Journal articles on the topic 'Cartesian mesh'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cartesian mesh.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Fang, Hong, Chunye Gong, Caihui Yu, et al. "Efficient mesh deformation based on Cartesian background mesh." Computers & Mathematics with Applications 73, no. 1 (2017): 71–86. http://dx.doi.org/10.1016/j.camwa.2016.10.023.
Full textMa, Tiechang, Ping Li, and Tianbao Ma. "A Three-Dimensional Cartesian Mesh Generation Algorithm Based on the GPU Parallel Ray Casting Method." Applied Sciences 10, no. 1 (2019): 58. http://dx.doi.org/10.3390/app10010058.
Full textKolobov, Vladimir, and Robert Arslanbekov. "Electrostatic PIC with adaptive Cartesian mesh." Journal of Physics: Conference Series 719 (May 2016): 012020. http://dx.doi.org/10.1088/1742-6596/719/1/012020.
Full textNikandrov, Dmitry S., Robert R. Arslanbekov, and Vladimir I. Kolobov. "Streamer Simulations With Dynamically Adaptive Cartesian Mesh." IEEE Transactions on Plasma Science 36, no. 4 (2008): 932–33. http://dx.doi.org/10.1109/tps.2008.924533.
Full textOUCHI, Kentaro, Tsubasa IWAFUNE, Masato OKAMOTO, and Daisuke SASAKI. "Cartesian-Mesh CFD for Backward Facing Step Problem." Proceedings of Conference of Hokuriku-Shinetsu Branch 2019.56 (2019): H024. http://dx.doi.org/10.1299/jsmehs.2019.56.h024.
Full textLiu, Gao-lian, and Xiao-wei Li. "Mesh free method based on local cartesian frame." Applied Mathematics and Mechanics 27, no. 1 (2006): 1–6. http://dx.doi.org/10.1007/s10483-006-0101-1.
Full textBEN-ASHER, YOSI. "THE CARTESIAN PRODUCT PROBLEM AND IMPLEMENTING PRODUCTION SYSTEMS ON RECONFIGURABLE MESHES." Parallel Processing Letters 05, no. 01 (1995): 49–61. http://dx.doi.org/10.1142/s0129626495000060.
Full textSHU, CHANG, and JIE WU. "AN EFFICIENT LATTICE BOLTZMANN METHOD FOR THE APPLICATION ON NON-UNIFORM CARTESIAN MESH." Modern Physics Letters B 24, no. 13 (2010): 1275–78. http://dx.doi.org/10.1142/s0217984910023414.
Full textLin, Tao, Yanping Lin, and Xu Zhang. "A Method of Lines Based on Immersed Finite Elements for Parabolic Moving Interface Problems." Advances in Applied Mathematics and Mechanics 5, no. 04 (2013): 548–68. http://dx.doi.org/10.4208/aamm.13-13s11.
Full textLuebbers, R. "Three-dimensional Cartesian-mesh finite-difference time-domain codes." IEEE Antennas and Propagation Magazine 36, no. 6 (1994): 66–71. http://dx.doi.org/10.1109/74.370522.
Full textMIYAZAKI, Sayaka, and Daisuke SASAKI. "Numerical Analysis of Detached Shock Wave by Cartesian Mesh." Proceedings of Conference of Hokuriku-Shinetsu Branch 2020.57 (2020): N012. http://dx.doi.org/10.1299/jsmehs.2020.57.n012.
Full textMisaka, Takashi, Daisuke Sasaki, and Shigeru Obayashi. "Adaptive mesh refinement and load balancing based on multi-level block-structured Cartesian mesh." International Journal of Computational Fluid Dynamics 31, no. 10 (2017): 476–87. http://dx.doi.org/10.1080/10618562.2017.1390085.
Full textKuczyński, Paweł, and Ryszard Białecki. "Radiation heat transfer model using Monte Carlo ray tracing method on hierarchical ortho-Cartesian meshes and non-uniform rational basis spline surfaces for description of boundaries." Archives of Thermodynamics 35, no. 2 (2014): 65–92. http://dx.doi.org/10.2478/aoter-2014-0014.
Full textLiu, Yan-Hua, and Hao Gu. "On the research of flow around obstacle using the viscous Cartesian grid technique." Thermal Science 16, no. 5 (2012): 1488–91. http://dx.doi.org/10.2298/tsci1205488l.
Full textHan, Myung-Ryoon, and Hyung-Teak Ahn. "Vortex-Induced Vibration of Simple Slender Structure Using Cartesian Mesh." Journal of the Society of Naval Architects of Korea 48, no. 3 (2011): 260–66. http://dx.doi.org/10.3744/snak.2011.48.3.260.
Full textAftosmis, M. J., M. J. Berger, and J. E. Melton. "Robust and Efficient Cartesian Mesh Generation for Component-Based Geometry." AIAA Journal 36, no. 6 (1998): 952–60. http://dx.doi.org/10.2514/2.464.
Full textSHINTANI, Tetsuya. "AN UNSTRUCTURED-CARTESIAN HYDRODYNAMIC SIMULATOR WITH LOCAL MESH REFINEMENT TECHNIQUE." Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering) 73, no. 4 (2017): I_967—I_972. http://dx.doi.org/10.2208/jscejhe.73.i_967.
Full textArakawa, Chuichi, and Ikuo Toyoda. "Analysis of Incompressible Flow Using an Adaptive Cartesian Mesh Method." Proceedings of the JSME annual meeting 2000.4 (2000): 241–42. http://dx.doi.org/10.1299/jsmemecjo.2000.4.0_241.
Full textNAGANUMA, Ryuta, Daisuke SASAKI, and Shun Takahashi. "Flow Analysis of Heaving Flat Plate by Cartesian Mesh CFD." Proceedings of Conference of Hokuriku-Shinetsu Branch 2020.57 (2020): N014. http://dx.doi.org/10.1299/jsmehs.2020.57.n014.
Full textZiegler, Udo. "A three-dimensional Cartesian adaptive mesh code for compressible magnetohydrodynamics." Computer Physics Communications 116, no. 1 (1999): 65–77. http://dx.doi.org/10.1016/s0010-4655(98)00139-8.
Full textYOSHIDA, Takashi, Toshihiko IKEDA, and Shouichiro IIO. "3106 Calculations of jet-edge flow using Cartesian Mesh Method." Proceedings of The Computational Mechanics Conference 2005.18 (2005): 205–6. http://dx.doi.org/10.1299/jsmecmd.2005.18.205.
Full textAftosmis, M. J., M. J. Berger, and J. E. Melton. "Robust and efficient Cartesian mesh generation for component-based geometry." AIAA Journal 36 (January 1998): 952–60. http://dx.doi.org/10.2514/3.13918.
Full textDeZeeuw, Darren, and Kenneth G. Powell. "An Adaptively Refined Cartesian Mesh Solver for the Euler Equations." Journal of Computational Physics 104, no. 1 (1993): 56–68. http://dx.doi.org/10.1006/jcph.1993.1007.
Full textISHIDA, Takashi, Shun TAKAHASHI, and Kazuhiro NAKAHASHI. "Efficient and Robust Cartesian Mesh Generation for Building-Cube Method." Journal of Computational Science and Technology 2, no. 4 (2008): 435–46. http://dx.doi.org/10.1299/jcst.2.435.
Full textIwafune, Tsubasa, Daisuke Sasaki, Hidemi Toh, and Tatsuya Ishii. "Numerical Simulation of 2D Grazing Flow using Cartesian-mesh CFD." Proceedings of The Computational Mechanics Conference 2017.30 (2017): 216. http://dx.doi.org/10.1299/jsmecmd.2017.30.216.
Full textKamkar, S. J., A. M. Wissink, V. Sankaran, and A. Jameson. "Feature-driven Cartesian adaptive mesh refinement for vortex-dominated flows." Journal of Computational Physics 230, no. 16 (2011): 6271–98. http://dx.doi.org/10.1016/j.jcp.2011.04.024.
Full textNemec, Marian, and Michael J. Aftosmis. "Adjoint sensitivity computations for an embedded-boundary Cartesian mesh method." Journal of Computational Physics 227, no. 4 (2008): 2724–42. http://dx.doi.org/10.1016/j.jcp.2007.11.018.
Full textCai, Qing-dong. "Explicit formulations and performance of LSFD method on Cartesian mesh." Applied Mathematics and Mechanics 30, no. 2 (2009): 183–96. http://dx.doi.org/10.1007/s10483-009-0206-z.
Full textDe Zeeuw, Darren, and Kenneth G. Powell. "An adaptively-refined Cartesian mesh solver for the Euler equations." Journal of Computational Physics 101, no. 2 (1992): 453–54. http://dx.doi.org/10.1016/0021-9991(92)90033-u.
Full textOgawa, Takanobu, and Elaine S. Oran. "Flux-Corrected Transport Algorithms for an Adaptively Refined Cartesian Mesh." AIAA Journal 45, no. 1 (2007): 200–213. http://dx.doi.org/10.2514/1.23587.
Full textDi Angelo, Luca Di, Francesco Duronio, Angelo De De Vita, and Andrea Di Di Mascio. "Cartesian Mesh Generation with Local Refinement for Immersed Boundary Approaches." Journal of Marine Science and Engineering 9, no. 6 (2021): 572. http://dx.doi.org/10.3390/jmse9060572.
Full textTakeda, Yuki, Kazuyuki Ueno, Tatsuya Ishikawa, and Yuta Takahashi. "Prediction Capability of Cartesian Cut-Cell Method with a Wall-Stress Model Applied to High Reynolds Number Flows." Applied Sciences 10, no. 15 (2020): 5050. http://dx.doi.org/10.3390/app10155050.
Full textAnand, Tarun, and Phalguni Gupta. "A Selection Algorithm for X + Y on Mesh." Parallel Processing Letters 08, no. 03 (1998): 363–70. http://dx.doi.org/10.1142/s0129626498000377.
Full textNonomura, Taku, and Junya Onishi. "A Comparative Study on Evaluation Methods of Fluid Forces on Cartesian Grids." Mathematical Problems in Engineering 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/8314615.
Full textSkamarock, William C., Joseph B. Klemp, Michael G. Duda, Laura D. Fowler, Sang-Hun Park, and Todd D. Ringler. "A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering." Monthly Weather Review 140, no. 9 (2012): 3090–105. http://dx.doi.org/10.1175/mwr-d-11-00215.1.
Full textLIU, JIANMING, NING ZHAO, and OU HU. "GHOST-CELL METHOD FOR INVISCID THREE-DIMENSIONAL FLOWS WITH MOVING BODY ON CARTESIAN GRIDS." Modern Physics Letters B 23, no. 03 (2009): 277–80. http://dx.doi.org/10.1142/s0217984909018199.
Full textTölke, Jonas, Manfred Krafczyk, Manuel Schulz, Ernst Rank, and Rodolfo Berrios. "Implicit discretization and nonuniform mesh refinement approaches for FD discretizations of LBGK Models." International Journal of Modern Physics C 09, no. 08 (1998): 1143–57. http://dx.doi.org/10.1142/s0129183198001059.
Full textBergmann, M., J. Hovnanian, and A. Iollo. "An Accurate Cartesian Method for Incompressible Flows with Moving Boundaries." Communications in Computational Physics 15, no. 5 (2014): 1266–90. http://dx.doi.org/10.4208/cicp.220313.111013a.
Full textShu, Kembun, Yoshiharu Tamaki, and Taro Imamura. "2D Turbulent Flow Analysis around a 30P30N Airfoil using Adaptive Mesh Refinement on Hierarchical Cartesian Mesh." JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 68, no. 2 (2020): 82–88. http://dx.doi.org/10.2322/jjsass.68.82.
Full textCHETVERUSHKIN, B. N., N. G. CHURBANOVA, M. A. TRAPEZNIKOVA, A. A. SUKHINOV, and A. A. MALINOVSKIJ. "Adaptive Cartesian Mesh Refinement For Simulating Multiphase Lows In Porous Media." Computational Methods in Applied Mathematics 8, no. 2 (2008): 101–15. http://dx.doi.org/10.2478/cmam-2008-0007.
Full textIWAFUNE, Tsubasa, Takaya KOJIMA, Daisuke SASAKI, Hidemi TOH, and Tatsuya ISHII. "Unsteady Flow Analysis of Cavity Flow Using 2D Cartesian-mesh CFD." Proceedings of Conference of Hokuriku-Shinetsu Branch 2017.54 (2017): H021. http://dx.doi.org/10.1299/jsmehs.2017.54.h021.
Full textMIZUNO, Yuta, Daisuke SASAKI, and Shun TAKAHASHI. "Flow Analysis of Small Deformation Object by Using Cartesian Mesh Method." Proceedings of Conference of Hokuriku-Shinetsu Branch 2020.57 (2020): N013. http://dx.doi.org/10.1299/jsmehs.2020.57.n013.
Full textOgawa, T., and E. S. Oran. "631 Flux-Corrected Transport Algorithms for an Adaptively Refined Cartesian Mesh." Proceedings of the JSME annual meeting 2005.1 (2005): 87–88. http://dx.doi.org/10.1299/jsmemecjo.2005.1.0_87.
Full textCoirier, William J., and Kenneth G. Powell. "An Accuracy Assessment of Cartesian-Mesh Approaches for the Euler Equations." Journal of Computational Physics 117, no. 1 (1995): 121–31. http://dx.doi.org/10.1006/jcph.1995.1050.
Full textKeats, W. A., and F. S. Lien. "Two-dimensional anisotropic Cartesian mesh adaptation for the compressible Euler equations." International Journal for Numerical Methods in Fluids 46, no. 11 (2004): 1099–125. http://dx.doi.org/10.1002/fld.780.
Full textJahangirian, A., and M. Y. Hashemi. "Adaptive Cartesian grid with mesh-less zones for compressible flow calculations." Computers & Fluids 54 (January 2012): 10–17. http://dx.doi.org/10.1016/j.compfluid.2011.08.010.
Full textHasbestan, Jaber J., and Inanc Senocak. "Binarized-octree generation for Cartesian adaptive mesh refinement around immersed geometries." Journal of Computational Physics 368 (September 2018): 179–95. http://dx.doi.org/10.1016/j.jcp.2018.04.039.
Full textShragge, Jeffrey. "Solving the 3D acoustic wave equation on generalized structured meshes: A finite-difference time-domain approach." GEOPHYSICS 79, no. 6 (2014): T363—T378. http://dx.doi.org/10.1190/geo2014-0172.1.
Full textOGAWA, Takanobu. "A Mesh Generation Method for an Adaptive Cartesian Mesh (A Fast Algorithm to Detect the Surface Intersection)." Transactions of the Japan Society of Mechanical Engineers Series B 70, no. 690 (2004): 340–47. http://dx.doi.org/10.1299/kikaib.70.340.
Full textGOVINDARAJAN, V., H. S. UDAYKUMAR, and K. B. CHANDRAN. "FLOW DYNAMIC COMPARISON BETWEEN RECESSED HINGE AND OPEN PIVOT BI-LEAFLET HEART VALVE DESIGNS." Journal of Mechanics in Medicine and Biology 09, no. 02 (2009): 161–76. http://dx.doi.org/10.1142/s0219519409002912.
Full text