek op gliserol media veroorsaak. Alhoewel beide RAS2-00ruitdrukking en RAS2va / 19 die cAMP/PKA-weg aktiveer, is gevind dat die RAS2va/19-afhanklike aktivering strenger is. Ten slotte, die cAMP/PKA-weg is in die proliferasie effek op gliserol media geïmpliseer deur te wys dat in 'n Mpk1-gisras, die groeieffek geblokkeer is. Alhoewel, die verbeterde proliferasie is steeds waargeneem in die Mpk2-en Mpk3-gisrasse toe die RAS2-geen ooruitgedruk is. Dus, dit wil voorkom asof Tpk1 p 'n belangrike rol in die groei van gisselle op nie-fermenteerbare koolstofbronne speel; 'n veronderstelling wat deur die literatuur ondersteun word.
Kroppenstedt, Sven. "The role of carnitine acetyltransferases in the metabolism of Saccharomyces cerevisiae." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53678.
Full textENGLISH ABSTRACT: L-carnitine is a compound with a long history in biochemistry. It plays an important role in mammals, where many functions have been attributed to it. Those functions include the p-oxidation of long-chain fatty acids, the regulation of the free CoASH/ Acyl-CoA ratio and the translocation of acetyl units into mitochondria. Carnitine is also found in lower eukaryotic organisms. However, in contrast to the multiple roles it plays in mammalian cells, its action appears to be restricted to the transport of activated acyl residues across intracellular membranes in the lower eukaryotes. In the yeast Saccharomyces cere visiae , the role of carnitine consists mainly of the transfer of activated acetyl residues from the peroxisome and cytoplasm to the mitochondria. This process is referred to as the carnitine shuttle. This system involves the transfer of the acetyl moiety of acetyl-CoA, which cannot cross organellar membranes, to a molecule of carnitine. Subsequently, the acetylcarnitine is transported across membranes into the mitochondria, where the reverse transfer of the acetyl group to a molecule of free CoA occurs for further metabolism. Carnitine acetyl transferases (CATs) are the enzymes responsible for catalysing the transfer of the activated acetyl group of acetyl-CoA to carnitine as well as for the reverse reaction. In the yeast S. cerevisiae, three CAT enzymes, encoded by the genes CAT2, YAT1 and YAT2, have been identified. Genetic data suggest, that despite the high sequence similarity, each of the genes encodes for a highly specific activity that is part of the carnitine shuttle. So far, the specific function of any of the three CAT enzymes has been elucidated only partially. The literature review focuses mainly on the importance of the carnitine system in mammals. After discussing the discovery and biosyntheses of carnitine, the enzymatic background of and molecular studies on the carnitine acyltransferases are described. The experimental section focuses on elucidating the physiological roles and cellular localisation of the three carnitine acetyltransferase of S. cere visia e. We developed a novel enzymatic assay to study CAT activity in vivo. By C-terminal tagging with a green fluorescent protein, we localised the three CAT enzymes. However, all our genetic attempts to reveal specific roles for and functions of these enzymes were unsuccessful. The overexpression of any of the CAT genes could not cross-complement the growth defect of other CAT mutant strains. No phenotypical difference could be observed between strains carrying single, double and triple deletions of the CAT genes. Furthermore, the expression of the Schizosaccharomyces pombe dicarboxylic acid transporter can complement the deletion of the peroxisomal citrate synthase, but has no effect on the carnitine shuttle per se. Our data nevertheless suggest that Cat2p is the enzyme mainly responsible for the forward reaction, e.g. the formation of acetylcarnitine and free CoA-SH from acetyl-CoA and carnitine, whereas Yat1 pand Yat2p may be required mainly for the reverse reaction.
AFRIKAANSE OPSOMMING: L-karnitien is 'n verbinding met 'n lang geskiedenis in die biochemie-veld. Dit speel 'n belangrike rol in soogdiere, waar verskeie funksies daaraan toegeskryf word. Dié funksies sluit in die p-oksidasie van lang-ketting-vetsure, die regulering van die vrye KoA-SH-tot-asiel-KoA-verhouding en die oordrag van asetieleenhede na die mitochondria. Karnitien word ook in laer eukariotiese organismes gevind. In teenstelling met die verskeidenheid rolle wat dit in soogdierselle vervul, is die funksie in laer eukariote tot die transport van geaktiveerde asetielderivate oor intrasellulêre membrane beperk. In die gis Saccharomyces cerevisiae is die funksie van karnitien meestal beperk tot die vervoer van geaktiveerde asetielresidu's vanaf die sitoplasma en piroksisome na mitochondria, 'n proses wat as die "karnitiensiklus" bekend staan. Die proses behels die oordrag van die asetielgedeelte van asetiel-KoA, wat nie oor organelmembrane kan beweeg nie, na 'n molekuul van karnitien. Gevolglik word die asetielkarnitien oor die membraan na die mitochondria vervoer, waar - met die oog op verdere metabolisme - die omgekeerde oordrag van die asetielgroep na 'n vrye molekuul van KoA plaasvind. Karnitienasetiel-transferases (KAT's) is die ensieme wat verantwoordelik is vir die katalisering van die oordrag van die geaktiveerde asetielgroepe van asetiel-KoA na karnitien, sowel as vir die omgekeerde reaksie. In die gis S. cerevisiae is drie KAT-ensieme geïdentifiseer wat deur die gene CAT2, YAT1 en YAT2 gekodeer word. Genetiese data dui daarop dat, ten spyte van die hoë mate van homologie van die DNA-volgordes, elke geen vir 'n hoogs spesifieke aktiwiteit, wat deel van die karnitiensiklus is, kodeer. Tot dusver is die spesifieke funksie van die drie individuele KAT-ensieme net gedeeltelik ontrafel. Die literatuurstudie fokus hoofsaaklik op die belangrikheid van karnitiensisteme in soogdiere. Na 'n bespreking van die ontdekking en biosintese van karnitien, word die ensimatiese agtergrond en molekulêre studies van KAT's beskryf. Die eksperimentele deel konsentreer op die ontrafelling van die fisiologiese rol en intrasellulêre lokalisering van die drie KAT-ensieme van S. cerevisiae. Eerstens is 'n nuwe ensimatiese toets ontwikkel om KAT-aktiwiteit in vivo te bestudeer. Deur C-terminale aanhegting van 'n groen fluoreserende proteïen kon die drie KATensieme gelokaliseer word. Daar kon egter nie met behulp van genetiese studies verder lig gewerp word op die spesifieke rolle en funksies van hierdie KAT-ensieme nie. Die ooruitdrukking van enige van die KAT-gene kon nie die groeidefek van ander KAT-mutantrasse kruiskomplementeer nie. Geen fenotipiese verskil tussen rasse wat 'n enkel, dubbel of trippel delesie van die KAT-gene bevat, kon waargeneem word nie. Verder kon die uitdrukking van Schizosaccharomyces pombe se dikarboksielsuurtransporter die delesie van die peroksisomale sitraatsintetase komplementeer, maar het dit as sulks geen effek op die karnitiensiklus gehad nie. Die data wat deur hierdie studie verkry is, dui nogtans daarop dat Cat2p die ensiem is wat hoofsaaklik verantwoordelik is vir die voorwaartse reaksie, met ander woorde die vorming van asetielkarnitien en vrye KoH-SH van asetiel-KoA en karnitien, terwyl Yat1 p en Yat2p hoofsaaklik vir die omgekeerde reaksie benodig word.
Boutet, Dominique de Faucal. "Dosage de la carnitine chez le cirrhotique alcoolique." Montpellier 1, 1990. http://www.theses.fr/1990MON11059.
Full textVaz, Frédéric Maxime. "Molecular and biochemical aspects of carnitine biosynthesis." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2002. http://dare.uva.nl/document/64280.
Full textJenei, Zsuzsanna. "Transmembrane domain interactions in carnitine palmitoyltransferase I." Thesis, University of Warwick, 2010. http://wrap.warwick.ac.uk/3741/.
Full textSites, Dawn L. "Carnitine palmitoyltransferase activity in the aging rat." Virtual Press, 1989. http://liblink.bsu.edu/uhtbin/catkey/562783.
Full textSchool of Physical Education