Academic literature on the topic 'Cas9-tagging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cas9-tagging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cas9-tagging"
Thöne, Fabian M. B., Nina S. Kurrle, Harald von Melchner, and Frank Schnütgen. "CRISPR/Cas9-mediated generic protein tagging in mammalian cells." Methods 164-165 (July 2019): 59–66. http://dx.doi.org/10.1016/j.ymeth.2019.02.018.
Full textWang, Qiang, and Jeffrey J. Coleman. "CRISPR/Cas9-mediated endogenous gene tagging in Fusarium oxysporum." Fungal Genetics and Biology 126 (May 2019): 17–24. http://dx.doi.org/10.1016/j.fgb.2019.02.002.
Full textLin, Da-Wei, Benjamin P. Chung, Jia-Wei Huang, Xiaorong Wang, Lan Huang, and Peter Kaiser. "Microhomology-based CRISPR tagging tools for protein tracking, purification, and depletion." Journal of Biological Chemistry 294, no. 28 (May 28, 2019): 10877–85. http://dx.doi.org/10.1074/jbc.ra119.008422.
Full textBeneke, Tom, Ulrich Dobramysl, Carolina Moura Costa Catta-Preta, Jeremy Charles Mottram, Eva Gluenz, and Richard Wheeler. "Genome sequence of Leishmania mexicana MNYC/BZ/62/M379 expressing Cas9 and T7 RNA polymerase." Wellcome Open Research 7 (December 5, 2022): 294. http://dx.doi.org/10.12688/wellcomeopenres.18575.1.
Full textBeneke, Tom, Ulrich Dobramysl, Carolina Moura Costa Catta-Preta, Jeremy Charles Mottram, Eva Gluenz, and Richard J. Wheeler. "Genome sequence of Leishmania mexicana MNYC/BZ/62/M379 expressing Cas9 and T7 RNA polymerase." Wellcome Open Research 7 (February 23, 2023): 294. http://dx.doi.org/10.12688/wellcomeopenres.18575.2.
Full textHarazi, A., L. Yakovlev, and S. Mitrani-Rosenbaum. "P.248CRISPR-Cas9 tagging allows the detection of endogenous gne in mice." Neuromuscular Disorders 29 (October 2019): S139. http://dx.doi.org/10.1016/j.nmd.2019.06.362.
Full textLi, Pan, Lijun Zhang, Zhifang Li, Chunlong Xu, Xuguang Du, and Sen Wu. "Cas12a mediates efficient and precise endogenous gene tagging via MITI: microhomology-dependent targeted integrations." Cellular and Molecular Life Sciences 77, no. 19 (December 17, 2019): 3875–84. http://dx.doi.org/10.1007/s00018-019-03396-8.
Full textCalverley, Ben C., Karl E. Kadler, and Adam Pickard. "Dynamic High-Sensitivity Quantitation of Procollagen-I by Endogenous CRISPR-Cas9 NanoLuciferase Tagging." Cells 9, no. 9 (September 10, 2020): 2070. http://dx.doi.org/10.3390/cells9092070.
Full textKovářová, Julie, Markéta Novotná, Joana Faria, Eva Rico, Catriona Wallace, Martin Zoltner, Mark C. Field, and David Horn. "CRISPR/Cas9-based precision tagging of essential genes in bloodstream form African trypanosomes." Molecular and Biochemical Parasitology 249 (May 2022): 111476. http://dx.doi.org/10.1016/j.molbiopara.2022.111476.
Full textBlaeser, Anthony R., Pei Lu, and Qi Long Lu. "347. Tagging FKRP and LARGE by CRISPR/Cas9 for Monitoring Expression and Localization." Molecular Therapy 23 (May 2015): S138. http://dx.doi.org/10.1016/s1525-0016(16)33956-9.
Full textDissertations / Theses on the topic "Cas9-tagging"
Lindvall, Jenny. "Green and red fluorescent protein tagging of endogenous proteins in glioblastoma using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-314151.
Full textMaster Thesis in Applied Biotechnology
Ratz, Michael [Verfasser], Stefan [Akademischer Betreuer] [Gutachter] Jakobs, and Peter [Gutachter] Rehling. "CRISPR-Cas9-mediated protein tagging in human cells for RESOLFT nanoscopy and the analysis of mitochondrial prohibitins / Michael Ratz ; Gutachter: Stefan Jakobs, Peter Rehling ; Betreuer: Stefan Jakobs." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2016. http://d-nb.info/1121909892/34.
Full textJones, Matthew Leslie. "The subnuclear localisation of Notch responsive genes." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274909.
Full textReinoite, Filipa Barroqueiro. "CRISPR/Cas9-mediated tagging of stem cell specific genes to study regeneration in the flatworm Macrostomum lignano." Master's thesis, 2019. http://hdl.handle.net/10316/88127.
Full textA regeneração de tecidos é um processo que está dependente da capacidade de proliferação e diferenciação de células estaminais. No entanto, os mecanismos moleculares envolvidos neste processo são ainda uma incógnita, tornando ainda mais fascinante este atributo tão raro em alguns animais. Macrostomum lignano é um platelminta marinho que apresenta um conjunto qualidades únicas que fazem com que se adeqúe perfeitamente ao estudo de regeneração e células estaminais. É de fácil manutenção, transparente, tem um curto tempo de vida, produz ovos individuais fertilizados o que possibilita a criação de organismos transgénicos via micro-injecção. Além de todas as características descritas tem capacidade de regeneração ao longo do corpo, apenas possível devido à população pluripotente de células estaminais denominada neoblastos. O estudo dos neoblastos possibilita a compreensão dos mecanismos envolvidos no processo de regeneração.Neste estudo foi possível desenvolver linhas transgénicas de M. lignano que marcam os neoblastos pela integração de uma proteína fluorescente pelo sistema CRISPR/Cas9 no locus de um gene específico dos neoblastos, H2AX. Esta linha foi um ponto de partida para a criação de linhas transgénicas duplas que marcam neoblastos assim como variados tipos celulares com proteínas fluorescentes distintas. A expressão fluorescente de uma linha dupla que marca neoblastos e células musculares após amputação permitiu identificar células progenitoras, neoblastos destinados a se diferenciarem em determinado tipo celular. A criação destas linhas transgénicas possibilitou o acompanhamento in vivo do comportamento dos neoblastos no processo de regeneração assim como a separação de diferentes populações de neoblastos nunca identificadas.Além de nos dar uma perspectiva mais ampla da função dos neoblastos, este projecto permitiu a melhor compreensão do processo de diferenciação destas células após amputação. O desenvolvimento da tecnologia CRISPR/Cas9 posiciona Macrostomum lignano como o platelminta de eleição para o estudo de comportamento celular in vivo e para o estudo da genómica funcional dos neoblastos tanto em homeostasia como em regeneração. Também alarga o seu estudo em diferentes áreas como cancro, manutenção genómica e envelhecimento.
Regeneration of lost or damaged tissues is dependent on proliferation and differentiation of stem cells. The understanding of this molecular process is one of the longstanding scientific problems that require a suitable model organism. The recently developed model Macrostomum lignano is a marine free‐living flatworm with a unique set of biological properties perfectly positioned for the study of stem cells and regeneration. It is easy to culture, transparent, has a short generation time and produces single-cell fertilized eggs, enabling transgenesis via microinjection. Whole-body regeneration in flatworms is fueled by a pluripotent population of stem cells called neoblasts. Studying the biology of neoblasts improves our understanding of the mechanisms involved in regeneration. In the current project we were able to develop by microinjection a M. lignano transgenic line labeling neoblasts by CRISPR/Cas9‐mediated knock‐in of a fluorescent protein into a neoblast‐specific gene, H2AX. Such line was a starting point for generating multiple double transgenic lines labeling both neoblasts and differentiated cell types tagged with distinct fluorescent proteins. Fluorescent protein expression in a double transgenic line with a muscle-specific marker allowed identification of progenitor cells upon regeneration, a neoblast population committed to differentiate into specific cell-types. These transgenic lines allow for in vivo tracking of neoblast behavior during regeneration and isolation of several never identified stem cell populations for further characterization.This project improves our understanding of the molecular mechanisms of neoblast differentiation and provides a broader multidimensional image of the function of stem cells in the process of regeneration. The enlargement of its experimental potential places M. lignano as the invertebrate model organism of choice for studying in vivo cell behavior and stem cell-specific gene function in tissue regeneration and homeostasis. As well as expand its value in other research fields as cancer, genome maintenance and ageing.
Ratz, Michael. "CRISPR-Cas9-mediated protein tagging in human cells for RESOLFT nanoscopy and the analysis of mitochondrial prohibitins." Doctoral thesis, 2015. http://hdl.handle.net/11858/00-1735-0000-002B-7CDA-C.
Full textBook chapters on the topic "Cas9-tagging"
Xiang, Xi, Conghui Li, Xi Chen, Hongwei Dou, Yong Li, Xiuqing Zhang, and Yonglun Luo. "CRISPR/Cas9-Mediated Gene Tagging: A Step-by-Step Protocol." In Methods in Molecular Biology, 255–69. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9170-9_16.
Full textGhosh, Sanjay, and Ji-Long Liu. "Genomic Tagging of AGO1 Using CRISPR/Cas9-Mediated Homologous Recombination." In Methods in Molecular Biology, 217–35. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7339-2_15.
Full textShvets, Elena, and Carolina Mendoza-Topaz. "Tagging and Deleting of Endogenous Caveolar Components Using CRISPR/Cas9 Technology." In Methods in Molecular Biology, 149–66. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0732-9_14.
Full textBeneke, Tom, and Eva Gluenz. "LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9." In Methods in Molecular Biology, 189–210. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9210-2_9.
Full textGeny, Sylvain, Simon Pichard, Arnaud Poterszman, and Jean-Paul Concordet. "Gene Tagging with the CRISPR-Cas9 System to Facilitate Macromolecular Complex Purification." In Methods in Molecular Biology, 153–74. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1406-8_8.
Full textEhrke-Schulz, Eric, Maren Schiwon, Claudia Hagedorn, and Anja Ehrhardt. "Establishment of the CRISPR/Cas9 System for Targeted Gene Disruption and Gene Tagging." In Methods in Molecular Biology, 165–76. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7231-9_11.
Full textGeny, Sylvain, Simon Pichard, Alice Brion, Jean-Baptiste Renaud, Sophie Jacquemin, Jean-Paul Concordet, and Arnaud Poterszman. "Tagging Proteins with Fluorescent Reporters Using the CRISPR/Cas9 System and Double-Stranded DNA Donors." In Methods in Molecular Biology, 39–57. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-1126-5_3.
Full textDambournet, D., S. H. Hong, A. Grassart, and D. G. Drubin. "Tagging Endogenous Loci for Live-Cell Fluorescence Imaging and Molecule Counting Using ZFNs, TALENs, and Cas9." In Methods in Enzymology, 139–60. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-801185-0.00007-6.
Full text